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ABSTRACT. In this paper we study the existence of nontrivial
solutions for the following system of two coupled semilinear Pois-
son equations:

(S)


−∆u = g(v), v > 0 in Ω,
−∆v = f(u), u > 0 in Ω,
u = 0, v = 0, on ∂Ω,

where Ω is a bounded domain in R2 with smooth boundary ∂Ω,
and the functions f and g have the maximal growth which allow
us to treat problem (S) variationally in the Sobolev space H1

0(Ω).
We consider the case with nonlinearities in the critical growth
range suggested by the so-called Trudinger-Moser inequality.

1. INTRODUCTION

There has been recently a good amount of work on Hamiltonian systems of sec-
ond order involving elliptic equations defined in subsets of RN , N ≥ 3, see for
example [6–8]. In this paper we study some classes of such systems, when the
equations are defined in bounded subsets of R2. Limitations on the growth of the
nonlinearities vary substantially when we come to dimension two. As it is well
known, in dimensions N ≥ 3 the nonlinearities are required to have polynomial
growth at infinity, so that one can define associated functionals in Sobolev spaces.
Coming to dimension two, much faster growth is allowed for the nonlinearity.
In fact exponential growth can be handled, and the Trudinger-Moser estimates in
N = 2 replaces the Sobolev imbedding theorem used in N ≥ 3.



1038 D.G. DE FIGUEIREDO, J.M. DO Ó & B. RUF

The case of a single semilinear elliptic equation in bounded subsets of R2

has been investigated by several authors, see for example [2, 3, 5, 6]. It has been
observed that criticality in dimension two is connected with the imbedding of
H1

0(Ω) in an Orlicz space Lϕ when ϕ(t) = eαt2 − 1, see [1, 9]. This is analogous
to the phenomenon of criticality in dimension N ≥ 3 when it occurs at the value
of p (namely p = 2∗) such that the continuous imbedding of H1

0(Ω) into Lp,
p > 1 fails to be compact.

Our aim in this paper is then to establish the existence of solutions for the
following class of elliptic systems

(1.1)


−∆u = g(v), v > 0 in Ω,
−∆v = f(u), u > 0 in Ω,
u = 0, v = 0 on ∂Ω.

where Ω is a bounded open subset of RN , with smooth boundary ∂Ω and ∆ is
the Laplace operator. This class of problems allows a variational formulation.
More precisely, their weak solutions are the critical points of the associated energy
functional

(1.2)
I(u,v) =

∫
Ω∇u∇v dx −

∫
Ω[F(u)+G(v)]dx,

(u,v) ∈ E := H1
0(Ω)×H1

0(Ω),
where the functions F and G are the primitives of f and g, respectively. The
norm of u ∈ H1

0(Ω) is given by ‖u‖ := (
∫Ω |∇u|2 dx)1/2. The norm of an

element z = (u,v) in E is defined by ‖z‖ := (‖u‖2 + ‖v‖2)1/2.
Although system (1.1) above is a special case of a general Hamiltonian system,

it already contains the basic difficulties of the general case. Namely, the associated
functional I, given in (1.2), is strongly indefinite, and the nonlinearities f , g
treated in the present paper can have critical growth, see the definition below. We
believe that once we know how to overcome these difficulties in this special case,
more general cases can be treated by the same techniques.

Here we assume the following conditions:
(H1) f , g : [0,∞) → [0,∞) are continuous functions;
(H2) f(s) = o(s) and g(t) = o(t) near the origin;
(H3) there exist constants θ > 2 and t0 > 0 such that, for all t ≥ t0, one has

0 < θF(t) ≤ tf (t) and 0 < θG(t) ≤ tg(t);

(H4) there exists M > 0 and to > 0 such that, for all t ≥ to,

0 < F(t) ≤Mf(t) and 0 < G(t) ≤ Mg(t).
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Motivated by the so-called Trudinger-Moser inequality, which says that if u
is a H1

0(Ω) function, then the integral
∫Ω eu2 is finite, we say that g has subcritical

growth at +∞ if for all α > 0

(1.3) lim
t→+∞

g(t)
eαt2 = 0,

and g has critical growth at +∞ if there exists α0 > 0, such that

(1.4) lim
t→+∞

g(t)
eαt2 = 0 for all α > α0 and lim

t→+∞
g(t)
eαt2 = +∞ for all α < α0.

In the case of critical growth, we say that α0 is the critical exponent of g.

Theorem 1.1 (The subcritical case). If g has subcritical growth, f has subcrit-
ical or critical growth, and (H1)-(H3) are satisfied, (1.1) possesses a nontrivial weak
solution (u,v) ∈ E.

