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Abstract

In this paper we study the existence, nonexistence and multiplicity of positive solutions for nonho-
mogeneous Neumann boundary value problem of the type

~Apu+juP~t=ud inQ,
u>0 in Q,

|Vu|”_20—u=q) on éQ,
on

whereQ is a bounded domain iR" with smooth boundary, & p <n, 4pu = div(|Vu|P~2Vu) is

the p-Laplacian operatoly —1<g<p* —1, p*=np/(n — p), p € C*(Q), O<o<1, ¢ £ 0,

¢(x) >0 and/ is a real parameter. The proofs of our main results rely on different methods: lower
and upper solutions and variational approach.
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1. Introduction
In this paper we deal with quasilinear elliptic problems of the form

—Apu + JuP~l=u? inQ,
u>0 in Q,

[VulP=2— =¢ on 042,

(1)

whereQis a bounded domain iR” with smooth boundaryy € C*(Q), 0<a <1, ¢ #0,
@e(x)=0, 1<p<n, A,,u:div(|Vu|P*2Vu) isthep-Laplacian operatop—1< g < p*—
1, p*=np/(n— p) is the critical exponent for the Sobolev embedditi§? (Q) < LP"(Q)
and/ is a real parameter.

Whenp =2, (1,) becomes the second-order semilinear elliptic problem

—Au+u=u? inQ,
u>0 in Q,

6—“ = on 09,
on

(1.1)

withl<g<2*—1=n—2)/(n+ 2).

The study of semilinear elliptic problems involving critical growth and Neumann bound-
ary conditions has received considerable attention in recent years. First we would like to
mention the progress for problems involving homogeneous boundary conditions, which
correspond tap = 0 in (1.1). They have been studied for instancélij2,13,16] among
others. Problem (1.1) with nonhomogeneous Neumann boundary conditions, which cor-
respond tap # 0, has been investigated by Deng—Pig In the present paper we will
improve the main results if2]. We prove that there exist§ > 0 such that problenil,)
has at least two positive solutionsiit- 1*, has at least one positive solutionit= A* and
has no positive solution if < A*. The proofs of our main results rely on different methods:
lower and upper solutions method and variational approach.

The special features of this class of problems, considered in this paper, are they involve
critical growth and a nonlinear operator. The arguments us¢4] ito prove the existence
of the second solutions cannot be carried out for a quasilinear problétm)adloreover,
because we are dealing wightLaplacian equations, it is technically much involved than
in [9], in our case some estimates involving the minimax level become more subtle to be
established.

Next we describe in a more precise way our main results.

Theorem 1.1. For eachg € (p — 1, p* — 1], there existst* > 0 such that

(i) problem(1;) possesses a minimal positive solutignif 1 € [1*, co) and there is no
positive solution if, < A*.
(i) u, is decreasing with respect toif 1 € [1*, c0).
(iii) u, is bounded uniformly iw1?(Q) andu; — 0as/ — occ.



E.A.M. Abreu et al. / Nonlinear Analysis 60 (2005) 1443—-1471 1445

Theorem 1.2. For each/ € (1, +o0) andg € (p — 1, p* — 1], problem(1,) possesses
at least two positive solutiong andw,.

The rest of this paper is organized as follows. The existence of minimal solutitor
(1,) is obtained in Section 2. The main tool is a general method of lower- and upper-solutions
described in Section 2, similar to that giver{ . Section 3 is devoted to proving Theorem
1.2.

The underlying idea for proving Theorem 1.2 is first to show with the help of the minimal
solutionu; that there exists a solutiom,, which is a local minimum of the associated
functionalJ; to problem(1,) in W7 (Q). For proving the existence of the second solution,
we consider the perturbed functionaku) := J,(u + v;). We prove that this functional
has the mountain pass geometry and using the Ekeland variational principle we obtain a
Palais—Smale sequence at this mountain passdéwvgl of 1,. Finally, doing an argument
similar in spirit to that used in the classical result due to Brezis—Nirer{Bgrave obtain a
nontrivial critical pointu of I,. Thus,w, = u + v, is a second solution of problef,).

Notation In this paper we make use of the following notations:

If p € (1, 00), p’ denotes the number/(p — 1) sothatp’ € (1, c0)and Y p+1/p' =1;

L?(Q) denotes Lebesgue spaces with the nérim» );

wLlr(Q) denotes Sobolev spaces with the nar,

C**(Q), with k a nonnegative integer andOx < 1 denotes Hélder spaces;

C, Cop, C1, C, ... denote (possibly different) positive constants;

|A| denotes the Lebesgue measure of thedset R";

wp—1 is the(n — 1)-dimensional measure of tlee— 1 unit sphere ifR";

We denote byR"; the half-space, that i&’}, := {(x’, x,) € R" : x, > 0};

DX (Q) is the completeness 6f2°(©2) with respect to the norru | := ([, [Vu|? dx).

We denote bySthe best constant to the Sobolev embeddDid’(Q) < LP"(Q), that is,

S=inf {/ |Vu|de;/ |u|P*dx:1}.
prr@ LJa Q

We remark also thabis independent o2 and depends only am Moreover, wherf2 = R”
this infimumSis achieved by the functions, given by

ug(x) = Cng(”*f’)/l’z(g I |x|p/(p71))([77n)/p’

where the constartf, is chosen of the form that

—Apug = uf*fl in R".
Thus,
K
§= K(n—;)/n
2
with

K1 ::/ |Vus/’dx and K> ::/ lug|P” dx. 1.2)
R" R
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2. Proof of Theorem 1.1

Our argument to prove the existence of the first solution to prokilemrelies on the
lower and upper solution methods. Our first solution is a minimal solutjoof problem

(1,), in the sense thai, <w, for all w solutions of(1;). The main focus of our next
subsection is to prove the existence of such a minimal solution.

2.1. The existence of minimal solution

Let us first recall some definitions. We say thate W7 (Q) is aweak solutionof
problem(1,) if for all v € W12 (Q) we have

/[|Vu|"’_2Vqu+/1|u|1’_2uv]dx:/ |u|q_luvdx+/ pvdo,. (2.3)
Q Q oQ

Hence, the weak solutions @1,) correspond to nontrivial critical points of the energy
functional

1 1
Jiw) == /[|Vu|p+i|u|p]dx—— / |u|? dx
rJo qg+1Jo

—/ pudoy, u e wir(Q).
Q
A functionu € WP (Q) N L>®(Q) is said to be dower solutionof (1)) if
/ [IVulP"2VuVo + 2ulP~2uv] dx < / |’ tuv dx + / puvday
Q Q Q

forallv e Wh7(Q), v=>0. In the same way, a functiahe W7 (Q) N L>®(Q) is said to
be aupper solutiorof (1)) if

/[WW’*ZVWU + AP %av] dx > / ]9 v dx +/ pvdo,

forallv e wtr(Q), v>0.

