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In this paper we study a class of nonhomogeneous Schrödinger equations

−�u + V (x)u = f (u) + h(x)

in the whole two-dimension space where V (x) is a continuous positive potential bounded
away from zero and which can be “large” at the infinity. The main difficulty in this paper
is the lack of compactness due to the unboundedness of the domain besides the fact that
the nonlinear term f (s) is allowed to enjoy the critical exponential growth by means of
the Trudinger–Moser inequality. By combining variational arguments and a version of the
Trudinger–Moser inequality, we establish the existence of two distinct solutions when h is
suitably small.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

The main purpose of this paper is to study the existence and multiplicity of solutions for nonhomogeneous elliptic
problems of the form

−�u + V (x)u = f (u) + h(x), x ∈ R
2, (1.1)

when the nonlinear term f (s) is allowed to enjoy the critical exponential growth by means of the Trudinger–Moser inequal-
ity.

The above problem appears in many areas of mathematical physics; in particular, solutions of Eq. (1.1) provide standing
waves solutions for the nonlinear Schrödinger equation (see for instance [5,17,20,24] and references therein)

i
∂ψ

∂t
= −�ψ + W (x)ψ − g

(|ψ |)ψ − eiλth(x), x ∈ R
2,

where ψ = ψ(t, x), ψ : R × R
2 → C, λ is a positive constant, W : R

2 → R is a given potential and for suitable functions
g : R

+ → R, h : R
2 → R. Throughout this paper we assume the following hypotheses on V :

(V 1) V : R
2 → R is continuous and satisfies

V (x) � V 0 > 0 for all x ∈ R
2;

(V 2) The function [V (x)]−1 belongs to L1(R2).
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The study of existence and multiplicity of solution for nonhomogeneous elliptic equations in euclidean domains involving
critical growth have received considerable attention in recent years. Most of these problems are dealt with variational
methods, and since the Palais–Smale condition no longer holds for this class of problems this poses an essential difficulty
to the existence question. It is well known that in dimensions N � 3, the maximal possible growth for the nonlinearity is
polynomial at infinity, so that the related functional is well defined in a Sobolev space (see [8] and [18]). Limitations on the
growth of the nonlinearity vary substantially when we come to dimension two. The nonlinearity may exhibit exponential
growth as established by the Trudinger–Moser inequality, which in this case replaces the Sobolev embedding theorem. We
are interested in the case where the nonlinear term f (s) has the maximal growth on s which allows us to treat problem (1.1)
variationally. Motivated by a Trudinger–Moser type inequality (see Lemma 2.1 below) we say that f (s) has subcritical growth
at +∞ if for all α > 0,

lim
s→+∞

f (s)

eαs2 = 0 (1.2)

and f (s) has critical growth at +∞ if there exists α0 > 0 such that

lim
s→+∞

f (s)

eαs2 =
{

0, ∀α > α0,

+∞, ∀α < α0.
(1.3)

We introduce the following assumptions on the nonlinear term:

( f0) f ∈ C(R,R) and f (0) = 0;
( f1) there exist θ > 2 and s1 > 0 such that for all |s| � s1,

0 < θ F (s)
.= θ

s∫
0

f (t)dt � sf (s);

( f2) there exist constants R0, M0 > 0 such that for all |s| � R0,

0 < F (s) � M0 f (s).

Next, in order to apply variational methods, we consider the following subspace of H1(R2)

E =
{

u ∈ H1(
R

2):
∫
R2

V (x)u2 dx < ∞
}
,

which is a Hilbert space endowed with the inner product

〈u, v〉 =
∫
R2

(∇u∇v + V (x)uv
)

dx, u, v ∈ E, (1.4)

to which corresponds the norm ‖u‖ = 〈u, u〉1/2. Here H1(R2) denotes the usual Sobolev space with the norm

‖u‖1,2 =
[ ∫

R2

(|∇u|2 + |u|2) dx

]1/2

.

We say that u ∈ E is a weak solution of problem (1.1), provided that∫
R2

(∇u∇v + V (x)uv
)

dx −
∫
R2

f (u)v dx −
∫
R2

hv dx = 0 (1.5)

for all v ∈ E . Notice that weak solutions of (1.1) turn out to be critical points of the energy functional

I(u) = 1

2
‖u‖2 −

∫
R2

F (u)dx −
∫
R2

hu dx. (1.6)

Assumption (V 1) implies that the embedding

E ↪→ H1(
R

2)
is continuous whereas condition (V 2), together with the Hölder inequality, implies that

‖u‖L1(R2) �
( ∫

2

V (x)−1 dx

)1/2

‖u‖. (1.7)
R
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As a consequence,

E ↪→ Lq(
R

2) for all 1 � q < ∞, (1.8)

with continuous embedding. It is also well known that assumption (V 2) implies that these embeddings are compact for all
1 � q < ∞ (see [15,17]). Moreover,

λ1
.= inf

u∈E\{0}

∫
R2 (|∇u|2 + V (x)u2)dx∫

R2 u2 dx
� V 0 > 0. (1.9)

If h � 0, it is readily seen that the problem

−�u + V (x)u = λ1u + 2ueu2 + h(x), x ∈ R
2,

does not have positive solutions. Therefore, we assume the following additional condition near the origin:

( f3) lims→0 2F (s)s−2 < λ1.

We want to remark that we have to handle two terms in problem (1.1), the nonlinearity f (s) and the perturbation h(x). Our
main interest is to analyze the interplay between them. In this paper we look for conditions that ensure the existence and
multiplicity of solutions of (1.1), focusing our attention on the existence and multiplicity of one sign solutions.

We distinguish two cases.

1.1. Subcritical case

Throughout this paper, we denote by H−1 the dual space of H1(R2) with the usual norm ‖ · ‖H−1 .
Our main results are as follows.

Theorem 1.1. If f (s) has subcritical growth and (V 1)–(V 2), ( f0), ( f1), ( f3) are satisfied, then there exists δ1 > 0 such that if
0 < ‖h‖H−1 < δ1 , (1.1) has at least two weak solutions. One of them with positive energy, while the other one with negative energy.

Furthermore, if h(x) has defined sign, the following result holds.

Theorem 1.2. Under the assumptions of Theorem 1.1, if h(x) � 0 (h(x) � 0) almost everywhere in R
2 , then the solutions obtained in

Theorem 1.1 are nonnegative (nonpositive), respectively.

Example 1.3. A typical example of functions satisfying assumptions ( f1), ( f3) with subcritical growth is f (s) = λ(2s + s2)es

with 0 < λ < λ1/2. We have that F (s) = λs2es . In order to prove that ( f1) is satisfied, it is enough to notice that

lim|s|→∞
F (s)

sf (s)
= lim|s|→∞

s2es

s(2s + s2)es
= lim|s|→∞

1

2 + s
= 0.

Furthermore, ( f3) is satisfied,

lim
s→0

2F (s)

s2
= 2λ lim

s→0
es = 2λ < λ1.

1.2. Critical case

When f (s) exhibits critical growth we obtain the following results.