We denote by d the inner radius of the set Ω, that is, d is equal to the radius
of the largest open ball contained in Ω.

Theorem 1.2 (The critical case). If f and g have critical growth and (H1)-(H2)
and (H4) are assumed, and furthermore suppose that

(H5) limt→+∞ tf (t)e−αot
2 > 4/αod2 and limt→+∞ tg(t)e−αot

2 > 4/αod2;
then (1.1) possesses a nontrivial weak solution (u,v) ∈ E.

Remark 1.3.
(1) Condition (H4) is stronger than (H3), in the sense that (H4) implies (H3).
(2) It follows from (1.3) and (1.4) that, in any case, subcritical or critical, there

exist positive constants C and β such that

(1.5) f(t), g(t) ≤ Ceβt2
, ∀t ≥ 0.

(3) In the critical case, we shall need a more precise estimate, namely, given ε > 0,
there is a positive constant Cε such that

(1.6) f(t), g(t) ≤ Cεe(α0+ε)t2
, ∀t ≥ 0.

(4) Hypothesis (H5) implies that f and g are critical with critical exponent α0.

Remark 1.4.
(1) Theorem 1.2 is the extension to systems of Theorem 1.3 in [5]: indeed, con-

dition (H5) corresponds to condition (H7) in [5].
(2) In higher dimensions critical growth is given by powers. In [6–8] it was shown

that for N ≥ 5 the limiting powers of f and g in (1) form a ”critical hyper-
bola.” It would be of interest to find a related ”critical curve” in dimensions 2,
3 and 4. The critical case considered in Theorem 1.2 lies on the intersection
of this hypothetical curve with the diagonal.
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2. ABSTRACT FRAMEWORK

As mentioned in the introduction, the nonlinearities f and g are allowed to have
the maximal growth which allows to treat the problem by variational methods in
H1

0(Ω). This growth is given by the so-called Trudinger-Moser inequality, which
says:

(TM-1) If u ∈ H1
0(Ω), then

∫
Ω eu

2
< +∞, see N. Trudinger [14] (cf. also S.

Pohozaev [13].

(TM-2) sup‖u‖≤1

∫
Ω eβu

2
< +∞, for 0 ≤ β ≤ 4π , see J. Moser [11] (for a uni-

form bound for some β > 0, see also N. Trudinger [14]).
(TM-3) Let {un} ⊂ H1

0(Ω) with ‖un‖ ≤ 1 and un ⇀ u, and let α < 4π . Then,

for a subsequence,
∫
Ω eαu

2
n →

∫
Ω eαu

2
, see P.L. Lions [10] (adapting the

proof of Th. 1.6, p.197).

We now consider the functional I given in (1.2). Since we are interested in
positive solutions we define f and g to be zero on (−∞,0]. Under our assump-
tions we have

(i) I is well-defined, since by (5)

F(t) =
∫ t

0
f(s)ds ≤ c

∫ t
0
eβt

2 ≤ cteβt2 ≤ ce(β+δ)t2

(ii) I is C1 with

(2.1)

I′(u,v)(ϕ,ψ) =
∫
Ω[∇u∇ψ+∇v∇ϕ]dx −

∫
Ω[f (u)ϕ + g(v)ψ]dx,

for all (ϕ,ψ) ∈ E;

indeed, given un → u in H1
0(Ω) there exists a subsequence unk(x) and h ∈ H1

0
such that |unk| ≤ h(x) (this is seen using the same arguments as in the proof of
the Riesz-Fischer theorem, completeness of L2, see e.g. [4], Theorem IV.8). Then,
by (TM-1) we have eh2 ∈ L1, and then by the Lebesgue dominated convergence
theorem

∫Ω f(un)ϕ → ∫Ω f(u)ϕ, for all ϕ ∈ C∞0 .
Consequently, critical points of the functional I are precisely the weak solu-

tions of (1.1).

2.1. The Geometry of the Linking Theorem. We use the following nota-
tion:

E+ = {(u,u) | u ∈ H1
0(Ω)} and E− = {(u,−u) | u ∈ H1

0(Ω)}.
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Lemma 2.1. There exist ρ, σ > 0 such that I(z) ≥ σ , for all z ∈ S :=
∂Bρ ∩ E+.

Proof. From (H2), for given ε0 > 0, there exists r0 > 0 such that

f(t) ≤ 2ε0t,
g(t) ≤ 2ε0t,

for all t ≤ r0.

On the other hand, it follows from (1.5) that, for a given q > 2, there exists a
constant C1 > 0 such that

F(t) ≤ C1tq exp(βt2),

G(t) ≤ C1tq exp(βt2),
for all t ≥ r0.