Lemma 2.1 (Maximum Principlg. Letl> 0andu1, u» € W7 (Q) be nonnegative func-
tions such that for alb € W17 (Q), v >0 we have

/ [IVu1|?~?VurVo + )vuf_lv] dx < / [|Vuz|?~?VusVu + iug_lv] dx. (2.4)
Q Q

Thenu; <up almost everywhere if2.

For a proof of Lemma 2.1, see (Tolksdorf, 1988] Lemma 3.4) for example.
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Our next result concerns the existence of solutions for prolyfeand some properties
of the associated solution operator.

Lemma2.2.1f ¢ € C*Q), 0<a<1, ¢ # 0and >0, then for each nonnegative
functionf e L7 (Q), problem(2,) possesses a unique weak positive solutipre C1%(Q)
for all /> 0. Moreover the associated operatdf; : L? (Q) — WLP(Q), f > w; is
continuous and nondecreasing

Proof. First we use variational argument to prove the existence of the solution. More
precisely, we use minimization argument to the associated energy functional of the problem

(2)),
1 )
Ii(w)=— /[|Vw|p+A|w|p]dx—/ fwdx—/ pwdoy,
P JQ Q oQ

defined on the reflexive Banach spa&é ? (Q). Note that/; is coercive. Indeed,

Lw)=Callwlly , = I1f Il g lwllizr@ = 191y ooy lwlrce)
>Collwllf, — Ca,

where above we have used Holder inequality, Sobolev embedding and trace embedding
WLr(Q) > LP(0Q).

Now, we proceed to prove thaf is sequentially weakly lower semicontinuous. To this
end it is sufficient to show that for, — u weakly in W17 (Q) we have

/qundx—>/9fudx (2.5)
d

an

/ Qu, doy —>/ oudaoy. (2.6)
0Q ’ oQ

Sincef € LP'(Q), (2.5) follows from the definition of weak convergence. Finally, (2.6)
follows from the trace embedding.
Letu; be a weak solution af2,) associated tg; € L? (Q), thatis

/[|Vu,-|P72Vu,'Vv+i|ui|p71uiv]dx=/ f,-vdx—i—/ pvday
Q Q 0Q i

forallv e wWtP(Q) andi =1, 2.

If f1< f2, using Lemma 2.1, we obtain thai <up. From this we get the uniqueness
and thatT’; is nondecreasing.

Using the regularity result due to Lieberm§?] we may prove that: € CL*(Q).
Finally, by the maximum principle or Hanark’s inequality it is standard to proveitkad
(se€[14,15). This completes the proof of Lemma 2.2[]
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Proposition 2.3. Letu, u € W12 (Q) N L>°(Q) be, respectivelya lower solution and an
upper solution of problenil,), with 0<u(x) <u(x) almost everywhere if. Then there
exists a minima{and, respectivelya maxima) weak solutioru.. (resp u*) for problem
3.

Proof. Considerthe intervél:, u] with the topology oW -7 (Q) and the operatd: [u, ] —
LP/(Q) defined bySv := v?. Sinceu € L*°(Q2), we see tha¥ is well defined. Moreover,
for u,, u € [u, u] with u,, — u in WHP(Q), we have that|Su,, — Sull @ — 0, and
henceSis continuous.

Considering the operatolis, u] LR LP'(Q) i> wbr(Q), we candefing : [u, u] —
WwlP(Q) given byF =T, o S, whereF (v) = w is the unique weak positive solution of the
boundary value problem

—A,w+ JwP~l=1v9 inQ,

0
|Vw|"‘2%=(p on 0Q.

It is clear thatF is continuous and nondecreasing.
Writing u1 = F(u) andu® = F (@), for allv € WL7(Q) with v >0, we have

/[|vu1|1’—2vulw+Au11"1v]dx= / gqux—i—/ pvday,
Q Q Q

> / [IVulP"2Vu Vo + 2u?~ o] dr
Q
and

/[|Vu1|p_2Vule+Z(u1)p—1v]dx= /ﬁqux+/ pvdo,
Q Q 0Q

</[|Vﬁ|[’_2VEVv+)ﬁp_lv]dx.
Q

Thus, applying Lemma 2.1 and taking into account that nondecreasing, we get
u<FW)<Fu)<F@u)<u, ae inQ.

Repeating the same reasoning, we can obtain the existence of sequénaasd (1,) in
wir(Q) satisfying

, un+1 — F(un)’

’ un+1 = F(uﬂ)
and for every weak solutiom € [u, u] of problem(1,), we have

uo<ur< - <up<u<u" < - <ut<ulae. inQ.
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Since

/Q[|Vun+1|p_2Vun+1Vv + iufi;llv] dx = /Qqu dx + /Q pvdoy
o

g/ﬁqux+/ pvdoy
Q 0Q

and

/[|Vu"+1|”_2Vu”+1Vv+/1(u”+1)”_1v] dx = /(u”)qux+/ pvday
Q Q 0Q

é/ﬁqux—i—/ pvdaoy,
Q o

we obtain that(x") and (u,) are bounded W17 (Q). Therefore, up to subsequences,
we haveu, — uy, u” — u* weakly in Wh?(Q), u, — uy, u, — u* in L"(Q) for
1<r < p* andu, — u,, u" — u* almost everywhere if2. Moreover, by construction
we haveu,, u* € [u,u] andu, <u™ almost everywhere if2. Now, usingS(u,) —
S(uy), S@") — S(u*) and the continuity of’) we conclude that,,+1 = F (u,) — F(u4)
andu"tt = Fu") — F@u*) in WhP(Q). Thus,u,, u* € WHP(Q) with u, = F(u,),

u* = F(u*). This completes the proof of Proposition 2.3.]

Lemma 2.4. There exists* >0, such that problengl;) possesses a minimal positive so-
lution for each/. e (1*, +00) and(1;) has no positive solution fot € (—oo, 1¥).