Theorem 1.4. If f (s) has critical growth and (V 1)–(V 2), ( f0), ( f2), ( f3) are satisfied, then, there exists δ1 > 0 such that if
0 < ‖h‖H−1 < δ1 , problem (1.1) has a weak solution with negative energy.

Theorem 1.5. Under the hypotheses of Theorem 1.4, if in addition we assume that there exists β0 > 0 such that

( f +
4 ) lims→+∞ sf (s)e−α0s2 � β0 > 0,

then, there exists δ2 > 0, such that if 0 < ‖h‖H−1 < δ2 , then problem (1.1) has a second weak solution.

Furthermore, if h(x) has defined sign, the following result holds.
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Theorem 1.6. Under the assumptions of Theorem 1.5, if h(x) � 0 almost everywhere in R
2 , then the solutions obtained in Theorem 1.5

are nonnegative. Moreover, if h(x) � 0 almost everywhere in R
2 and f (s) satisfies

( f −
4 ) lims→−∞ sf (s)e−α0s2 � β0 > 0,

then these solutions are nonpositive.

Example 1.7. A typical example of functions satisfying the assumptions ( f2), ( f3), ( f +
4 ) with critical growth is f (s) =

3s2 + 2ses2 − 2s. In order to prove that ( f2) is satisfied, it is enough to notice that

lim|s|→∞
F (s)

f (s)
= lim|s|→∞

s3 + es2 − 1 − s2

3s2 + 2ses2 − 2s
= 0.

Furthermore, it is easy to see that lims→0 2F (s)s−2 = 0 < λ1 and lims→+∞ sf (s)e−s2 = +∞, showing that ( f3) and ( f +
4 )

hold.

Remark 1.8. Condition ( f2) is stronger than ( f1), in the sense that ( f2) implies ( f1). One can easily see that integrating
condition ( f1) there exist positive constants C1, C2 such that

F (s) � C1|s|θ − C2, s ∈ R. (1.10)

On the other hand, it follows from ( f2) that there exist positive constants C1, C2 such that

F (s) � C1e|s|/M − C2, s ∈ R. (1.11)

In the last years, several papers have been devoted to the study of elliptic problems involving critical growth in terms
of the Trudinger–Moser inequality. Problems with critical growth, involving the Laplace operator and in bounded domains
of R

2, have been investigated among others by [2,3,11]. Quasilinear elliptic problems with critical growth for the N-Laplacian
in bounded domains of R

N , have been studied in [1,12,22]. Cao in [9] treated problem (1.1) in the homogeneous case, that
is, h ≡ 0, when V and f (s) are asymptotic to a constant function. See also [14] and [4] for related results for homogeneous
elliptic problems when the potential V satisfies some geometric condition. In [13], by combining a version of the Trudinger–
Moser inequality with the mountain-pass theorem, the author studied the problem −�N u + V (x)|u|N−2u = f (x, u) imposing
a coercivity condition on the potential V , f (x, u) with critical growth and f (x,0) = 0. In the present paper, we improve
and complement some of the results cited above and ours results can be considered as an extension of the main results in
[22] and [13]. Here our approach to obtain multiplicity of solutions is in the spirit of [20] and based on a global variational
point of view. The proofs of our results rely on minimization methods in combination with the mountain-pass theorem.
In the subcritical case we are able to prove that the associated functional satisfies the Palais–Smale compactness condition
which allow us to obtain critical points for the functional. As a consequence we can distinguish the local minimum solution
from the mountain-pass solution. However, in the critical case to prove that these solutions are different is more involved,
requiring fine energy level estimates. Assumption ( f +

4 ) in Theorem 1.5 will be used to estimate the mountain-pass level.
The outline of the paper is as follows. Section 2 contains some preliminary results including an extension of Lions’ lemma

in the whole R
2 (Lemma 2.6). In Section 3, we set up technical results which will allow us to follow a variational approach.

Finally, in Section 4 we complete the proofs of our main results.

Notation. In this work we make use of the following notation:

• C , C0, C1, C2, . . . denote positive (possibly different) constants;
• B R denotes the open ball centered at the origin and radius R > 0;
• for 1 � p < ∞, L p(R2) denotes the usual Lebesgue spaces with respect the norm

‖u‖p =
( ∫

R2

|u|p dx

)1/p

;

• C∞
0 (Λ) denotes the space of infinitely differentiable functions with compact support in Λ, where Λ is a domain of R

2;
• H1(Λ) denotes the Sobolev spaces modeled in L2(Λ) with the norm

‖u‖1,2 =
[ ∫

Λ

(|∇u|2 + |u|2)dx

]1/2

;

• by 〈·,·〉 we denote the duality pairing between X ′ and X ;
• we denote the weak convergence in X by “⇀” and the strong convergence by “→.”



290 J.M. do Ó et al. / J. Math. Anal. Appl. 345 (2008) 286–304
2. Some preliminary results

Let Ω be a bounded domain in R
2; we know by the Trudinger–Moser inequality that for all α > 0 and u ∈ H1

0(Ω),

eαu2 ∈ L1(Ω) (see [19,23]). Moreover, there exists a constant C > 0 such that

sup
‖u‖

H1
0(Ω)

�1

∫
Ω

eαu2
dx � C |Ω| if α � 4π. (2.1)

Here we shall use the following extension of these results for the whole space R
2 obtained by [9] (see also [13,21] for a

more complete result).

Lemma 2.1. If α > 0 and u ∈ H1(R2) then∫
R2

(
eαu2 − 1

)
dx < ∞.

Moreover, if ‖∇u‖2
2 � 1, ‖u‖2 � M < ∞ and α < 4π then there exists a constant C = C(M,α), which depends only on M and α,

such that∫
R2

(
eαu2 − 1

)
dx � C(M,α). (2.2)

The next results are essential to establish the mountain-pass geometry of the associated functional.

Lemma 2.2. Let β > 0 and r > 1. Then for each α > r there exists a positive constant C = C(α) such that for all s ∈ R,(
eβs2 − 1

)r � C
(
eαβs2 − 1

)
.

In particular, if u ∈ H1(R2) then (eβu2 − 1)r belongs to L1(R2).

Proof. Since r > 1, by L’Hospital’s Rule we conclude that

lim
s→0

(eβs2 − 1)r

eαβs2 − 1
= lim

s→0

r(eβs2 − 1)r−1eβs2

αeαβs2 = 0.

Moreover, notice that

lim|s|→∞
(eβs2 − 1)r

(eαβs2 − 1)
= lim|s|→∞

erβs2
(1 − e−βs2

)r

eαβs2
(1 − e−αβs2

)
= 0.

Thus, the result follows. �
Remark 2.3. As a consequence of Lemmas 2.1 and 2.2 and Hölder inequality, we see that if β > 0 and q > 0 then the
function |u|q(eβu2 − 1) belongs to L1(R2) for all u ∈ H1(R2).