From these two estimates we get

F(t) ≤ ε0t2 + C1tq exp(βt2),

G(t) ≤ ε0t2 + C1tq exp(βt2),
for all t ≥ 0,

which implies,

I(u,u) ≥
∫
Ω |∇u|2 dx − 2ε0

∫
Ωu2 − 2C1

∫
Ω |u|q exp(βu2)dx

≥
∫
Ω |∇u|2 dx − 2ε0

∫
Ωu2

− 2C1

(∫
Ω |u|qs

′
dx

)1/s′(∫
Ω exp(βsu2)dx

)1/s
,

where 1/s + 1/s′ = 1. Using the Trudinger-Moser inequality (TM-2),

∫
Ω exp(βsu2)dx =

∫
Ω exp

(
‖u‖2βs

(
u
‖u‖

)2
)
dx ≤ C,

if ‖u‖ ≤ δ, with δ > 0, such that βsδ2 ≤ 4π . So, by the Sobolev imbedding
theorem we obtain,

I(u,u) ≥ ‖u‖2 − c3ε‖u‖2 − c4‖u‖q.

Therefore, we can find ρ, σ > 0, ρ sufficiently small, such that I(u,u) ≥ σ > 0,
for ‖u‖ = ρ. ❐

Let y ∈ H1
0(Ω) be a fixed nonnegative function with ‖y‖ = 1 and

Qy = {r(y,y)+w | w ∈ E−, ‖w‖ ≤ R0 and 0 ≤ r ≤ R1}.
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Lemma 2.2. There exist positive constants R0, R1, which depend on y , such that
I(z) ≤ 0 for all z ∈ ∂Qy .

Proof. Notice that the boundary ∂Qy of the set Qy is taken in the space
R(y,y) ⊕ E−, and consists of three parts. On these parts the functional I is
estimated as follows:

(i) If z ∈ ∂Qy ∩ E−, we have I(z) ≤ 0 because, for all z = (u,−u) ∈ E−,

I(z) = −
∫
Ω |∇u|2 dx −

∫
Ω[F(u)+G(−u)]dx ≤ 0.

(ii) If z = R1(y,y)+ (u,−u) ∈ ∂Qy with ‖(u,−u)‖ ≤ R0,

I(z) = R2
1

∫
Ω |∇y|2 dx −

∫
Ω |∇u|2 dx(2.2)

−
∫
Ω[F(R1y +u)+G(R1y −u)]dx.

It follows from assumption (H3) that there exist constants c1, c2 > 0 such that

F(t), G(t) ≥ c1tθ − c2, for all t ≥ 0.

Let

ξ(t) =
{
tθ if t ≥ 0,
0 if t < 0.

We then obtain from (2.2) that

I(z) ≤ R2
1 −

∫
Ω[ξ(R1y +u)+ ξ(R1y −u)]dx + c3.

Now, using the convexity of ξ, it follows that

I(z) ≤ R2
1 − 2

∫
Ω ξ(R1y)dx + c3 = R2

1 − 2Rθ1
∫
Ωyθ dx + c3.

Finally taking R1 = R1(y) sufficiently large, we get I(z) ≤ 0.
(iii) If z = r(y,y)+ (u,−u) ∈ ∂Qy with ‖(u,−u)‖ = R0 and 0 ≤ r ≤ R1,

I(z) = r 2
∫
Ω |∇y|2 dx −

∫
Ω |∇u|2 dx −

∫
Ω[F(ry +u)+G(ry −u)]dx

≤ R2
1 −

1
2
R2

0.

Thus, I(z) ≤ 0 if
√

2R1 ≤ R0.
So, the geometry of the linking theorem holds. ❐
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2.2. On Palais-Smale Sequences.

Proposition 2.3. Let (um,vm) ∈ E such that
(I1) I(um,vm) = c + δm, where δm → 0 asm → +∞;
(I2) | I′(um,vm)(ϕ,ψ) |≤ εm‖(ϕ,ψ)‖, for ϕ, ψ ∈ {um,vm}, where εm → 0

as m→ +∞.
Then ‖um‖ ≤ C,∫

Ω f(um)um dx ≤ C,∫
Ω F(um)dx ≤ C,

‖vm‖ ≤ C,∫
Ω g(vm)vm dx ≤ C,∫

ΩG(vm)dx ≤ C.
Proof. Taking (ϕ,ψ) = (um,vm) in (I2), we have

(2.3)
∣∣∣∣2
∫
Ω∇um∇vm dx −

∫
Ω f(um)um dx −

∫
Ω g(vm)vm dx

∣∣∣∣
≤ εm‖(um,vm)‖,

which together with (I1) and hypothesis (H3), implies∫
Ω[f (um)um + g(vm)vm]dx

≤ 2
∫
Ω[F(um)+G(vm)]dx + 2c + 2δm + εm‖(um,vm)‖

≤ 2
θ

∫
Ω[f (um)um + g(vm)vm]dx + c1 + 2δm + εm‖(um,vm)‖,

where c1 depends only on c and t0 in hypothesis (H3). Thus, for some constant
c2, we obtain

