Some recent work on elliptic systems from composite material

YanYan Li^{*} Department of Mathematics Rutgers University New Brunswick, NJ 08903

Dedicated to Louis Nirenberg with admiration and friendship

In this talk I describe some recent joint work with Louis. Please see [8] for details.

Let *D* be a bounded domain in \mathbb{R}^n . For positive constants $0 < \lambda \leq \Lambda < \infty$, let $\mathcal{A}(\lambda, \Lambda)$ denote the class of measurable coefficients $\{A_{ij}^{\alpha\beta}(x)\}, 1 \leq \alpha, \beta \leq n, 1 \leq i, j \leq N$, which satisfy

$$|A_{ij}^{\alpha\beta}(x)| \le \Lambda \qquad \forall \ \alpha, \beta, i, j, \text{and } x \in D,$$
(1)

and

$$\int_{D} A_{ij}^{\alpha\beta} \partial_{\alpha} \varphi^{i} \partial_{\beta} \varphi^{j} \ge \lambda \int_{D} |\nabla \varphi|^{2}, \qquad \forall \varphi \in H_{0}^{1}(D, \mathbb{R}^{N}).$$
⁽²⁾

We are interested in solutions $u \in H^1(D, \mathbb{R}^N)$ of

$$\partial_{\alpha} \left(A_{ij}^{\alpha\beta}(x) \partial_{\beta} u^{j} \right) = 0, \qquad 1 \le i \le N, \qquad \text{in } D.$$
 (3)

System (3) is called strongly elliptic if the coefficients satisfy

 $A_{ij}^{\alpha\beta}(x)\xi_{\alpha}^{i}\xi_{\beta}^{j} \ge \lambda |\xi|^{2}, \quad \forall x \in D \text{ and } \forall n \times N \text{ matrix } \xi.$

^{*}Partially supported by NSF grant DMS-9706887 and a Rutgers University Research Council grant.

It is called a linear system of elasticity if the coefficients satisfy

$$\begin{cases} n = N, \quad A_{ij}^{\alpha\beta}(x) = A_{ji}^{\beta\alpha}(x) = A_{\alpha j}^{i\beta} \quad \forall \ \alpha, \beta, i, j, \text{and } x \in D, \\ A_{ij}^{\alpha\beta}(x)\xi_{\alpha}^{i}\xi_{\beta}^{j} \ge \lambda |\xi|^{2}, \quad \forall \ symmetric \ n \times n \ \text{matrix} \ \xi \ \text{and} \ \forall \ x \in D. \end{cases}$$

It is known that strongly elliptic systems and linear systems of elasticity satisfy (2). A necessary condition for (2) is

$$A_{ij}^{\alpha\beta}(x)\xi_{\alpha}\xi_{\beta}\eta^{i}\eta^{j} \ge \lambda|\xi|^{2}|\eta|^{2}, \qquad \forall \ \xi \in \mathbb{R}^{n}, \eta \in \mathbb{R}^{N}, x \in D.$$

If coefficients $\{A_{ij}^{\alpha\beta}\}\$ satisfy (1) and (2), and are smooth in D, then H^1 solutions of (3) are smooth. If the coefficients satisfy (1) and (2) only, then the classical result of De Giorgi and Nash says that for N = 1 (scalar equation) H^1 solutions are Hölder continuous (in general not Lipschitz). The situation is very different for systems $(N \ge 2)$. A well known example of De Giorgi shows that H^1 solutions to strongly elliptic systems (with L^{∞} coefficients) are not necessarily bounded. An example of this nature was later given by Necas and Stipl for linear systems of elasticity.

Let D be a bounded domain in \mathbb{R}^n containing L disjoint subdomains D_1, \dots, D_L , with $D = (\bigcup \overline{D}_m) \setminus \partial D$. If a point in D lies on some ∂D_m then we assume for that $m, \partial D_m$ is smooth. This implies that any point $x \in D$ belongs to the boundaries of at most two of the D_m . Thus if the boundaries of two D_m touch, then they touch on a whole component of such boundary. We assume that $\{\partial D_m\}, 1 \leq m \leq L$, are C^2 and the principal curvatures are bounded by some constant K. We assume that $A \in \mathcal{A}(\lambda, \Lambda)$ and A is smooth in every \overline{D}_m . The above assumption arise naturally from composite material. In \overline{D} we consider a composite media whose physical characteristics are smooth in the closure of each region D_m but possibly discontinuous across their boundaries. The physical properties are described in terms of a linear system of elasticity. Thus the coefficients of the system are smooth in each \overline{D}_m but not across their boundaries. In engineering, one is interested in obtaining bounds on the stresses represented by ∇u .