Lemma 2.4. If v ∈ E, β > 0, q > 0 and ‖v‖ � M with βM2 < 4π , then there exists C = C(β, M,q) > 0 such that∫
R2

(
eβv2 − 1

)|v|q dx � C‖v‖q.

Proof. We consider r > 1 close to 1 such that rβM2 < 4π and sq � 1 where s = r/(r − 1). Using the Hölder inequality, we
have ∫

R2

(
eβv2 − 1

)|v|q dx �
[ ∫

R2

(
eβv2 − 1

)r
dx

]1/r

‖v‖q
qs.

Now, taking α > r close to r such that αβM2 < 4π , by Lemmas 2.2 and 2.1 we obtain∫
2

(
eβv2 − 1

)|v|q dx � C1

[ ∫
2

(
eαβv2 − 1

)
dx

]1/r

‖v‖q
qs � C1

{ ∫
2

[
e
αβM2( v

‖∇v‖2
)2 − 1

]
dx

}1/r

‖v‖q
qs � C2‖v‖q

qs.
R R R
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Finally, using the continuous embedding E ↪→ Lsq(R2), we conclude that∫
R2

(
eβv2 − 1

)|v|q dx � C‖v‖q. �

The inequality (2.1) was improved by Lions in [16]. More precisely, he proved the following lemma in a bounded domain.

Lemma 2.5. Let (wn) be a sequence in H1(Ω) such that ‖wn‖1,2 = 1. Suppose that (wn) converges weakly to w0 
= 0 in H1(Ω),
then for all 0 < p < 4π(1 − ‖w0‖2

1,2)
−1 , we have

sup
n

∫
Ω

epw2
n dx < ∞.

Proof. See proof in [16, Theorem I.6] or [3, Lemma 3.5]. �
Next, let us establish a version of Lemma 2.5 for the whole R

2.

Lemma 2.6. Let (wn) in H1(R2) with ‖wn‖1,2 = 1 and suppose that wn ⇀ w0 in H1(R2) with ‖w0‖1,2 < 1. Then for all 0 < p < 4π
(1 − ‖w0‖2

1,2)
−1 , we have

sup
n

∫
R2

(
epw2

n − 1
)

dx < ∞.

Proof. Since wn ⇀ w0 and ‖wn‖1,2 = 1, we conclude that

‖wn − w0‖2
1,2 = 1 − 2〈wn, w0〉 + ‖w0‖2

1,2 → 1 − ‖w0‖2
1,2 <

4π

p
.

Thus, for n large we have p‖wn − w0‖2
1,2 < α < 4π for some α > 0. Now choosing q > 1 close to 1 and ε > 0 satisfying

q(1 + ε2)p‖wn − w0‖2
1,2 < α, by (2.2) we have

∫
R2

[
eqp(1+ε2)(wn−w0)2 − 1

]
dx =

∫
R2

[
e

qp(1+ε2)‖wn−w0‖2
1,2(

wn−w0‖wn−w0‖1,2
)2

− 1
]

dx �
∫
R2

[
e
α(

|wn−w0 |
‖wn−w0‖1,2

)2

− 1
]

dx � C .

Moreover, since

pw2
n � p

(
1 + ε2)(wn − w0)

2 + p

(
1 + 1

ε2

)
w2

0,

it follows that

epw2
n − 1 �

(
ep(1+ε2)(wn−w0)2

ep(1+1/ε2)w2
0 − 1

)
� 1

q

(
eqp(1+ε2)(wn−w0)2 − 1

) + 1

r

(
erp(1+1/ε2)w2

0 − 1
)
,

where in the last inequality we have used that for all a,b > 0 and q−1 + r−1 = 1 it holds

ab − 1 � 1

q

(
aq − 1

) + 1

r

(
br − 1

)
.

Therefore,∫
R2

(
epw2

n − 1
)

dx � 1

q

∫
R2

[
eqp(1+ε2)(wn−w0)2 − 1

]
dx + 1

r

∫
R2

[
erp(1+1/ε2)w2

0 − 1
]

dx � C

for n large and the result is proved. �
We will use the following result which is a converse of the Lebesgue dominated convergence theorem in the

space H1(R2).

Proposition 2.7. Let (un) be a sequence in H1(R2) strongly convergent. Then there exist a subsequence (unk ) of (un) and g ∈ H1(R2)

such that |un (x)| � g(x) almost everywhere in R
2 .
k
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Proof. Let (un) be a sequence in H1(R2) such that un → u in H1(R2). In particular, un → u almost everywhere in R
2. Also

we can extract a subsequence (unk ) of (un) which we denote by (uk) such that for all k � 1,

‖uk+1 − uk‖1,2 � 1

2k
.

Setting

wn(x)
.=

n∑
k=1

∣∣uk+1(x) − uk(x)
∣∣,

it follows that wn ∈ H1(R2) and ‖wn‖1,2 � 1. Consequently

‖wn‖2 � 1 and ‖∇wn‖2 � 1.

By monotone convergence theorem, wn → w almost everywhere in R
2 for some w ∈ L2(R2). Furthermore, using Lebesgue

dominated convergence theorem we have that ‖wn − w‖2 → 0. From this convergence in L2(R2) and by the fact that |∇wn|
is bounded in L2(R2), we can conclude that w ∈ H1(R2) (see [6, Remark 4 in Chapter 9]). Now, for l > k � 2, we have∣∣ul(x) − uk(x)

∣∣ �
∣∣ul(x) − ul−1(x)

∣∣ + · · · + ∣∣uk+1(x) − uk(x)
∣∣ � wl−1(x) − wk−1(x),

and taking l → ∞, we obtain for any k � 2,∣∣u(x) − uk(x)
∣∣ � w(x) almost everywhere in R

2.

Therefore∣∣uk(x)
∣∣ � g(x) almost everywhere in R

2

with g = |u| + w ∈ H1(R2) and the proof is completed. �
In order to show that the weak limit of a sequence in E is a weak solution of (1.1) we will use the following convergence

result due Figueiredo et al. [11].

Lemma 2.8. Let Ω ⊂ R
2 a bounded domain and f : R → R a continuous function. Then for any sequence (un) in L1(Ω) such that

un → u in L1(Ω), f (un) ∈ L1(Ω) and

∫
Ω

∣∣ f (un)un
∣∣dx � C,

up to a subsequence we have f (un) → f (u) in L1(Ω).

3. The variational framework

By the hypothesis ( f3) we have

lim
s→0

f (s)

s
< λ1.