(2.4)
∫
Ω[f (um)um + g(vm)vm]dx ≤ c2(1+ 2δm + εm‖(um,vm)‖).

Next taking (ϕ,ψ) = (vm,0) and (ϕ,ψ) = (0, um) in (I2) we have

‖vm‖2 − εm‖vm‖ ≤
∫
Ω f(um)vm dx,

‖um‖2 − εm‖um‖ ≤
∫
Ω g(vm)um dx.

Setting Um = um/‖um‖ and Vm = vm/‖vm‖ we have

‖vm‖ ≤
∫
Ω f(um)Vm dx + εm,(2.5)

‖um‖ ≤
∫
Ω g(vm)Um dx + εm.(2.6)
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We now rely on the following inequality whose proof is given in Lemma 2.4
below,

(2.7) st ≤

(et2 − 1)+ s(log s)1/2, for all t ≥ 0 and s ≥ e1/4,

(et
2 − 1)+ 1

2
s2, for all t ≥ 0 and 0 ≤ s ≤ e1/4.

By using inequality (2.7) (with t = Vm and s = f(um)/C, where C is the
constant appearing in (1.5)), estimate (1.5), and the Trudinger-Moser inequality,
we obtain

C
∫
Ω

1
C
f(um)Vm dx

≤ C
∫
Ω eV

2
m dx + C

∫
{x∈Ω|f(um)(x)/C≥e1/4}

1
C
f(um)

[
log

1
C
f(um)

]1/2
dx

+ 1
2

∫
{x∈Ω|f(um)(x)/C≤e1/4}

1
C2 [f (um)]

2 dx

≤ c3 + β1/2
∫
Ω f(um)um dx,

for some positive constant c3. This estimate together with (2.5) implies that, for
some constant c > 0, we have

(2.8) ‖vm‖ ≤ c
(

1+
∫
Ω f(um)um dx + εm

)
,

Using a similar argument we get from (2.6)

(2.9) ‖um‖ ≤ c
(

1+
∫
Ω g(vm)vm dx + εm

)
,

Now joining the estimates (2.8) and (2.9) and using (2.4) we finally obtain

‖(um,vm)‖ ≤ c(1+ δm + εm‖(um,vm)‖ + εm),

which implies that ‖(um,vm)‖ ≤ c. From this estimate, inequality (2.4) and as-
sumption (H3), we obtain the other estimates in the statement of the
proposition. ❐

Lemma 2.4. The following inequality holds

st ≤

(et2 − 1)+ s(log+ s)1/2, for all t ≥ 0 and s ≥ e1/4,

(et
2 − 1)+ 1

2
s2, for all t ≥ 0 and 0 ≤ s ≤ e1/4.
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Proof. For s > 0 given, consider supt≥0{ts − (et
2 − 1)}. Let ts denote the

(unique) point where the supremum is attained. Then s = 2tset
2
s . Consider now

three cases:

Case 1: ts ≥ 1
2 ; then s = 2tset

2
s ≥ et2

s , which implies (log s)1/2 ≥ ts . Thus

sup
t≥0
{ts − (et2 − 1)} ≤ tss − et2

s ≤ tss ≤ (log s)1/2s.

Case 2: 0 ≤ ts ≤ 1
2 and s ≥ e1/4; then sts ≤ s/2 and s/2 ≤ s(log+ s)1/2 iff

s ≥ e1/4.

Case 3: 0 ≤ ts ≤ 1
2 and s ≤ e1/4; in fact, the second inequality in (2.7) holds

always, since

ts ≤ 1
2
t2 + 1

2
s2 ≤ 1

2
(et

2 − 1)+ 1
2
s2.

Hence, the lemma is proved. ❐

2.3. Finite Dimensional Problem. Since the functional I is strongly indef-
inite and defined in an infinite dimensional space, no suitable linking theorem
is available. We therefore approximate problem (1.1) with a sequence of finite
dimensional problems (a Galerkin approximation procedure).