Theorem 1 ([8]) Assume the above. For any $\epsilon > 0$, there exists some constant C, depending only on $n, N, \lambda, \Lambda, L, \epsilon, K$, and $||A||_{C^1(\overline{D}_m)}$, such that if $u \in H^1(D, \mathbb{R}^N)$ is a solution of (3), then

$$\|u\|_{C^{1,\frac{1}{4}}(\overline{D}_m \cap D_{\epsilon})} \le C \|u\|_{L^2(D)}, \qquad \forall \ m, \tag{4}$$

where $D_{\epsilon} = \{x \in D \mid dist(x, \partial D) > \epsilon\}$. Consequently,

$$\|\nabla u\|_{L^{\infty}(D_{\epsilon})} \le C \|u\|_{L^{2}(D)}.$$
(5)

The constant C in the above theorem does not depend on the distances between $\{\partial D_m\}$. As a result, by moving the D_m slightly, more general domains are allowed. For N = 1 (scalar equation) the above theorem was established by Li and Vogelius in [9] for a smaller Hölder exponent in (4) $(C^{1,\alpha'} \text{ for } \alpha' < \frac{1}{2n} \text{ instead of } C^{1,\frac{1}{4}})$. The proof made use of the estimates of De Girogi and Nash which are not available to systems. Babuska et al [2] were interested in elliptic systems arising in elasticity. They observed numerically that, for certain homogeneous isotropic linear systems of elasticity, $|\nabla u|$ is bounded independent of how close the regions were to each other.

The question of higher regularity of solutions (higher than $C^{1,\frac{1}{4}}$ in (4)) remains largely open. A very special case in dimension n = 2 was examined by Bonnetier and Vogelius in [3] and then by Li and Vogelius in [9]: Let D_1, D_2 be unit disks in \mathbb{R}^2 centered at (0, -1) and (0, 1)-so their closures touch at the origin, and let $a(x) \equiv 1$ in $B_R \setminus (D_1 \cup D_2), a(x) = a_0 \neq 1$ in D_1 and D_2 , here a_0 is a positive constant. Consider scalar equation

$$\partial_i (a(x)\partial_i u) = 0$$
 in $B_R, u \in H^1(B_R)$.

It is shown in [9] that if R is sufficiently large, derivatives of u (of any order) are bounded in D_1 , D_2 , and in $D_0 \cap B_{R-1}$. The proof made use of conformal mapping. It is worth pointing out that the same problem in higher dimensions is open.

Let $\{D_m\}$ be disjoint sub-domains of a flat torus $T^n = \mathbb{R}^n/\mathbb{Z}^n$, as described above. Based on Theorem 1 and the method in [1], we have the following extension of a result of Avellaneda and Lin in [1].

Theorem 2 ([8]) Let $\{D_m\}$ be as above and let $A \in \mathcal{A}(\lambda, \Lambda)$ be "piecewise Hölder continuous" as described earlier. Assume that A is 1-periodic in each variable, and $u \in H^1(B_1, \mathbb{R}^N)$ is a solution of

$$\partial_{\alpha} \left(A_{ij}^{\alpha\beta}(\frac{x}{\epsilon}) \partial_{\beta} u^{j} \right) = 0, \quad B_{1}.$$

Then

$$\|\nabla u\|_{L^{\infty}(B_{1/2})} \le C \|u\|_{L^{2}(B_{1})},$$

where B_1 is the unit ball of \mathbb{R}^n and C is independent of ϵ and the distances between the $\{\partial D_m\}$.

 $W^{1,\infty}$ estimate is given in the above theorem. $W^{1,p}$ estimate for $p < \infty$ is due to Caffarelli and Peral ([6]). Under a stronger hypothesis that A is Hölder on T^n , the $W^{1,\infty}$ estimate is due to Avellaneda and Lin ([1]).