From this, if f (s) satisfies (1.2), then for each α > 0 there exist b1,b2 > 0 such that for all s ∈ R,∣∣ f (s)
∣∣ � b1|s| + b2

(
eαs2 − 1

)
. (3.1)

Similarly, if f (s) satisfies (1.3), then for each α > α0 there exist c1, c2 > 0 such that for all s ∈ R,∣∣ f (s)
∣∣ � c1|s| + c2

(
eαs2 − 1

)
. (3.2)

This together with Remark 2.3 and conditions ( f1), ( f3) imply that F (u) ∈ L1(R2) for all u ∈ H1(R2). Therefore, the func-
tional energy I : E → R given by (1.6) is well defined. Using standard arguments (see [5, Theorem A.VI] and [10]), we can
see that I ∈ C1(E,R) with

〈
I ′(u), v

〉 = ∫
R2

(∇u∇v + V (x)uv
)

dx −
∫
R2

f (u)v dx −
∫
R2

hv dx

for u, v ∈ E . Consequently, critical points of the functional I are precisely the weak solutions of problem (1.1).
In the next two lemmas we check that the functional I satisfies the geometric conditions of the mountain-pass theorem.
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Lemma 3.1. Assume ( f1), ( f3) and (1.2) (or (1.3)) hold. Then there exists δ1 > 0 such that for each h ∈ H−1 with ‖h‖H−1 < δ1 , there
exists ρh > 0 such that

I(u) > 0 if ‖u‖ = ρh.

Furthermore, ρh can be chosen such that ρh → 0 as ‖h‖H−1 → 0.

Proof. From ( f3), there exist ε, δ > 0 in such a way that |s| � δ implies∣∣F (s)
∣∣ � (λ1 − ε)

2
|s|2. (3.3)

By (1.2) (or (1.3)) and ( f1), for each q > 2 there exists a constant C = C(q, δ) such that∣∣F (s)
∣∣ � C |s|q(eαs2 − 1

)
(3.4)

if |s| � δ. From (3.3) and (3.4) we obtain∣∣F (s)
∣∣ � (λ1 − ε)

2
|s|2 + C |s|q(eαs2 − 1

)
(3.5)

for all s ∈ R and q > 2. Now, using Lemma 2.4, (1.9) and the continuous embedding (1.8), we obtain

I(u) � 1

2
‖u‖2 − (λ1 − ε)

2
‖u‖2

2 − C‖u‖q − ‖h‖H−1‖u‖ � 1

2

[
1 − (λ1 − ε)

λ1

]
‖u‖2 − C‖u‖q − ‖h‖H−1‖u‖.

Consequently

I(u) � ‖u‖
[

1

2

(
1 − (λ1 − ε)

λ1

)
‖u‖ − C‖u‖q−1 − ‖h‖H−1

]
. (3.6)

Since ε > 0 and q > 2, we may choose ρ > 0 such that

1

2

[
1 − (λ1 − ε)

λ1

]
ρ − Cρq−1 > 0.

Thus, for ‖h‖H−1 sufficiently small there exists ρh > 0 such that I(u) > 0 if ‖u‖ = ρh and ρh → 0 as ‖h‖H−1 → 0. �
Lemma 3.2. Suppose that f satisfies ( f1) or ( f2). Then there exists e ∈ E with ‖e‖ > ρh such that

I(e) < inf‖u‖=ρh

I(u).

Proof. Let u ∈ H1(R2) such that u ≡ s1 in B1, u ≡ 0 in Bc
2 and u � 0. Denoting K = supp(u), by (1.10) we have for t > 1

that

I(tu) � t2

2
‖u‖2 − Ctθ

∫
{x: t|u(x)|�s1}

uθ dx + C1|K | − t

∫
R2

hu dx

� t2

2
‖u‖2 − Ctθ

∫
B1

uθ dx + C1|K | − t

∫
R2

hu dx.

Since θ > 2, we get I(tu) → −∞. Setting e
.= tu with t large enough, the proof is finished. �

In order to find an appropriate ball to use minimization argument we need the following result.

Lemma 3.3. If f satisfies (1.2) (or (1.3)), there exists η > 0 and v ∈ E with ‖v‖ = 1 such that I(tv) < 0 for all 0 < t < η. In particular,

inf‖u‖�η
I(u) < 0.

Proof. For each h ∈ H−1, by applying the Riesz representation theorem in the space E with the inner product (1.4), the
problem

−�v + V (x)v = h, x ∈ R
2,

has a unique weak solution v in E . Thus,∫
2

hv dx = ‖v‖2 > 0 for each h 
= 0.
R
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Since f (0) = 0, by continuity, it follows that there exists η > 0 such that

d

dt
I(tv) = t‖v‖2 −

∫
R2

f (tv)v dx −
∫
R2

hv dx < 0

for all 0 < t < η. Using that I(0) = 0, it must hold that I(tv) < 0 for all 0 < t < η. �
Lemma 3.4. Assume ( f1) or ( f2) and (1.2) (or (1.3)). Let (un) in E such that I(un) → c and I ′(un) → 0. Then

‖un‖ � C,

∫
R2

f (un)un dx � C and

∫
R2

F (un)dx � C .

Proof. We have

1

2
‖un‖2 −

∫
R2

F (un)dx −
∫
R2

hun dx = c + on(1),

and for any ϕ ∈ E ,∫
RN

(∇un∇ϕ + V (x)unϕ
)

dx −
∫

RN

f (un)ϕ dx −
∫

RN

hϕ dx = on
(‖ϕ‖). (3.7)

By ( f1) or ( f2), we obtain

C + εn‖un‖ �
(

θ

2
− 1

)
‖un‖2 −

∫
R2

[
θ F (un) − f (un)un

]
dx �

(
θ

2
− 1

)
‖un‖2 −

∫
{x: |un(x)|<s1}

[
θ F (un) − f (un)un

]
dx,

where εn → 0 as n → ∞. Using that | f (s)s − F (s)| � C1|s| for all |s| � s1 and inequality (1.7) we get

C + εn‖un‖ �
(

θ

2
− 1

)
‖un‖2 − C1‖un‖,

which implies that ‖un‖ � C . The other estimates in the statement of the lemma follows easily. �
For the next result, we will use the Radial Lemma (see [24] or [5, Lemma A.IV]) which asserts that if u ∈ L2(R2) and u∗

is the Schwartz symmetrization of u, then for all x 
= 0∣∣u∗(x)
∣∣ � 1√

π |x| ‖u∗‖2.

Lemma 3.5. Assume that f satisfies ( f2) and (1.3). If (vn) ⊂ E is a (P.-S.) sequence for I and u0 is its weak limit then, up to a
subsequence,

F (vn) → F (u0) in L1(
R

2).
Proof. As a consequence of Lemmas 2.8 and 3.4, for any R > 0, we get

f (vn) → f (u0) in L1(B R).

Thus, there exists g ∈ L1(B R) such that | f (vn)| � g almost everywhere in B R . From ( f2) we can conclude that∣∣F (vn)
∣∣ � sup

vn∈[−R0,R0]
∣∣F (vn)

∣∣ + M0 g almost everywhere in B R .

