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In this talk I describe some recent joint work with Louis. Please see [8] for
details.

Let D be a bounded domain in R
n. For positive constants 0 < λ ≤ Λ < ∞,

let A(λ, Λ) denote the class of measurable coefficients {Aαβ
ij (x)}, 1 ≤ α, β ≤ n, 1 ≤

i, j ≤ N , which satisfy

|Aαβ
ij (x)| ≤ Λ ∀ α, β, i, j, and x ∈ D, (1)

and ∫
D

Aαβ
ij ∂αϕi∂βϕj ≥ λ

∫
D
|∇ϕ|2, ∀ ϕ ∈ H1

0 (D, R
N). (2)

We are interested in solutions u ∈ H1(D, R
N) of

∂α

(
Aαβ

ij (x)∂βuj
)

= 0, 1 ≤ i ≤ N, in D. (3)

System (3) is called strongly elliptic if the coefficients satisfy

Aαβ
ij (x)ξi

αξj
β ≥ λ|ξ|2, ∀ x ∈ D and ∀ n × N matrix ξ.
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It is called a linear system of elasticity if the coefficients satisfy{
n = N, Aαβ

ij (x) = Aβα
ji (x) = Aiβ

αj ∀ α, β, i, j, and x ∈ D,

Aαβ
ij (x)ξi

αξj
β ≥ λ|ξ|2, ∀ symmetric n × n matrix ξ and ∀ x ∈ D.

It is known that strongly elliptic systems and linear systems of elasticity satisfy (2).
A necessary condition for (2) is

Aαβ
ij (x)ξαξβη

iηj ≥ λ|ξ|2|η|2, ∀ ξ ∈ R
n, η ∈ R

N , x ∈ D.

If coefficients {Aαβ
ij } satisfy (1) and (2), and are smooth in D, then H1 solutions of

(3) are smooth. If the coefficients satisfy (1) and (2) only, then the classical result of
De Giorgi and Nash says that for N = 1 (scalar equation) H1 solutions are Hölder
continuous (in general not Lipschitz). The situation is very different for systems
(N ≥ 2). A well known example of De Giorgi shows that H1 solutions to strongly
elliptic systems (with L∞ coefficients) are not necessarily bounded. An example of
this nature was later given by Necas and Stipl for linear systems of elasticity.

Let D be a bounded domain in R
n containing L disjoint subdomains D1, · · · , DL,

with D = (∪Dm) \ ∂D. If a point in D lies on some ∂Dm then we assume for that
m, ∂Dm is smooth. This implies that any point x ∈ D belongs to the boundaries of
at most two of the Dm. Thus if the boundaries of two Dm touch, then they touch
on a whole component of such boundary. We assume that {∂Dm}, 1 ≤ m ≤ L,
are C2 and the principal curvatures are bounded by some constant K. We assume
that A ∈ A(λ, Λ) and A is smooth in every Dm. The above assumption arise
naturally from composite material. In D we consider a composite media whose
physical characteristics are smooth in the closure of each region Dm but possibly
discontinuous across their boundaries. The physical properties are described in
terms of a linear system of elasticity. Thus the coefficients of the system are smooth
in each Dm but not across their boundaries. In engineering, one is interested in
obtaining bounds on the stresses represented by ∇u.

Theorem 1 ([8]) Assume the above. For any ε > 0, there exists some constant C,
depending only on n, N, λ, Λ, L, ε, K, and ‖A‖C1(Dm) , such that if u ∈ H1(D, R

N)
is a solution of (3), then

‖u‖
C1, 1

4 (Dm∩Dε)
≤ C‖u‖L2(D), ∀ m, (4)

where Dε = {x ∈ D | dist(x, ∂D) > ε}. Consequently,

‖∇u‖L∞(Dε) ≤ C‖u‖L2(D). (5)
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The constant C in the above theorem does not depend on the distances between
{∂Dm}. As a result, by moving the Dm slightly, more general domains are allowed.
For N = 1 (scalar equation) the above theorem was established by Li and Vogelius

in [9] for a smaller Hölder exponent in (4) (C1,α′
for α′ < 1

2n
instead of C1, 1

4 ). The
proof made use of the estimates of De Girogi and Nash which are not available to
systems. Babuska et al [2] were interested in elliptic systems arising in elasticity.
They observed numerically that, for certain homogeneous isotropic linear systems of
elasticity, |∇u| is bounded independent of how close the regions were to each other.