In the remaining of the note, we outline our proof ([8]) of the $C^{1,\frac{1}{4}}$ estimates. The proof makes use of ideas of L. Caffarelli of [4] and [5]. To estimate $|\nabla u(x)|$ at a point x in D_{ϵ} we need only consider the case that x is close to some ∂D_m , otherwise standard interior estimates yield the result. In that case we approximate the problem by a laminar one which has been studied by Chipot et al [7]. For a laminar system, we consider D to be the cube

$$\Omega = \{x ; |x_i| < 1\}, \text{ with } x = (x', x_n),$$

divided into Ω'_m s; however the Ω_m are different, they are "strips":

$$\Omega_m = \{ x \in \Omega \ ; \ c_{m-1} < x_n < c_m \},\$$

where the c_m are increasing constants lying between -1 and 1. We consider system (3), for a vector-valued function v,

$$\partial_{\alpha} \left(\overline{A}_{ij}^{\alpha\beta} \partial_{\beta} v^{j} \right) = \overline{H}_{i} + \partial_{\alpha} (\overline{G}_{\alpha}^{i}), \quad i = 1, \cdots, N$$

The coefficients \overline{A} are constant in each Ω_m and satisfy (1) and (2). The \overline{H} and \overline{G} are also assumed to be constant in each Ω_m . The following estimate can be deduced from [7]: For any $\epsilon > 0$, any $k \ge 0$, and any m,

$$\|v\|_{C^k(\overline{\Omega}_m\cap(1-\epsilon)\Omega)} \le C\left(\|v\|_{L^2(\Omega)} + \|\overline{H}\|_{L^\infty(\Omega)} + \|\overline{G}\|_{L^\infty(\Omega)}\right)$$

where $C = C(\epsilon, k, n, N, \lambda, \Lambda)$.

We establish a general perturbation result which asserts, roughly, the following: Suppose u is a solution of system

$$\partial(A\partial u) = \partial g$$

in a cube Ω . Suppose that B are the coefficients of a similar system also satisfying (1) and (2) with the L^1 norm of $(A - B) \leq \epsilon$ small. Then in $\frac{3}{4}\Omega$, there is an H^1 solution of the "B system"

$$\partial(B\partial v) = 0$$
 in $\frac{3}{4}\Omega$

with

$$||u - v||_{H^1(\frac{1}{2}\Omega)} \le C \left(||g||_{L^2(\Omega)} + \epsilon^{\gamma} ||u||_{L^2(\Omega)} \right)$$

for some universal constant $\gamma > 0$ and some C.

To estimate $|\nabla u(x)|$, we only need to use the perturbation lemma in the case that $B = \overline{A}$ is a laminar one. For simplicity, we take x as the origin. By suitable rotation and scaling, we may suppose that a number of the ∂D_m lie in the usual cube Ω and that these take the form

$$x_n = f_j(x') \quad \forall \ x' \in [-1, 1]^{n-1}, j = 1, \cdots, l,$$

with

$$-1 < f_1(x') < f_2(x') < \dots < f_l(x') < 1$$

and with the f_j in $C^2([-1,1]^{n-1})$. We set $f_0(x') = -1$, $f_{l+1} = 1$, and have l + 1 regions:

$$D_m = \{ x \in \Omega \mid f_{m-1}(x') < x_n < f_m(x') \}, \qquad 1 \le m \le l+1.$$

We may suppose that $f_{m_0+1}(0') < 0 < f_{m_0}(0')$, and the closest point on D_{m_0} to the origin is $(0', f_{m_0+1}(0'))$. Thus $\nabla' f_{m_0+1}(0') = 0$.

Our system (3) still takes the same form, with (1) and (2) still holding. The coefficients A are smooth in every $\overline{D}_m \cap \Omega$. Our desired estimate for $\nabla u(0)$ is given by

$$|\nabla u(0)| \le C ||u||_{L^2(\Omega)}.$$
 (6)

We define the coefficients \overline{A} as

$$\overline{A}(x) = \begin{cases} \lim_{y \in D_m, y \to (0, f_{m-1}(0'))} A(y), & x \in \Omega_m, m > m_0, \\ A(0), & x \in \Omega_{m_0}, \\ \lim_{y \in D_m, y \to (0, f_m(0'))} A(y), & x \in \Omega_m, m < m_0. \end{cases}$$

By the regularity of the f_m , there exists some constant C such that

$$\left(\oint_{r\Omega} |A - \overline{A}|^2 \right)^{\frac{1}{2}} \le Cr^{\frac{1}{4}}, \qquad \forall 0 < r < 1/2$$

In fact, by a harmless scaling, C can be assumed to be some small ϵ_0 . Applying the previously mentioned perturbation lemma, with $B = \overline{A}$, we obtain a solution w_0 of the \overline{A} system

$$\partial \left(\overline{A} \partial w_0 \right) = 0$$

with

$$||u - w_0||_{L^2(\frac{1}{2}\Omega)} \le (\frac{1}{4})^{\frac{n}{2} + \frac{5}{4}}.$$