Thus, by Lebesgue dominated convergence theorem

F (vn) → F (u0) in L1(B R)

for all R > 0. Using ( f1) together with (3.2), we have∫
|x|>R

∣∣F (vn)
∣∣ dx � C1

∫
|x|>R

v2
n dx + C2

∫
|x|>R

|vn|(eαv2
n − 1

)
dx (3.8)

for α > α0. Moreover,∫
|vn|(eαv2

n − 1
)

dx =
∞∑
j=1

α j

j!
∫

|vn|2 j+1 dx =
∞∑
j=1

α j

j!
∫ ∣∣v∗

n

∣∣2 j+1
dx,
|x|>R |x|>R |x|>R
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where v∗
n is the Schwartz symmetrization of vn . Notice that using the estimate

∫
|x|>R

1

|x|2 j+1
dx = 2π

∞∫
R

t

t2 j+1
dt = π

j
R−2 j � π

R
, j � 1,

and Radial Lemma we achieve
∞∑
j=1

α j

j!
∫

|x|>R

∣∣v∗
n

∣∣2 j+1
dx � C√

π

∞∑
j=1

α j

j!
(

1

2π

) j

C2 j
∫

|x|>R

|x|−2 j−1 dx � C

R
.

Then given δ > 0 there exists R > 0 such that∫
|x|>R

|u0|2 dx < δ and
∫

|x|>R

|vn|(eα|vn|2 − 1
)

dx < δ.

Thus, from (3.8) we conclude∫
|x|>R

∣∣F (vn)
∣∣dx � Cδ and

∫
|x|>R

∣∣F (u0)
∣∣dx � Cδ.

Since ∣∣∣∣
∫
R2

F (vn)dx −
∫
R2

F (u0)dx

∣∣∣∣ �
∣∣∣∣
∫
B R

F (vn)dx −
∫
B R

F (u0)dx

∣∣∣∣ +
∫

|x|>R

∣∣F (vn)
∣∣ dx +

∫
|x|>R

∣∣F (u0)
∣∣dx,

we get

lim
n→∞

∣∣∣∣
∫
R2

F (vn)dx −
∫
R2

F (u0)dx

∣∣∣∣ � Cδ.

Since δ is arbitrary, the lemma is proved. �
4. Proof of the main results

In order to obtain a solution with negative energy, observe by Lemma 3.3 and inequality (3.6) that

−∞ < c0 ≡ inf‖u‖�η
I(u) < 0. (4.1)

4.1. Subcritical case

In this subsection we will give the proof of Theorem 1.1. Thus we are assuming that V satisfies (V 1)–(V 2) and f satisfies
( f0), ( f1) and ( f3). To prove the existence of a local minimum type solution we will use the Ekeland’s variational principle.

Lemma 4.1. The functional I satisfies the Palais–Smale condition.

Proof. Let (un) be a (P.-S.) sequence. By Lemma 3.4, (un) is bounded, so, up to subsequence, we may assume that un ⇀ u0
in E , un → u0 in Lq(R2) for all q � 1 and un(x) → u0(x) almost everywhere in R

2. We claim that∫
R2

(
f (un) − f (u0)

)
(un − u0)dx → 0 as n → ∞. (4.2)

Indeed, using inequality (3.1), for all α > 0, we obtain∣∣ f (un) − f (u0)
∣∣|un − u0| � C1

[|un| + |u0| +
(
eαu2

n − 1
) + (

eαu2
0 − 1

)]|un − u0|.
This together with the Hölder inequality and Lemmas 2.1 and 2.2 implies the claim (4.2). Now, observing that

‖un − u0‖2 = 〈
I ′(un) − I ′(u0), un − u0

〉 + ∫
R2

(
f (un) − f (u0)

)
(un − u0)dx.

We conclude that un → u0 and the result follows. �
In view of Lemmas 3.1 and 3.2 we can apply the mountain-pass theorem to obtain the following result.
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Proposition 4.2. There exists η1 > 0 such that if ‖h‖H−1 � η1 then the functional I has a critical point uM at the minimax level

cM = inf
g∈Γ

max
t∈[0,1] I

(
g(t)

)
,

where

Γ = {
g ∈ C

([0,1], E
)
: g(0) = 0, I

(
g(1)

)
< 0

}
.

Proposition 4.3. For each h ∈ H−1 with h 
= 0, Eq. (1.1) has a minimum type solution u0 with I(u0) = c0 < 0, where c0 is defined
in (4.1).

Proof. Let ρh be as in Lemma 3.1. Since Bρh is a complete metric space with the metric given by the norm of E , convex
and the functional I is of class C1 and bounded below on Bρh , by Ekeland’s variational principle there exists a sequence
(un) in Bρh such that

I(un) → c0 = inf‖u‖�ρh

I(u) < 0 and
∥∥I ′(un)

∥∥
E ′ → 0,

and the proof follows by Lemma 4.1. �
Proof of Theorem 1.1. The proof follows from Propositions 4.2 and 4.3. �
4.2. Critical case

In order to get a more precise information about the minimax level obtained by the mountain-pass theorem, let us
consider the following sequence of scaled and truncated Green’s functions also considered by Moser (see [19]):

M̃n(x, r) = (2π)−1/2

⎧⎪⎨
⎪⎩

(log n)1/2 if |x| � r/n,

log ( r
|x| )

(logn)1/2 if r/n � |x| � r,

0 if |x| � r.

Notice that M̃n(·, r) ∈ H1(R2), supp(M̃n(x, r)) = Br ,∫
R2

∣∣∇M̃n(x, r)
∣∣2

dx = 1 and
∫
R2

∣∣M̃n(x, r)
∣∣2

dx = O (1/ log n) as n → ∞. (4.3)

Moreover, considering Mn(x, r) = M̃n(x, r)/‖M̃n‖, we can write

M2
n(x, r) = (2π)−1 log n + dn for all |x| � r/n,

where dn = (2π)−1 logn(‖M̃n‖−1 − 1). Using (4.3), we conclude that ‖M̃n‖ → 1 as n → ∞. Consequently,

dn

log n
→ 0 as n → ∞. (4.4)

Lemma 4.4. Suppose that ( f2), ( f3), ( f +
4 ) hold. Then there exists n ∈ N such that

max
t�0

[
t2

2
−

∫
R2

F (tMn)dx

]
<

2π

α0
.

Proof. Let us fix r > 0 such that

β0 >
2

r2α0
, (4.5)

where β0 has been given in the assumption ( f +
4 ). Suppose, by contradiction, that for all n we have

max
t�0

[
t2

2
−

∫
R2

F (tMn)dx

]
� 2π

α0
, (4.6)

where Mn(x) = Mn(x, r). In view of (1.11) we get∫
2

F (tMn)dx � −C1 +
∫

F (tMn)dx � −C1 + C2

∫
etMn/M dx.
R {tMn�s1} {tMn�s1}
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If t > 0 is sufficiently large and m > 2 we have∫
{tMn�s1}

etMn/M dx � C3tm
∫

{tMn�s1}
(Mn)m dx � C3tm

∫
{Mn�s1}

(Mn)m dx.