Proof. Notice thatu = 0 is a lower solution of1,) for all 2>0. Now, we takew; the
positive solution of problem (2 with f = 0 andi=1. Thusu = w1 is an upper solution of
(1;,) With Zo =1+ max, 5w ”**. Using Proposition 2.3 we get a minimal solutiep
of (1,,). Finally, by Harnack’s inequality (s¢&5, Theorem 1.9]we havey = 0 < u,, <u.
Thus,

A={Le R : (1), possesses at least one positive solytion (2.7)

is a nonempty set. Notice thaj, is an upper solution ofL,) for all 1> /,. Thus, using the
same argument above we conclude gt co) C A. Moreover,u;, <u,, if 1, <41 and
A C [0, +00), because for, solution of(1,) thenu satisfies (2.3) and taking= 1 as
test function we get

l/ uf—ldx:/ude+/ @do, >0,
Q Q 0Q

which implies thatl. > 0. Consequently, setting
A =inf A,

we havel* € [0, +oo). Moreover, for alll € (1*, o), (1;) possesses one minimal solution
and has no solution if € (—o0, 4*). O

Lemma 2.5. 1" is positive real number and the problgfy) possesses a minimal positive
solution
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Proof. Our goal is to prove that* is attained. To this end, let us také;) a decreasing
sequence ifiA*, 0o), satisfying lim_.c 4; = A* and () in Ww1P(Q) the correspondent
sequence of minimal positive solutions of problém;) given in Lemma 2.4. We claim

that (u;) is bounded inWL-7(Q). Indeed, suppose by contradiction (up to subsequences)
that|u;|l1,, = 400, asj — +oo. From this we will prove that

/ u?ildx — 00 as j — +4oo. (2.8)
Q

Settingwj =u;/llu;ll1,,, we havglw;|1, ,=1andw; > 0in Q. Thus, (up to subsequences)
there existav € W17 (Q) such thatw; — w weakly in wir(Q, w; — win L"(Q) for

1<r < p* andw; — w almost everywhere iR. Takingv =w/|lu; ||f;,1 as atest function
in (2.3), we obtain

Aiu? ™" —u?) 1
/|ij|p*2ijdex+/ 'lj—p_ljwdx=ﬁ/ pwdaoy.
Q Q  ujly, llujlly , /oo

(2.9)

Passing to the limit in (2.9) and using a convergence result due to Lucio—Bocard6,(see
Theorem 2.1 we concluded that

p—1

(i'u’?_l—uq-)
/ #wdxa/‘ [Vw|? dx. (2.10)
o Nl o

Similarly, takingv = w; /|lu; ||1;,l in (2.3) and passing to the limit we obtain

(uq. —ﬂpul.)_l)
/ |ij|1’dx—/ %wjdx—)O. (2.12)
Q Q@ lujly,

From (2.10)—(2.11) we conclude that
IVwjllLr = IVwlLr. (2.12)

Now, observe thai; satisfies

—Apwj + !t = f; inQ,
(2.13)

I on 0Q,

ow;
IV |Pm2 —~ = ¢
0
where f; = u(}/”l/tj”i;l andg; = (/)/”uj”i;l. It is not difficult to see thatf; — f

weakly in L7 (£2), andp; — 0 almost everywhere iAQ. By a convergence result due to
Lucio—Bocardo (sef5, Theorem 2.1]and Brézis—Lieb’s Lemma (s§&7]), we conclude
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thatVw; — Vw strongly in(L” (€))". This factimplies thatv; — w strongly inL”" (Q).
SinceQ is a bounded domain, we conclude that— w strongly inwlP(Q). Observe that
w >0 andw =# 0. Therefore, there exists a subgéetc 2 of positive Lebesgue measure
such thatw > 0 almost everywhere irt”". Thus, there existg, such that for allj > j, we
haveu ; — +oo almost everywhere int”. Therefore, giverM > 0 there existg, such that
uj(x)>M forall j > j, and almost everywhere if". So, for each Xr < p*, we have

M’|~V|</

u? dxé/ur/ dx.
o 0 -

Thus, making — +o0, we obtain (2.8).
On the other hand, choosing= 1 in (2.3) and using the Holder’s inequality we have

9
1
C(Q,q,p)(/ ul?ldx>, </uq4dx=/1j/u’?71dx—/ @(y)doy, (2.14)
Q' o’ o’ 00 '

whereC = C(£, ¢, p) >0, which is a contradiction of (2.8). Sinda ;) is bounded in
wlr(Q), taking subsequence if necessary, we can assume that there exists a function
u € WP (Q) such thaw; — u weakly in the space® 17 (Q), LPT1(Q))*, LP(0Q) and

L4(Q) for eachg € (1, p*). Sinceu;; satisfies(lij), we have

/QHV”AIVQ—ZV”A/VU + /lj|uj|17—2ujv] dx = /Q u?v dx + /ﬁg pvdoy. (2.15)

Hence, using a convergence result due to Lucio—Bocardd%sdéeorem 2.1]we have
Vw, — Vw strongly. Moreover, by Brezis—Lieb’s Lemma, we have after taking the limit

/[|Vu|”_2Vqu—l—/1*|u|”_2uv]dx=f uqux~|—/ pvda,. (2.16)
Q Q 0Q

Thereforeu is a weak solution of1) ;«. Finally, applying Proposition 2.3 and using the
fact thatu = 0 is a lower solution of1) ;+, we conclude that there exists a minimal solution
uysof (D« O

We notice that until this moment we have proved the items (i) and (ii) of Theorem 1.1.

2.2. Asymptotic behavior of the minimal solution

Next we are going to prove the last item of Theorem 1.1. For this end firstly we observe
that takingv = u; as a test function in (2.3) we obtain

||V1M||ip(9) = /00 @o(Mu,doy + /Q(u‘£+1 -~ iuf{) dx. (2.17)

Let 11 be a fixed element inl. From (ii) in Theorem 1.1 follows that for each> /1, the
respective minimal solutiom; satisfies:; <u,, in Q. Thus, using this fact and the Holder's
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inequality with I/ p’ + 1/p = 1, we obtain

1VuA12 0y <UL oo 1021 Lo agy + f{ 1dx
<

u; <1}

+/ jjldx — A/ uf dx. (2.18)
{u; 21} Q-

Now, applying the trace embedding theorem and Young’s inequality, we have

19l L oy 121 Loy < 1@l o oy a2 l12.p

<CllON oy + BNV gy + 1312 ) (229)

which together with (2.18) and (2.19) implies that

p
(A= DIVuil75 ) <Cillol CORE (/{u <1 o /{u Sy dx)

+/ dx~|—/ ul ™ dx z/ u? dx. (2.20)
{u, <1} {u; =21}

Therefore, taking: € (0, 1) and using (2.20), we conclude that — 0 asi — oo in
LP(Q). Sinceu; € C+* we deduce that; — 0 asi — oo. This completes the proof of
Theorem 1.1.