In addition, using the previously mentioned result on laminar systems we show that

$$\|\nabla w_0\|_{L^{\infty}(\frac{1}{4}\Omega)} \le C.$$

By repeated use of the perturbation result, applied first to $u - w_0$, in smaller and smaller cubes, and by scaling, we obtain a sequence of functions w_1, w_2, \cdots satisfying, with C a fixed constant,

$$\|\nabla w_k\|_{L^{\infty}(4^{-(k+1)}\Omega)} \le C4^{-k/4}, |w_k(0)| \le C4^{-5k/4}, \tag{7}$$

and

$$\|u - \sum_{j=0}^{k} w_j\|_{L^2(4^{-k}\Omega)} \le C4^{-(k+1)(\frac{n}{2} + \frac{5}{4})}.$$
(8)

Using (7) and (8) we finally obtain

$$||u - \sum_{j=0}^{\infty} w_j(0)||_{L^2(4^{-(k+1)}\Omega)} \le C4^{-(k+1)\frac{n+2}{2}}$$

which yields (6).

Next we describe the proof of the Hölder continuity of ∇u . Take two points in some D_{m_0} , one of them we take as the origin while the other we call it x. Pick a point on $\bigcup_m \partial D_m$ such that the distance of the origin to this point is the shortest distance of the origin to $\bigcup_m \partial D_m$. Let the line going through this point and the origin be the x_n -axis. With |x| small, we establish

$$|\nabla u(0) - \nabla u(x)| \le C|x|^{\frac{1}{4}}.$$
(9)

To do this we compare ∇u at 0 and x with ∇u at two other points \bar{x}, \bar{z} , as in [9].

Since the number of regions D_m is finite we may find \bar{x} on the x_n -axis such that $|\bar{x}| \sim |x|$ and $\bar{x} + 8|x|\Omega$ lies entirely in some D_m . We prove that

$$|\nabla u(\bar{x}) - T\nabla u(0)| \le C|x|^{\frac{1}{4}},$$

where T is some invertible linear transformation with ||T|| and $||T^{-1}||$ bounded from above by some universal constant. Similarly, we can find \bar{z} with $|\bar{z} - \bar{x}| \leq 2|x|$ and

$$|\nabla u(\bar{z}) - T\nabla u(x)| \le C|x|^{\frac{1}{4}}.$$

Finally we show that

$$|\nabla u(\bar{x}) - \nabla u(y)| \le C|x|^{\frac{1}{4}} \qquad \forall \ y \in \bar{x} + 6|x|\Omega.$$

In particular,

$$|\nabla u(\bar{x}) - \nabla u(\bar{z})| \le C|x|^{\frac{1}{4}}.$$

The desired estimate (9) follows from the above.

References

- M. Avellaneda and F.H. Lin, Compactness methods in the theory of homogenization, Comm. Pure Appl. Math. 40 (1987), 803-847.
- [2] I. Babuska, B. Anderson, P.J. Smith, and K. Levin, Damage analysis of fiber composites. I. Statistical analysis on fiber scale, Comput. Methods Appl. Mech. Engrg. 172 (1999), 27–77.
- [3] E. Bonnetier and M. Vogelius, An elliptic regularity result for a composite medium with "touching" fibers of circular cross-section. To appear, SIAM J. Math. Anal. 31 (2000), 651-677.
- [4] L. Caffarelli, Interior a priori estimates for solutions of fully nonlinear equations. Ann. of Math. 130 (1989), 189-213.
- [5] L. Caffarelli and X. Cabre, Fully Nonlinear Elliptic Equations, AMS Colloquium Publications 43, AMS, Providence, RI, 1995.
- [6] L. Caffarelli and Peral, On W^{1,p} estimates for elliptic equations in divergence form, Comm. Pure Appl. Math 51 (1998), 1-21.
- [7] M. Chipot, D. Kinderlehrer, and G.V. Caffarelli, Smoothness of linear laminates, Arch. Rat. Mech. Anal. 96 (1986), 81–96.
- [8] Y.Y. Li and L. Nirenberg, Estimates for elliptic systems from composite material, preprint.
- [9] Y.Y. Li and M. Vogelius, Gradient estimates for solutions of divergence form elliptic equations with discontinuous coefficients, Arch. Rat. Mech. Anal. 153 (2000), 91-151.