Thus, for each n there exists tn > 0 such that

t2
n

2
−

∫
R2

F (tn Mn)dx = max
t�0

[
t2

2
−

∫
R2

F (tMn)dx

]
. (4.7)

Since at t = tn holds

d

dt

(
t2

2
−

∫
R2

F (tMn)dx

)
= 0,

it follows that

t2
n =

∫
R2

tn Mn f (tn Mn)dx =
∫

|x|�r

tn Mn f (tn Mn)dx. (4.8)

Now, using hypothesis ( f +
4 ), for each ε > 0 there exists Rε > 0 such that

u f (u) � (β0 − ε)eα0u2
for all u � Rε and |x| � r. (4.9)

From (4.8) and (4.9), for n large, we obtain

t2
n � (β0 − ε)

∫
|x|�r/n

eα0(tn Mn)2
dx = (β0 − ε)π

(
r

n

)2

eα0(2π)−1 logntn+α0t2
ndn . (4.10)

Thus,

1 � (β0 − ε)πr2eα0(2π)−1 lognt2
n+α0t2

ndn−2 log tn−2 logn.

Consequently, the sequence (tn) is bounded.
We claim that

t2
n → 4π

α0
as n → ∞. (4.11)

Indeed, condition ( f1) together with (4.6)–(4.7) imply that

t2
n

2
� 2π

α0
+

∫
{tn Mn�s1}

F (tn Mn)dx.

Since (tn) is bounded, using (3.5) we obtain∣∣∣∣
∫

{tn Mn�s1}
F (tn Mn)dx

∣∣∣∣ � C

∫
R2

M2
n dx = C

1

‖M̃n‖2

∫
R2

M̃2
n dx.

By using (4.3) and the fact that ‖M̃n‖ → 1, we obtain∫
{tn Mn�s1}

F (tn Mn)dx = on(1).

Consequently

t2
n � 4π

α0
+ on(1).

Now suppose by contradiction that limn→+∞ t2
n > 4π/α0. By (4.10) we get

t2
n � (β0 − ε)πr2e(α0(4π)−1t2

n−1)2 logn+α0t2
ndn

which together with (4.4) contradicts the boundedness of (tn) and the claim follows.
In order to estimate (4.8) more precisely, we consider the sets (see (4.8) and (4.9))

An = {
x ∈ Br: tn Mn(x) � Rε

}
and Cn = Br \ An.
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From (4.8) and (4.9) we achieve

t2
n � (β0 − ε)

∫
|x|�r

eα0(tn Mn)2
dx +

∫
Cn

tn Mn f (tn Mn)dx − (β0 − ε)

∫
Cn

eα0(tn Mn)2
dx. (4.12)

Notice that Mn(x) → 0 and the characteristic functions χCn → 1 for almost every x such that |x| � r. Therefore, the Lebesgue
dominated convergence theorem implies∫

Cn

tn Mn f (tn Mn)dx → 0 and
∫
Cn

eα0(tn Mn)2
dx → πr2 as n → ∞.

Since t2
n � 4π/α0, we also have∫

|x|�r

eα0(tn Mn)2
dx �

∫
|x|�r

e4π M2
n dx =

∫
|x|�r/n

e4π M2
n dx +

∫
r/n�|x|�r

e4π M2
n dx. (4.13)

For the first integral in (4.13), we notice that∫
|x|�r/n

e4π M2
n dx =

∫
|x|�r/n

e2 logn+4πdn dx = π
r2

n2
n2+4π(logn)−1

dn → πr2 as n → ∞,

where we have used (4.4).
For the second integral, using the change of variable τ = log(r/s)/(ζn log n) with ζn = ‖M̃n‖ > 1, we obtain

∫
r/n�|x|�r

e4π M2
n dx = 2πr2ζn logn

ζ−1
n∫

0

e2 logn(t2−ζnt) dt.

Since

t2 − ζnt �

⎧⎨
⎩−ζnt if 0 � t � ζ−1

n
2 ,

(2ζ−1
n − ζn)(t − ζ−1

n ) + (ζ−2
n − 1) if ζ−1

n
2 � t � ζ−1

n ,

by straightforward calculation we can see that

lim
n→∞

∫
r/n�|x|�r

e4π M2
n dx � 2πr2.

Finally, taking n → ∞ in (4.12) and using (4.11), we obtain

4π

α0
� (β0 − ε)2πr2

which yields β0 � 2/(α0r2), contradicting (4.5), and the proof is finished. �
Corollary 4.5. Under the hypotheses (V 1) and ( f2)–( f +

4 ), if ‖h‖H−1 is sufficiently small then

max
t�0

I(tMn) = max
t�0

{
t2

2
−

∫
R2

F (tMn)dx − t

∫
R2

hMn dx

}
<

2π

α0
.

Proof. Notice that ‖hMn‖1 � ‖h‖H−1 . Thus, taking ‖h‖H−1 sufficiently small and using Lemma 4.4 the result follows. �
In order to obtain convergence results, we need to improve the estimate of Lemma 4.4.

Corollary 4.6. Under the hypotheses ( f2)–( f +
4 ), there exists δ2 > 0 such that for all h ∈ H−1 with 0 < ‖h‖H−1 < δ2 there exists

u ∈ H1(R2) with compact support verifying

I(tu) < c0 + 2π

α0
for all t � 0.
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Proof. It is possible to raise the infimum c0 by reducing ‖h‖H−1 . By Lemma 3.1, ρh → 0 as ‖h‖H−1 → 0. Consequently, c0
increases as ‖h‖H−1 decreases and c0 → 0 as ‖h‖H−1 → 0. Thus, there exists δ2 > 0 such that if 0 < ‖h‖H−1 < δ2 then, by
Corollary 4.5, we have

max
t�0

I(tMn) < c0 + 2π

α0
.

Taking u = Mn ∈ H1(R2), the result is proved. �
Lemma 4.7. If (un) is a (P.-S.) sequence for I at any level with

lim inf
n→∞ ‖un‖2 <

4π

α0
,

then (un) possesses a subsequence which converges strongly to a solution u0 of (1.1).

Proof. Since ‖un‖ is bounded, up to a subsequence if necessary, we may assume that

lim inf
n→∞ ‖un‖ = lim

n→∞‖un‖.

By Lemma 3.4, we may assume that un ⇀ u0 weakly in E , un → u0 in Lq(R2) for all q � 1 and un(x) → u0(x) almost
everywhere in R

2. Moreover, by Lemma 2.8,

f (un) → f (u0) in L1
loc

(
R

2).
Passing to the limit in (3.7), we have∫

R2

(∇u0∇ϕ + V (x)u0ϕ
)

dx −
∫
R2

f (u0)ϕ dx −
∫
R2

hϕ dx = 0

for all ϕ ∈ C∞
0 (R2). Since C∞

0 (R2) is dense in E , we conclude that u0 is a weak solution of (1.1).
We claim that un → u0. Indeed, writing un = u0 + wn , it follows that wn ⇀ 0 in E . Thus wn → 0 in Lq(R2) for all

1 � q < ∞. By the Brézis–Lieb lemma (see [7]), we get

‖un‖2 = ‖u0‖2 + ‖wn‖2 + on(1). (4.14)

We first claim that∫
R2

f (un)u0 dx →
∫
R2

f (u0)u0 dx as n → ∞. (4.15)

In fact, since C∞
0 (R2) is dense in E , for all τ > 0 there exists ϕ ∈ C∞

0 (R2) such that ‖ϕ − u0‖ < τ . Observe that∣∣∣∣
∫
R2

f (un)u0 dx −
∫
R2

f (u0)u0 dx

∣∣∣∣ �
∣∣∣∣
∫
R2

f (un)(u0 − ϕ)dx

∣∣∣∣ +
∣∣∣∣
∫
R2

f (u0)(u0 − ϕ)dx

∣∣∣∣ + ‖ϕ‖∞
∫

suppϕ

∣∣ f (un) − f (u0)
∣∣dx.