3. Proof of Theorem 1.2

In order to prove Theorem 1.2 we first show with the help of the minimal solutjon
that there exists a solutiam,, which is a local minimum of the associated functiodal
to problem(1;) in W7 (Q). This is necessary because the minimal solutigris not a
variational solution. So it is not clear how to get an estimate to its the energy level. For
proving the existence of the second solution we consider the perturbed fundfional=
J;(u + v;) and we prove that this functional has the mountain pass geometry. Using the
Ekeland variational principle, we obtain a Palais—Smale sequence at this mountain pass level
c(vy) of I,. Finally, doing an argument similar in spirit to that used in the classical result
due to Brezis—Nirenbel@], we obtain a nontrivial critical point of I;. Thus,w; =u +v;,
is a second solution of problefd,).

3.1. Existence of alocal minimum

Here we are going to prove the existence of a local minimum of the energy funcfipnal
for all 1 > A*. To do that, the existence of the minimal solution obtained in the last section
is crucial to our argument.

Proposition 3.1. For each € (1%, +00), the functional/; has a local minimum; in
wLlr(Q).
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Proof. Fixed A € (1*, +00), we can take real numbeis, /1, > A" such thatl, < 4 < 1.
Letu,, be the positive minimal solution associated to the probiéy), fori e {1, 2}
given by Theorem 1.1. Thus,

O<uy <uy,. (3.22)
Sincelz < A < /1, for all v >0 we have
-2 , p—1
/Q[|VMM|P Vi, Vo + Jug o] dx

< / [V, 1”2V, Vo + Aluj’;lv] dx
Q

=/ ul vdx —i—/ pvday (3.22)
e " 0Q
and
— N -1
/Quq&v dx + /(?Q pvdoy, = /;)[qu;_ZV’ ZVu;_ZVv + Azufz v]dx
< /[|Vu22|P—2Vu;V2Vv +)Luf;1v] dx. (3.23)
Q
Thus, using (3.21)—(3.23), for all>> 0, we get
- -1
/Q[W”iﬂp ZVuile + iu/lpl v]dx
< /Q[|Vu;_2|1’—2Vu,12Vv + iufz_lv] dx. (3.24)
Next, we apply the minimization methods to the Euler Lagrange functional

- 1 -
J(w) == /[IVu|p+/1|u|p]dx—/ F(u+)dx—/ puiday,
P Jo Q Q
associated to the problem
—Apu +uP = fw) inQ,

[Vu|P~
on

= (,D on GQ,

whereF (1) = [3 f(s)ds is the primitive of function

ul, () i) <ugy (x),

Fu@)) =1 ud(x) if uy(x) <u(x)<up,(x),
w (0) i g, () <ux).

Itis not difficult to prove that the functiond; is coercive and bounded below &7 (Q).
Indeed, it is enough to observe that

/ Fuzy () d < / Flu() dr < / Fuz,(x)) dx.
Q Q Q
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Therefore, we get a minimizer; to J, in W1-7(Q), from which without loss of generality
we can assume thaj is positive. By regularity theory; € C1*. Moreover,

—Aptgy + 2l F ) < F ) < fluz) < = Apugy + 2l
Thus, by weak comparison principle (see Lemma 2.1), we have

Ujy SV, KUy
Set

H o ={xeQ: v(x) =uy,(x)}.

Using (3.24), we have that” # Q and so by the Proposition 2.1 in Guedda—Vejbti,
we obtain that O< v; < u;,. Therefore, there existg > 0 such that for eache (0, ¢),

1, (X) 4 €0(x) <) S g, (x) — €0(x),

whered(x) = inf{|x — y|; y € 0Q}. Moreover, it is easy to see that the fungtié(u) =
F(u) — F(u) on the interval of functions$u;,, u,,] is independent ofi, so J, — J; is
constant ing-ball, {u € C1(Q) N WL (Q) : |lu — v;||1.0<e}, which means that; is a
local minimum ofJ; in the ¢*-topology. Finally, using the same argument as in the proof
of Theorem 1.1 if4] (see als¢8]) we obtain thab is also a local minimum of functional

J; inthe spacavr(Q). O

3.2. The perturbed functional

Here, we are denoting by, the local minimum obtained in Proposition 3.1. Next we
are going to prove that the perturbed functiohdl) := J; (u + v;) has the mountain pass
geometry.

Lemma 3.2 (Mountain pass geometfry The functional/; satisfies the following
(i) there existr € R andp > 0 such that

Lw)=o  forue WhP(Q) with |lu— v, = p;
(i) there existsi; € WL7(Q) such that|ii; |1, > p and J; (ii;) < o.

Proof. (i) follows from the fact thaw is local minimum ofJ;. To prove (ii) it is enough
to observe that

(14 1)P (14 )9tt 1
Jy(v,+1tvy) = » ||v;_||[1)’[, BET ||U,1||(1]‘;r(g) -1+ 0 v doy
(1+1)P (L+n)tt 1
< ||v,1||ip — ﬁ ”UZ”Z;_(Q)

andg +1>p. O
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Therefore, we can conclude that the set
I'={y e C(0, 11, WHP() : 7(0) =v; and J;(3(1) < J,(v)},
is nonempty and thmountain pass level
c(vy) = :Q; omax, J0@)),
is well defined. Moreover, following10] we have the following characterization to the
minimax levelc(v;),

c(vy) = inf max I; (tv) = inf max J; (v, + tv). (3.25)
veWLP(@)\(0} 120 veWlr(@)\(0} 120

Next, using this characterization we can state
Proposition 3.3. If ¢ = p* — 1, then the following estimate is true
(W) < T(03) + 57
A A A 2]1 .