The question of higher regularity of solutions (higher than C1, 1
4 in (4)) remains

largely open. A very special case in dimension n = 2 was examined by Bonnetier
and Vogelius in [3] and then by Li and Vogelius in [9]: Let D1, D2 be unit disks in R

2

centered at (0,−1) and (0, 1)–so their closures touch at the origin, and let a(x) ≡ 1
in BR \ (D1 ∪ D2), a(x) = a0 6= 1 in D1 and D2, here a0 is a positive constant.
Consider scalar equation

∂i (a(x)∂iu) = 0 in BR, u ∈ H1(BR).

It is shown in [9] that if R is sufficiently large, derivatives of u (of any order) are
bounded in D1, D2, and in D0 ∩ BR−1. The proof made use of conformal mapping.
It is worth pointing out that the same problem in higher dimensions is open.

Let {Dm} be disjoint sub-domains of a flat torus T n = R
n/Z

n, as described
above. Based on Theorem 1 and the method in [1], we have the following extension
of a result of Avellaneda and Lin in [1].

Theorem 2 ([8]) Let {Dm} be as above and let A ∈ A(λ, Λ) be “piecewise Hölder
continuous” as described earlier. Assume that A is 1-periodic in each variable, and
u ∈ H1(B1, R

N) is a solution of

∂α

(
Aαβ

ij (
x

ε
)∂βuj

)
= 0, B1.

Then
‖∇u‖L∞(B1/2) ≤ C‖u‖L2(B1),

where B1 is the unit ball of R
n and C is independent of ε and the distances between

the {∂Dm}.
W 1,∞ estimate is given in the above theorem. W 1,p estimate for p < ∞ is due

to Caffarelli and Peral ([6]). Under a stronger hypothesis that A is Hölder on T n,
the W 1,∞ estimate is due to Avellaneda and Lin ([1]).



4

In the remaining of the note, we outline our proof ([8]) of the C1, 1
4 estimates.

The proof makes use of ideas of L. Caffarelli of [4] and [5]. To estimate |∇u(x)|
at a point x in Dε we need only consider the case that x is close to some ∂Dm,
otherwise standard interior estimates yield the result. In that case we approximate
the problem by a laminar one which has been studied by Chipot et al [7]. For a
laminar system, we consider D to be the cube

Ω = {x ; |xi| < 1}, with x = (x′, xn),

divided into Ω′
ms; however the Ωm are different, they are “strips”:

Ωm = {x ∈ Ω ; cm−1 < xn < cm},

where the cm are increasing constants lying between −1 and 1. We consider system
(3), for a vector-valued function v,

∂α

(
A

αβ
ij ∂βvj

)
= H i + ∂α(G

i
α), i = 1, · · · , N.

The coefficients A are constant in each Ωm and satisfy (1) and (2). The H and G
are also assumed to be constant in each Ωm. The following estimate can be deduced
from [7]: For any ε > 0, any k ≥ 0, and any m,

‖v‖Ck(Ωm∩(1−ε)Ω) ≤ C
(
‖v‖L2(Ω) + ‖H‖L∞(Ω) + ‖G‖L∞(Ω)

)
.

where C = C(ε, k, n, N, λ, Λ).
We establish a general perturbation result which asserts, roughly, the following:

Suppose u is a solution of system

∂(A∂u) = ∂g

in a cube Ω. Suppose that B are the coefficients of a similar system also satisfying
(1) and (2) with the L1 norm of (A − B) ≤ ε small. Then in 3

4
Ω, there is an H1

solution of the “B system”

∂(B∂v) = 0 in
3

4
Ω

with
‖u − v‖H1( 1

2
Ω) ≤ C

(
‖g‖L2(Ω) + εγ‖u‖L2(Ω)