To estimate the first integral we use that |〈I ′(un), u0 − ϕ〉| � τn‖u0 − ϕ‖ with τn → 0 and we conclude that∣∣∣∣
∫
R2

f (un)(u0 − ϕ)dx

∣∣∣∣ � τn‖u0 − ϕ‖ +
( ∫

R2

|∇un|2 dx

)1/2

‖u0 − ϕ‖ +
( ∫

R2

V (x)|un|2 dx

)1/2

‖u0 − ϕ‖ + ‖h‖H−1‖u0 − ϕ‖

� C‖u0 − ϕ‖ < Cτ ,

where C is independent of n and τ . Similarly, using that 〈I ′(u0), u0 −ϕ〉 = 0, we can estimate the second integral obtaining∣∣∣∣
∫
R2

f (u0)(u0 − ϕ)dx

∣∣∣∣ < Cτ .

To estimate the last integral we use that f (un) → f (u0) in L1
loc(R

2) and conclude by the previous inequalities that

lim
n→∞

∣∣∣∣
∫
R2

f (un)u0 dx −
∫
R2

f (u0)u0 dx

∣∣∣∣ < 2Cτ ;

this implies (4.15) because τ is arbitrary.
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From (4.14) and (4.15), we can write

〈
I ′(un), un

〉 = 〈
I ′(u0), u0

〉 + ‖wn‖2 −
∫
R2

f (un)wn dx + on(1),

that is,

‖wn‖2 =
∫
R2

f (un)wn dx + on(1). (4.16)

From (3.2), Hölder inequality and Lemma 2.2, for any α > α0, we get∣∣∣∣
∫
R2

f (un)wn dx

∣∣∣∣ � b1

∫
R2

|un||wn|dx + b2

∫
R2

(
eαu2

n − 1
)|wn|dx

� C1‖wn‖2 + b2

[ ∫
R2

(
eα‖un‖2(un/‖un‖)2 − 1

)r
dx

]1/r

‖wn‖p

� C1‖wn‖2 + C2

[ ∫
R2

(
eαq‖un‖2(un/‖un‖)2 − 1

)
dx

]1/r

‖wn‖p,

where r > 1, p = r/(r − 1) and q > r. By hypothesis, α0‖un‖2 < 4π for n sufficiently large. Now, we consider α > α0 and
q > r, with r > 1 close to 1, such that we still have αq‖un‖2 < 4π . Using Lemma 2.1 and the compact embedding (1.8), we
conclude that∫

R2

f (un)wn dx → 0.

This together with (4.16) implies that ‖wn‖ → 0 and the result follows. �
Next, we will prove the existence of a local minimum type solution.

Lemma 4.8. For each h ∈ H−1 with 0 < ‖h‖H−1 < δ1 , Eq. (1.1) has a minimum type solution u0 with I(u0) = c0 < 0, where c0 is
defined in (4.1).

Proof. Let ρh be as in Lemma 3.1. We can choose ‖h‖H−1 sufficiently small such that ρh < (4π/α0)
1/2. Since Bρh is a

complete metric space with the metric given by the norm of E , convex and the functional I is of class C1 and bounded
below on Bρh , by Ekeland’s variational principle there exists a sequence (un) in Bρh such that

I(un) → c0 = inf‖u‖�ρh

I(u) and
∥∥I ′(un)

∥∥
E ′ → 0.

Observing that ‖un‖2 � ρ2
h < 4π/α0, by Lemma 4.7, there exists a subsequence of (un) which converges strongly to a

solution u0 of (1.1). Therefore, I(u0) = c0 < 0. �
Lemma 4.9. Under the assumptions (V 1)–(V 2) and ( f2)–( f +

4 ), if ‖h‖H−1 < δ1 the problem (1.1) has a mountain-pass type solution
uM .

Proof. By Lemmas 3.1 and 3.2 we have that I has a mountain-pass geometry. Thus, using the mountain-pass theorem
without the (PS) condition (see [25]), there exists a sequence (un) in E satisfying

I(un) → cM > 0 and
∥∥I ′(un)

∥∥
E ′ → 0,

where cM is the mountain-pass level. Now, by Lemma 3.4, the sequence (un) is bounded and using the density of C∞
0 (R2)

in E , it follows that (un) converges weakly to a solution uM of (1.1). �
Remark 4.10. By Corollary 4.6, we can conclude that

0 < cM < c0 + 2π

α0
.

Proposition 4.11. If δ2 > 0 is small enough, then the solutions of (1.1) obtained in Lemmas 4.8 and 4.9 are distinct.
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Proof. By Lemmas 4.8 and 4.9, there exist sequences (un) and (vn) in E such that

un → u0, I(un) → c0 < 0,
〈
I ′(un), un

〉 → 0, (4.17)

and

vn ⇀ uM , I(vn) → cM > 0,
〈
I ′(vn), vn

〉 → 0. (4.18)

Now, suppose by contradiction that u0 = uM . Since we also have vn ⇀ u0 in H1(R2), up to subsequence, limn→∞ ‖vn‖1,2 �
‖u0‖1,2 > 0. Setting

wn
.= vn

‖vn‖1,2
and w0

.= u0

limn→∞ ‖vn‖1,2
,

we get ‖wn‖1,2 = 1 and wn ⇀ w0 in H1(R2).
Now, we consider two possibilities:

(i) ‖w0‖1,2 = 1 and (ii) ‖w0‖1,2 < 1.

If (i) happens, we have limn→∞ ‖vn‖1,2 = ‖u0‖1,2, so that vn → u0 in H1(R2). By Proposition 2.7, there exists g ∈ H1(R2)

such that

|vn| � g almost everywhere in R
2.

This together with (3.2) implies that∣∣ f (vn)vn
∣∣ � c1|g|2 + c2|g|(eαg2 − 1

)
almost everywhere in R

2,

for each α > α0. By Remark 2.3, the function c1|g|2 + c2|g|(eαg2 − 1) ∈ L1(R2) and using Lebesgue dominated convergence
theorem we conclude that∫

R2

f (vn)vn dx →
∫
R2

f (u0)u0 dx.