Proof. By (3.25) we have
c(v)) < max J;(v; +1v), forallve wir(@)\(o}. (3.26)
tz
Since equatioril,) is equivariant with respect to rotations and translation®'inwe can
assume without lost of generality thaf=0 € 02 andQ C {x, > 0}. For eachx € R" we

write x = (x', x,) € R"1 x R. In the following, we assume that in some neighborhood of
origin the boundary of? is given by

xp=h(x')=g(x’) + o(Ix'|?), forx' = (x1,...,xa_1) € DO, ), (3.27)

where
n—1

D(0,0)=B(0,0) N{x, =0}, gx'):= % Z o x?
i=1

ando; > 0 are the principal curvatures 6f2 in xo = 0.
Next, we are going to estimate

1
J(U},"'tus):; /[IV(vz-i-tua)lp+)~|v).+tua|”]dx
Q

1 x
- — / |v; + tug|? dx—/ @) +tug)do,.
p Q 0Q

For the sake of clarity we estimate separately the gradient term, critical and subcritical term.
We are going to use the following notations:

Ki5(e) :Zf [Vugl® dx, K>, (¢) 12/”2 dx.
Q Q
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(i) Estimate of the gradient terrhetr € [0, 00), p € [2,3), 2 € [0, 2n] andy € [p — 1, 2].
The following elementary inequality holds:

(14 1% + 2t cosw)?’2 <1+ 1P + pt cosu + Ct7. (3.28)

Since

Vo, Vu, Vu,|? r/2
A & 2| a|) dx

|V(v,1+tu-)|pdx=/ |Vv;_|p<1+2t
/Q ‘ o |V, |2 Nk

from (3.28) we obtain
/ |V(U}.+t”8)|p dx
Q
< / (V01?4 1P [Vugl? + pt|Vus P~ 2(Vv; Viug) + 17| Vug|) .
Q

which together with. > estimate due to Libermarjh2] and Cauchy—Schwarz’s inequality
implies

/|V(v,1+tug)|pdx§/ |Vvi|pdx+tp/ |Vug|P dx + 17Ky (e). (3.29)
Q Q Q

(ii) Estimate of the critical power temin order to estimate the critical power term we
consider the elementary inequality

(1+s)p*>1+sp*+p*s+p*sp*7l+CsV, s>0, (3.30)
wherey € (1, p* — 1] ( see[3] for more details ). Thus, from (3.30),

/;z(vi—l—tug)p* dx}/gvf* dx—l—t”*/Quf*dx+p*tp*_1/;2uftlv;vdx. (3.31)

(iii) Estimate of the subcritical power terrrirstly, we notice that for each, »>0 and
1< p <n we have

(a + b’ <a’+? + C maX{ab? L, ba?1},

which implies that
/ |v; + tug|? dx < / vf dx +t”/ ul dx + Clt”_l/ vzufildx
Q Q Q Q
+C2t/ vf_lugdx.
Q
Sincev; € L®(Q), we get

/|v,1+tu8|pdx§/vfdx—}—tp/ufdx
Q Q Q

+ CarPt / u? tdx + Cat / g dx. (3.32)
Q Q
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Using estimates (3.29), (3.31) and (3.32) we obtain
Sy +tug) < J;(vy) + Fi(t, e) + G,(1, ¢), (3.33)

where
X

tP t
F)v(ta &) = ; (Kl,p + )LKZ,p) - FKZ,IJ*

and
G(t,e) = C1t"K15(e) + Cat" K2 p_1(8) + CatK2.1(¢)
— tp*_l/ ug*_lvi dx.
Q
To finish the proof of Proposition 3.3, we need the following result.

Lemma 3.4. For each/ > 0 and¢ > 0 sufficiently small we have

1
max F;(z, &) < — S"/? (3.34)
t>0 2n
and
G(t,e)=1t"0@E") + 1770y +10(@%) — 7" Lo, (3.35)
where
n— ) n -1
o= 2p ’)} + i — _y 4 n,
p p p p
n—p (n—p) p—1
B= 2 (r—1— (r—1+ n,
— — -1
5=n2p_(n p, r-1
p p p
n— n— -1
p ( p)(p*_1)+p .

p

Proof. We begin by proving estimate (3.34). For this purpose, we consider two g&ses:
andp? > n.
Case p2<n. Notice that

h(x")
K1 p(e) = / |Vig|P dx — f dx’ / [Vig|? dx, + O("=P/P),  (3.36)
R D(0,6) 0

+

because

h(x))
—/ |Vug|? dx—i—/ |Vu8|1’dx—|—/ dx’/ |Vug|? dx, = O("~P/P),
R" Q D(0,9) 0

+
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Since

f|Vu£|pdx—/
Q Rll

+

h(x")
= _f |Vu£|pdx—|—/ dx// [Vug|? dx,
R\Q D(0,6) 0

/ rd (n—p)/p |/ (P~
< [Vug|P dx = C(n, p)e"~ / —  dx
IRV R1\B,(0,0) (84 |x|P/(P=D)"

h(x")
|Vug|? dx +f dx’/ |Vug|? dx,
D(0,5) 0

P/ (p—D+n—1
———dr
rp(=1/(p—1)

(n—p)/ * !
_ n—p)/p - -
=C(n, p)e /é Fn—1)/(p—1) dr < oo,

o
|
0

because k p2<nimplies 2» — 1 < p?2<n and consequentlyz — p)/(p — 1) > 1. Now,
notice that

K1:2/ |Vug|? dx:/ |Vug|? dx
n R)l

RY

_(n—p n |x|P/(P=D
- ( p— 1) /R A3 ooy (3.37)
Thus, K does not depend an
From (3.36)—(3.37) it follows that

1 8(x")
Kl,p(8)=§K1—/ 5 dx’/ |Vug|? dx,
D(0,5) 0

h(x")
- / dx’/ |Vue|? dx,, + O(e"=P)/P)
DOy  Jew)

g h(x")
=— K1 —f dx’ / |Vug|? dx, —/ dx// |[Vug|? dx,,
R*1 D(0,6) g(x)
g
f dx’ / |Vug|P dx,
R 1

g
— f dx’/ |Vug|? dx, + O "=P/P).
D(0,0) 0

Thus,

1 , g(x")
K1 p(e) = EKl_/RnA dx /(; |Vug|? dx,

h(x")
— / dx’ / |Vue|P dx, + O "=P1P), (3.38)
D(0,0) g(x")
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where in the last inequality we have used the following estimate:

g(x") (")
/ dx’/ [Vug|? dx, —f dx’/ [Vug|? dx,
Rt 0 D(0,9) 0

g(x")
:/ dx’/ [Vug|? dx,
R\ D(0,0) 0

) x|/ (=D
=C(n, p)g(n—[?)/[’ / N f —lndxn
R"~1\D(0.9) 0 (¢ + |x|P/(P—D)

(n—p)/p 80 1
<C(n, p)e*~ / dx/ dx
- P R"1\ D(0,) 0 (6 + [x/|p/(p=Dyn=1 "

Using radial variable we deduce

g(x") g
/ dx’/ |Vug|? dx, —/ dx’/ |Vug|? dx,
Rt 0 D(0,0) 0

0 2,.n—=2
<Ci(n, p)e=p1/p AL
S Hln s rP=D/(p-D)

o0 1
(n—p)/p - 00
<Ca(n, p)e /5 =P =D dr < oco.