)
for some universal constant γ > 0 and some C.
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To estimate |∇u(x)|, we only need to use the perturbation lemma in the case
that B = A is a laminar one. For simplicity, we take x as the origin. By suitable
rotation and scaling, we may suppose that a number of the ∂Dm lie in the usual
cube Ω and that these take the form

xn = fj(x
′) ∀ x′ ∈ [−1, 1]n−1, j = 1, · · · , l,

with
−1 < f1(x

′) < f2(x
′) < · · · < fl(x

′) < 1,

and with the fj in C2([−1, 1]n−1). We set f0(x
′) = −1, fl+1 = 1, and have l + 1

regions:

Dm = {x ∈ Ω | fm−1(x
′) < xn < fm(x′)}, 1 ≤ m ≤ l + 1.

We may suppose that fm0+1(0
′) < 0 < fm0(0

′), and the closest point on Dm0 to the
origin is (0′, fm0+1(0

′)). Thus ∇′fm0+1(0
′) = 0.

Our system (3) still takes the same form, with (1) and (2) still holding. The
coefficients A are smooth in every Dm ∩Ω. Our desired estimate for ∇u(0) is given
by

|∇u(0)| ≤ C‖u‖L2(Ω). (6)

We define the coefficients A as

A(x) =




limy∈Dm,y→(0,fm−1(0′)) A(y), x ∈ Ωm, m > m0,
A(0), x ∈ Ωm0 ,

limy∈Dm,y→(0,fm(0′)) A(y), x ∈ Ωm, m < m0.

By the regularity of the fm, there exists some constant C such that

(∫
−

rΩ
|A − A|2

) 1
2 ≤ Cr

1
4 , ∀0 < r < 1/2.

In fact, by a harmless scaling, C can be assumed to be some small ε0. Applying the
previously mentioned perturbation lemma, with B = A, we obtain a solution w0 of
the A system

∂
(
A∂w0

)
= 0

with

‖u − w0‖L2( 1
2
Ω) ≤ (

1

4
)

n
2
+ 5

4 .

In addition, using the previously mentioned result on laminar systems we show that

‖∇w0‖L∞( 1
4
Ω) ≤ C.
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By repeated use of the perturbation result, applied first to u − w0, in smaller
and smaller cubes, and by scaling, we obtain a sequence of functions w1, w2, · · ·
satisfying, with C a fixed constant,

‖∇wk‖L∞(4−(k+1)Ω) ≤ C4−k/4, |wk(0)| ≤ C4−5k/4, (7)

and

‖u −
k∑

j=0

wj‖L2(4−kΩ) ≤ C4−(k+1)(n
2
+ 5

4
). (8)

Using (7) and (8) we finally obtain

‖u −
∞∑

j=0

wj(0)‖L2(4−(k+1)Ω) ≤ C4−(k+1)n+2
2

which yields (6).

Next we describe the proof of the Hölder continuity of ∇u. Take two points in
some Dm0 , one of them we take as the origin while the other we call it x. Pick a
point on ∪m∂Dm such that the distance of the origin to this point is the shortest
distance of the origin to ∪m∂Dm. Let the line going through this point and the
origin be the xn−axis. With |x| small, we establish

|∇u(0) −∇u(x)| ≤ C|x| 14 . (9)

To do this we compare ∇u at 0 and x with ∇u at two other points x̄, z̄, as in [9].
Since the number of regions Dm is finite we may find x̄ on the xn−axis such that

|x̄| ∼ |x| and x̄ + 8|x|Ω lies entirely in some Dm. We prove that

|∇u(x̄) − T∇u(0)| ≤ C|x| 14 ,
where T is some invertible linear transformation with ‖T‖ and ‖T−1‖ bounded from
above by some universal constant. Similarly, we can find z̄ with |z̄ − x̄| ≤ 2|x| and

|∇u(z̄) − T∇u(x)| ≤ C|x| 14 .
Finally we show that

|∇u(x̄) −∇u(y)| ≤ C|x| 14 ∀ y ∈ x̄ + 6|x|Ω.

In particular,
|∇u(x̄) −∇u(z̄)| ≤ C|x| 14 .

The desired estimate (9) follows from the above.
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