Similarly,∫
R2

f (un)un dx →
∫
R2

f (u0)u0 dx,

because un → u0 in E . Since

〈
I ′(un), un

〉 = ‖un‖2 −
∫
R2

f (un)un dx −
∫
R2

hun dx → 0

and 〈
I ′(vn), vn

〉 = ‖vn‖2 −
∫
R2

f (vn)vn dx −
∫
R2

hvn dx → 0,

we conclude that

lim
n→∞‖vn‖2 = lim

n→∞‖un‖2 = ‖u0‖2.

Therefore, vn → u0 in E and consequently I(vn) → I(u0) = c0. This is a contradiction with (4.17)–(4.18).
Now, suppose that (ii) happens. We claim that there exists δ > 0 such that

qα0‖vn‖2
1,2 � 4π

1

1 − ‖w0‖2
1,2

− δ (4.19)

for n large. Indeed, by Remark 4.10, we have

α0 <
2π

cM − I(u0)
.

Thus, we can choose q > 1 sufficiently close to 1 and δ > 0 such that

qα0‖vn‖2
1,2 � 2π ‖vn‖2

1,2 − δ.

cM − I(u0)
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Since vn ⇀ u0, by Lemma 3.5 and the compactness embedding (1.8), up to a subsequence, we conclude that

1

2
‖vn‖2

1,2 = cM − 1

2
lim

n→∞

∫
R2

V (x)v2
n dx +

∫
R2

[
F (u0) + hu0 + 1

2
u2

0

]
dx + on(1). (4.20)

Thus, for n sufficiently large we get

qα0‖vn‖2
1,2 � 4π

cM − 1
2 limn→∞

∫
R2 V (x)v2

n dx + ∫
R2 [F (u0) + hu0 + 1

2 u2
0]dx + on(1)

cM − I(u0)
− δ. (4.21)

Notice that{
cM − 1

2
lim

n→∞

∫
R2

V (x)v2
n dx +

∫
R2

[
F (u0) + hu0 + 1

2
u2

0

]
dx

}(
1 − ‖w0‖2

1,2

)

= cM − cM‖w0‖2
1,2 − I(u0) + 1

2
‖u0‖2

1,2 + 1

2

∫
R2

V (x)u2
0 dx − 1

2
lim

n→∞

∫
R2

V (x)v2
n dx

−
{
−1

2
lim

n→∞

∫
R2

V (x)v2
n dx +

∫
R2

[
F (u0) + hu0 + 1

2
u2

0

]
dx

}
‖w0‖2

1,2

� cM − I(u0),

where we have used that∫
R2

[
F (u0) + hu0 + 1

2
u2

0

]
dx = −I(u0) + 1

2
‖u0‖2

1,2 + 1

2

∫
R2

V (x)u2
0 dx,

∫
R2

V (x)u2
0 dx � lim

n→∞

∫
R2

V (x)v2
n dx,

the equality (4.20) and the definition of w0. This, together with (4.21) implies (4.19) for n large.
Now taking p = (q + ε)α0‖vn‖2

1,2, it follows from (4.19) and Lemma 2.5 that∫
R2

(
e(q+ε)α0‖vn‖2

1,2|wn|2 − 1
)

dx � C (4.22)

for ε > 0 sufficiently small. Using (3.2), the Hölder inequality and the Sobolev embedding we get

∣∣∣∣
∫
R2

f (vn)(vn − u0)dx

∣∣∣∣ � b1‖vn‖2‖vn − u0‖2 + b2‖vn − u0‖q′
[ ∫

R2

(
eα0‖vn‖2

1,2 w2
n − 1

)q
dx

]1/q

,

where q′ = q/(q − 1). Now using Lemma 2.2, estimate (4.22) and the compactness of the embedding (1.8), we obtain∣∣∣∣
∫
R2

f (vn)(vn − u0)dx

∣∣∣∣ � C1‖vn − u0‖2 + C2‖vn − u0‖q′ → 0

as n → ∞. This convergence together with the fact that I ′(vn)(vn − u0) → 0 shows that∫
R2

∇vn(∇vn − ∇v0)dx +
∫
R2

V (x)vn(vn − v0)dx → 0.

Since vn ⇀ u0 we have∫
R2

∇u0(∇vn − ∇v0)dx +
∫
R2

V (x)u0(vn − v0)dx → 0.

Consequently, vn → u0 in E . Thus I(vn) → I(u0) = c0, which contradicts (4.17)–(4.18). Therefore u0 
= uM . �
Now, the proof of Theorems 1.4 and 1.5 follows directly from Lemmas 4.8, 4.9 and Proposition 4.11.
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4.3. Proof of Theorems 1.2 and 1.6

In order to prove Theorems 1.2 and 1.6 in the case h(x) � 0, we redefine f (s) = 0 for s < 0. Thus, in the subcritical
case ( f1) holds for s � s1 and in the critical case ( f2) holds for s � R0. Notice that hypotheses ( f1) and ( f2) was required
to help verify the Palais–Smale condition and Lemmas 3.2, 3.4 and 3.5, which are valid also for this modified nonlinearity.

The proof is a consequence of the following result.

Corollary 4.12. If h(x) � 0 almost everywhere in R
2 , then the weak solutions of (1.1) are nonnegative.

Proof. Let u ∈ E be a weak solution of (1.1). Setting u+ = max{u,0}, u− = max{−u,0} and taking v = u− in (1.5), we obtain

‖u−‖2 = −
∫
R2

hu− dx � 0,

because f (u(x))u−(x) = 0 in R
2. Consequently, u = u+ � 0. �

Now, in the case h(x) � 0, in order to prove Theorems 1.2 and 1.6 let us define the following function

f̃ (s) =
{− f (−s), if s < 0,

f (s), if s � 0.

In this case, the proof of Theorems 1.2 and 1.6 is given in the following corollary.

Corollary 4.13. Suppose that ( f −
4 ) holds and h(x) � 0 almost everywhere in R

2 . Then there exist at least two nonpositive weak
solutions of (1.1).

Proof. Consider the functional defined by

Ĩ(u) = 1

2
‖u‖2 −

∫
R2

F̃ (u)dx −
∫
R2

(−h)u dx,

where F̃ is the primitive of f̃ . Notice that f̃ satisfies the same hypotheses of f . Since −h(x) � 0 almost everywhere in R
2,

by Corollary 4.12, Ĩ(u) has two nonnegative nontrivial critical points. Let ũ be one such critical point, that is∫
R2

(∇ũ∇v + V (x)̃uv
)

dx −
∫
R2

f̃ ( ũ )v dx +
∫
R2

hv dx = 0, ∀v ∈ E.

Recalling the construction of f̃ , we have that f̃ ( ũ ) = − f (−ũ ) and replace v by −v in the last equality, we obtain∫
R2

[∇(−ũ )∇v + V (x)(−ũ )v
]

dx −
∫
R2

f (−ũ )v dx −
∫
R2

hv dx = 0, ∀v ∈ E,

which implies that −ũ is a nonpositive solution of (1.1). �
Remark 4.14. Finally, we observe that the same procedures used in this paper, along with obvious modification, can be used
to obtain analogous results for the problem of the form

−�u + V (x)u = f (x, u) + h(x), x ∈ R
2.
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