Now, notice that

. g(xh
1(e) := /n_l dx / [Vug|? dx,

(n—p (n 0/ 8" |x|P/(P—D q
= Xn
-1 R 1 (e + |x|p/(p Dyn

L(P 1)/Pg(x) |x|[)/(1) 1) d
3.39
( > /w 1 / A+ |x|P/P—Dy" (3-39)

Thus,

- 1(2) n—rp\’ |7/ P Vexy
lim = dx
e—0g(P—D/p p—1 -1 (14 |x/|P/(P=D)n

which implies that

I1(e) = O(S(P—l)/P).
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Moreover,

[11(e) : | =

h(x")
/ dx// |Vug|? dx,
D(0,6) g(x’)

W) /(D)
/ dv’ / M
D(0,0) o) (64 |x|P/(P=D)

h(x")
Jrow [
D(0,6) g(x)

|x|P/(P—D q
(& [x|P/P—D) (g + |x|p/—Dyi=T "

=C(n, p)g(n*p)/l?

=C(n, p)g(n*p)/l?

<C(n, p)e"=PP

/ / hx') 1
dx dx
D(0,0) o) (e |x/|p/(p=Dyn=1

_ [h(x") — g(x)]
<Cn, AU p)/p/ dx’.
SC p) D©.5) (€4 |x/|P/(P=Dyr—1

Sinceh(x’) = g(x’) + o(|x’|?), it follows that for allg > 0, there exist€ (¢) > 0 such that
lh(x) — g(x")|<alx'|2 + C(o)|x'|* for all x' € D(0, §), where 2< o< (n — 1)/(p — 1).
Thus,

12 a3
1) < Cn, p)e®=/7 f oL C@OT g
D) (&4 |x/[P/(P=Dy"=

Now, observing that

2
.(n—p)/p .(p—l)/p/ x| e
€ e e
/ DO.5) (& |x/|P/(pP=Dyn=1 7" =

and

/o
(n=p)/p (p—l)/ﬁ/ x| dx’ < (p—D(a—2)/p
€ € x'<C(n, p)e ’

/ DO.5) (64 |x/|p/(p=Dyn=17" = p

we obtain
L(e)<Cln, e~V (g + C(o)eP~VE217),

Sinceg is arbitrary andx > 2, we conclude thak, (¢) = o(¢?~D/?). Therefore,

1
K1p(e) =5 K1 = 1(2) = Li(e) + 0" PIP)

1
=5 Ki— 1@+ o(eP~ /Py, (3.40)
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Now, let us obtain a more refined estimatekof ,« (¢). To this end, firstly notice that

Ko p(e) = / g 7" dx — / dv’ / gl diy + O(P)
R" D(0,0) 0

+

1 8(x) ;
=—K2—/ dx’/ lugl? dx,

2 D(0,) 0

h(x") }
—f dx// lugl?” dx, + O("P)
D(0,0) g(x))

1 o g(x’) g
==Ky — X u X

sKa— [ ad [ i a,

h(x") ;
—/ dx// lug|?” dx, + O("P)
D(0.9) 8(x)

1 n/
=5 K2 —11() — 111(5) + O 7).

Since

g,
11(¢) ::/ dx// ul dx,
Rnfl 0
(") 1
:871/]7/ dx// —lndx,,
Re-1 0 (e + |x|P/(P=D)
— dy’ e —1 d 341
- Rr-1 Y 0 (1+|y|p/(p—1))n Y ( . )

we havell(e) = 0(P~D/P), Using the same estimate as ip(e) we havelll(e) =
o(e?=D/Py Thus, for 1< p2 <n we have

1
Ko p(e) =5 Ko = 11() + o(eP~ /Py, (3.42)

We can now proceed analogously to obtain a refined estimat€fg(e). To this end, we
consider two caseg? < n and p? = n separately.
Casel: p? < n. In this case we have

1
) — Pdy < Pdy = =p)/p
K2 p(¢) /Qm dx < /n u, dx =¢ /W G Dy dx

a-pin( [ il °° Tt
— n—p)/p
= wpe (/0 7 |r|P/(P—1))”*Pdr+/1 (¢ + |r|P/(=Dyr=p dr)

— O(S(H*P)/P)

— 0P D/,
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Case2: p2 =n. Let R > 0 such thaf2 ¢ B(0, R). Notice that

Kz,p(s)zfufdxéf ul dx
Q B(O.R)

:8(nfp>/p/ 1 — dx
BO.R) (¢+ |x|P/(p=Dyn=p

( y R rn—l

— \n=p)/p

= wyé /O ((L + |r|p(p_]_))n—p dr
R/eP—D/p n—1

— p—1 §

= wyé /0 A3 5P/ 7Dy 7 ds

= CeP~1(1 - log(eP~V/Py)

— ¢(P=D/P ((P=12/P _ ((p=D?/P |oq((P=D/Py)

— o(g(p_l)/p).

Hence, for 1< p2 <n we have
K2, p(e) = o(eP1/P), (3.43)

Sincep™* > p, there exists, > 0 such that
1 K X
T (teue) = max {—(Kl, (&) + K2 p(e)t? — 2—”*(8) P } ) (3.44)
> P p

It follows from estimates (3.40), (3.42) and (3.43) that there exjsts0, K’ > 0andK” > 0
such that

Ko ,+(e)>K' and  Ki,(e) + K2 ,(e) <K", V&€ (0,¢). (3.45)

Consequently is uniformly bounded ir0, o). SinceK3(e) = o(e?~1/P) for p2 <n, we
get

1 K .
J(ty) = sup{— Ki(e)t? — @ P } + 0(8([1—1)/[))
t>0 P

1 Ko@) p+ 1 p* (p—1)
== K1(e) 7 — Z Ko@)l 4 o(sPV/P)
p Ki(e) ¥ p* !

= % Kg(s)tf* + o(eP~D/P)
_1 Ki@\"" v
= Ko(¢) ( Kg(a)) + o(e )

n/p
Y B = 1O R Y
n Kz(s)("_p)/"

Finally, we observe that statement (3.34) will be proved once we have proved the following
claim
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Claim 3.1. The following estimate holds

K1(e)

= —p/n (p=b/p
Kz(s)(”*l’)/" <2 S+ o(e ). (3.46)

F. rom (1.2), inequality (3.46) is equivalent to

KO o KL -0
Kz(s)(nfp)/n Kénfp)/”
K1 1

-+ (p=D/p
T2 (Kz)(”—l’)/" to ):
2

that is,

K>
2
From (3.40)—(3.42) we have

K K (n—p)/n K K (n—p)/n
<71 - I(s)) <72> < 71 (72 — 1) + 0(80’—1)/1’))

+ o(eP~ VP, (3.47)

(n=p)/n 1
K1(8)< ) <= Ko(e) =P/ 4 o(P= /Py,

Now, notice that fowo > 0, we have
A-0*=1—at+o(), as t— 0.

In particular, taking

i I1(e) + 0(8(17*1)/17)

K>
2

we obtain

K (n—p)/n
<?2 — 1) + 0(8(1’_1)/1’)>

K (n—p)/n _ K —p/n
— (22 (=) (22) 0 11Ge) + oe VI,
2 n 2

Thus, (3.47) is equivalent to

K (n—p)/n Ki/K —p/n _
—1e (22 Y TP 1) + o(ePVIPy,
2 2\ 2 n

Since,lI(g) = 0(¢P~D/P) we get

1(e) n—p\ K1
11<s>>< n )1(_2“(1)’
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which implies that (3.46) is equivalent to

1) >((n—p>)g .08)
e-0 11 (c) n Ky -

From (3.39) and (3.41) we get

1
im L@
e—011(¢)
) /(p=1)
) e DirgGny  IPTPTT
C Jerd o A+ |y|p/P=by" o
=((n—p)/(p—1)F SITO (-D/pg(y) 1
Jrmeady f 80y dyn

(L+ [yP/=D)y"
|y/|p/(pfl)

(1) [ @eppEy
\p-1 1

J @y

prtr/(p=1)

n—p\? Jo (L4 rp/(p=Dyn dr

- = . (3.49)

- o
Jo (L+ rp/(p=Dyn

/

dy

/

dy

dr

Now we calculate the lasttermin (3.49)jf (p—1) < < p(n—1)+1/(p—1), integrating
by parts we have

s B—p/(p—1) _ S B
/ r dr— P -1 / r dr. (3.50)
o (14 rp/(p=Dyn-1 (p—Dp—=1J)g @A+rr/p=Dyr

Observing that

B pB=p/(p=1) L 1
L+ rP/P=Dy" = (1 pp/(—Dyn—1 ( 1+ rp/<p—1>> ’
we obtain

00 B oo pf-p/(p=1)
/ e — = / dr
o (A+rr/(p=Dyr o (14 rp/(p=Dyn-1

0 B-p/(p=D)
_ /0 Aoy (3.51)

From (3.50) and (3.51) we get

(n—=Dp o rP 0o pB-p/(p=D)
R 10y s
(p—=DB-1)Jo (A4 rr/P=)" o (L4 rr/(>=Dyr
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that is,
/°° rb (p-Dp-1
0

Aty YT G Dy (p—DR+1

oo pp-p/(p—1)
X /0 —(1 T PDy dr. (3.52)
From (3.49) and (3.52) witf =n + p/(p — 1) we obtain

o 1® _<n—p)”(p—1)(n+1)_ (n—pP  n+1
e—~01I() \p—1 n—2p+1 _(p—j_)l’—ln—Zp—i—l'

(3.53)

By (1.2), we have

ptp/(p-DH-1

n—p\ K1 (n—p\’° (1+rp/(p*l))”dr n—p\?
n Ky n o rn1 p—1) "

Jo (14 rp/(p=Dyr dr

Takingf =n + p/(p — 1) — 1in (3.52) we have
”—P(ﬂ) n—p (p—D((n—1)+p/(p—1) (n_p)p

n K> n m=Dp—-(p-LD((rn-D+p/(p-D)\p-1
(n—p)P
= 7 3.54
(p -1t ©59

Sincen +1>n—2p + 1, (3.53)-(3.54) yields that (3.48) is true. Therefore, the claim was
proved in the case & p?<n.
Case2: p2>n. Let R > 0 such tha2 ¢ B(0, R). Notice that

R
r
K — P dx <ce—p)/p
3(¢) /;)I/ls X X CE 0 (8+rp/(p_]_))n—p

n—1

Consequently,
K3(e) = O(e"=P/P). (3.55)

Choosing 0< a < A < oo such that|x’ |2 <h(x’) < A|x'|? for x’ € D(0, §), we have

Kl(s)zf |Vug|pdx=f |Vug|P dx
Q R

h(x))
—/ dx’/ |Vug|? dx, + O =P)/P)
D(0,9) 0

K h|x/\2
et f dx// [Vug|? dx, + O("=P/P)
2 D(0,0) 0

x/|?

K al
<=l / dx// |Vitg|? dx, + O (=P Py,
2 D(0,0) 0
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Using |x|P/(P=D > |x'|P/(P=D 'we have

alx’|?
/ dx// [Vug|? dx,
D(0,0) 0

alx'? |x'|P/(P=D)
>s(n—p)/p/ dx’/ e 056
D(0,0) 0 (e + |x|P/(P=D)

Ford € (0, 1), we haves + |x|?/P=D L C (e + |x'|P/P~D). Consequently

72 _
g(nfm/p/ dx//“"“ WPy
—1)\n n
D(0,9) 0 (e + |x|P/(P=D)

112),/1P/(P=D)
S e16P)/P alx |7l | P (3.57)
D.5) (€4 |x/|P/ (=D

Now, observe that

(n—p)/p R (n—p)/p O p2pp/(p=1yn-1
‘ ot plp—Dyn X TE ﬁdr
D©.5) (&+ |x'|P/(P=D) o (e+4rp/(p=D)
6/8(P*1)/P /(p—D+
= gn=P)/pg@p—n=D/p ST s
0 1+ sp/(p=Dyn
oferhir (P-D+
>8(”_1’)/p8(2p_"_1)/1’f . sp/p—n ds
~ /(p=Dyn
1 (1+sP )
N
wppzpn-yp [ 1
> TP/ Pglep P s
1 1+ sp/(p—l))"
5/£(p*1)/p 1

> o=/ P (2p—n=1)/p =
>coe e ) p/p1 ds,

where in the last inequality above we have used the fact that /(=D L sP/(P=D 4
sP/(P=1D_ Setting

o/P=D/p 1
.— (2p—n-1)/p
fe):=¢ ﬂ ol ds,
we have
1
Ki(e) <5 K1 = e D0 f (@) + 07D, (3.58)

To estimateK»(¢), notice that

1 hxy
Ko(e) = > K> — / dx// ul” dx, + O(VP)
(0,0) 0

D

1 A|x’\2 .
2—[(2—/ dx’f ul” dx, + 0"P)
2 D(0,5) 0
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and
AlX? |x’|2
/ dx// Mf dxéA&"/p/ =D dx/
D(0,5) 0 p@©,5) (€4 |x/|P/(P=D)
5
:As"/”/
0
=0("P).
Thus,
1 n—p)/
Ka(e)> 5 Ko = OG"~P/P). (3.59)

Letz, be such that

m%x Jy(tug) = J; (teue).
1>
From (3.55)—(3.59) we conclude thats uniformly bounded fok € (0, ¢,). Thus,

1 1 .
J; (teug) < sup{— tPKy(e)t? — — 17 Kg(s)} + 0(eP/PD)
>0 L P P

n/p
= E & + 0(8P/(P—l)).
n\ Ko(e)P/(r=1

Now we claim that

Ki(e)

—p/ng _ p/(p=1)
K2(8)p/(p_l)<2 S—0( ) (3.60)

for e small (that is sufficiently to show (3.46)). Indeed by (3.58)—(3.59), we see that (3.60)
is equivalent to

K1 1 n/p
5 cos"’/(”_l)f(s) < 2-[’/"5(51(2 — 0(8[7/([7—1))) + 0P/ P=D)y

- % SKSP" 4 0P/,

SincesS = Kl/K’z“/” we have that

K 1
71 —cot?/ PV f() < 5 Kat 0GP0, (3.61)

because lim., o f (¢) = co. Therefore, (3.60) is true. Thus, (3.46) holds in the gz&e n.
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Finally we are going to prove (3.35). To this end, notice that

K1,(e) = / |Vug|? dx
Q

S yg(n—p)v/pz/ 772 dx
r-1 0 (&+ [x|P/(p=Dy"/P

|x|7/P—1
= s“[ — dx
Q (1+ |x|p/(=Dym/p
= 0(&"),

whereo = (n — p)y/p%+yp —ny/p + (p — Ln/p. On the other hand, if > 1 we have

Ko, () := / u), dx
Q

_ =P/ pP—rn=p)/p+(p~Dn/p / !
o 1+ |x|p/(pfl))r(n_17)/17

— O (en=P)r/PP=r(1=p)/p+(p=Dn/py

Takingr = p — 1 andr = 1, we obtain, respectively andd. Sincev; € L>(Q), we have

“ 1
/ ul v,
Q

with r = p* — 1. Thus, we obtaily. O

dr < / " Ldx = (=PI PP=r=p)/p+(p=Dn/py
Q

Proof of Proposition 3.3 (conclusion. If p € [2, 3), fix g > 0 and consider the function
h: [0, +00) x [0, &9) — R defined byh (¢, &) = F(t, &) + G (t, &).
From (3.45) and (3.34), there exigts > 0 andC» > 0 such that
hy(t, &) <C1(t? + 17 + 1P 4 1) — Coat?" 71,

Since y < p*, there existstg >0 such thatr, <tg for all 0<e<ey, Whereh(z,, ¢) =
max >0 h(z, ). Thus,

hi(t, &) Shyto, €) = Fy(to, &) + G (to, &) < MaX Fy (1, &) + G (10, ©).-
From (3.34) we obtail; (g, £) = O (&) for somef) > 0. Thus, we obtain from (3.34) that
1
hj(t,e) < — SVP.
2n

Noting thatu € C1*(Q) (se€[12]) we obtainu, Vu € L. Thus, the cases< p < 2 and
3< p follow using the same argument as in Azorero—PEIThis completes the proof of
Proposition 3.3. O
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3.3. Proof of Theorem 1.2

Until this moment we have proved the existence of a local mininaymof energy func-
tional /; and we are ready to prove the existence of a second critical poift @fhich is
of the mountain pass type. Indeed, in view of Lemma 3.2 we can apply the Mountain-Pass
Theorem to obtain a sequenee,) in W7 (Q) suchthat/;(w,) — c(v;) andJAf(w,z) -0

in W—17"(Q). Now, we consider two cases.

Subcritical casep — 1< ¢ < p* — 1. In this case, since the embedding-?(Q) —
L7(Q) is compact the result follows easily.

Critical case ¢ = p* — 1. Here we are going to prove thaf satisfies theP )., ,)
condition, or there exists one solutian such that

Ji(wy) < J;(vy).

Since

1 1 *
—/Ianl”Jrilwnlp——*/ wy, —/ Wp@ =0, (1) + c(v;)
P Jao prJa Q

nd

al

"
/ |an|p+/b|wn|p_/ wI{l) _/ wiz¢:0n(1)||wn||1,ps
Q Q 0Q

by Sobolev embedding and Holder’s inequality, we obtain
1 1 »
; - F lwn ”1,[, <c(vy) + (0a(D) + C1||(P||L1)’(ag))||wn 1, p-
Consequently(w,) is bounded inW17(Q). Thus, we may extract a subsequence still

denoted byw,) such that

w, = w, weaklyin wir(Q,
w, — w, strongly inL?(Q);
w, — w, a.e.ong.

By a convergence result due to Lucio—Bocardo {S¢€heorem 2.J]we haveVw, — Vw
almost everywhere if2. Using this and standard argument it yields thraust be a critical
point of J,. We observe that =+ 0. In fact, by the definition of the weak solution, we obtain

if wffldxzf dex+/ pdo,.
Q Q o0

Makingn — +o0, we get a contradiction.
We shall have established the Theorem 1.2 if we prove the following:

Claim 3.2. J;(w) =c¢(v)), or J)(w) < J;(v)).

Applying the Brezis—Lieb , we obtain
IVwa [I” = IVw[” + [IV(wp — w)I” + 0 (1) (3.62)
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and
IIwnllzp* = Ilelzp* + llw, — WIIZ,,* + o, (D). (3.63)

From (3.62) and (3.63) we have

1 1 *
» lwn —wll” — = lwn — wll?” + J;(wn) = c(v)) + 0n (D). (3.64)

lwn — wll? — llwy — wl** 4+ TS w)w = T5wa)wy + 04 (D). (3.65)

Substituting (3.65) in (3.64) we obtain that

*

1 1 *
0n(1) +c(vy) = J)(w) + (— - —) lwn, — wIIZ,,*, (3.66)
p P
or let, |w, — w||i;* — [>0. If [ =0, the proof is finished. If not,> 0. By Sobolev
inequality, we get
lwp — wllp* < Slwp — wllg,p-
Thus,
1>8"P.

Returning to (3.66) we obtain

*

11 )
c(vy) = Jy(w) + P lwn — wll; » — 0 (1)

1 1
p P

1
> J(w) + = "7
n
1
> W) + o NS (3.67)
Since
1 }’l/
c(vy) < J;(vy) + > S,

we conclude Claim 3.2. This finishes the proof of Theorem 1.2.
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