Associated with the eigenvalues 0 < λ1 < λ2 ≤ λ3 ≤ · · · ≤ λj → ∞ of
(−∆,H1

0(Ω)), there exists an orthonormal basis {ϕ1,ϕ2, . . . } of corresponding
eigenfunctions in H1

0(Ω). We set,

E+n = span{(ϕi,ϕi) | i = 1, . . . , n},
E−n = span{(ϕi,−ϕi) | i = 1, . . . , n},
En = E+n ⊕ E−n.

Let y ∈ H1
0(Ω) be a fixed nonnegative function with ‖y‖ = 1 and

Qn,y = {r(y,y)+w |w ∈ E−n, ‖w‖ ≤ R0, and 0 ≤ r ≤ R1},

where R0 and R1 are given in Lemma 2.2. We recall that these constants depend
of y only. We use the following notation:

Hn,y = R(y,y)⊕ En, H+n,y = R(y,y)⊕ E+n, H−n,y = R(y,y)⊕ E−n.

Furthermore, define the class of mappings

Γn,y = {h ∈ C(Qn,y ,Hn,y) | h(z) = z on ∂Qn,y}

and set
cn,y = inf

h∈Γn,y max
z∈Qn,y

I(h(z)).
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Using an intersection theorem (see Proposition 5.9 in [12]), we have

h(Qn,y)∩ (∂Bρ ∩ E+) ≠∅, ∀h ∈ Γn,y ,
which in combination with Lemma 2.1 implies that cn,y ≥ σ > 0. On the other
hand, an upper bound for the mini-max level cn,y can be obtained as follows.
Since the identity mapping Id : Qn,y → Hn,y belongs to Γn,y , we have for z =
r(y,y)+ (u,−u) ∈ Qn,y that

I(z) = r 2
∫
Ω |∇y|2 dx−

∫
Ω |∇u|2 dx−

∫
Ω[F(ry +u)+G(ry −u)]dx ≤ R2

1.

Therefore we have 0 < σ ≤ cn,y ≤ R2
1. We remark that the upper bound does

not depend of n, but it depends on y .
Let us denote by In,y the functional I restricted to the finite dimensional

subspace Hn,y . So, in view of Lemmas 2.1 and 2.2, we see that the geometry of
a linking theorem holds for the functional In,y . Therefore, applying the linking
theorem for In,y (see Theorem 5.3 in [12]), we obtain a (PS)-sequence, which is
bounded in view of Proposition 2.3. Finally, using the fact that Hn,y is a finite
dimensional space, we get the main result of this section.

Proposition 2.5. For each n ∈ N and for each y ∈ E, a fixed nonnegative
function with ‖y‖ = 1, the functional In,y , has a critical point at level cn,y . More
precisely, there is a zn,y ∈ Hn,y such that

In,y(zn,y) = cn,y ∈ [σ,R2
1], (In,y)′(zn,y) = 0.

Furthermore, ‖zn,y‖ ≤ C where C does not depend of n.

3. SUBCRITICAL CASE - PROOF OF THEOREM 1.1

In this section we assume that g has subcritical growth (see definition in (1.3)).
Let y ∈ E be a fixed nonnegative function with ‖y‖ = 1. Applying Proposi-

tion 2.5, we have a sequence zn,y ∈ Hn,y bounded in E and such that

In,y(zn,y) = cn,y ∈ [σ,R2
1],(3.1)

(In,y)′(zn,y) = 0,(3.2)

zn,y := (un,y , vn,y) ⇀ (uo, vo) in E,(3.3)

un,y → uo and vn,y → vo in Lq(Ω), ∀q ≥ 1,(3.4)

un,y(x)→ uo(x) and vn,y(x)→ vo(x) a.e. in Ω.(3.5)

Next, using Proposition 2.3 we conclude∫
Ω f(un,y)un,y dx ≤ C,

∫
Ω g(vn,y)vn,y dx ≤ C,(3.6) ∫

Ω F(un,y)dx ≤ C,
∫
ΩG(vn,y)dx ≤ C.(3.7)
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Taking as test functions (0,ψ) and (ϕ,0) in (3.2), where ϕ and ψ are arbi-
trary functions in Fn := span{ϕi | i = 1, . . . , n}, we get

∫
Ω∇un,y∇ψdx =

∫
Ω g(vn,y)ψdx, ∀ϕ ∈ Fn,(3.8) ∫

Ω∇vn,y∇ϕdx =
∫
Ω f(un,y)ϕdx, ∀ϕ ∈ Fn.(3.9)

Next, using (3.6) and an argument similar to the one used in Lemma 2.1 in
[6], we can prove that f(un,y) → f(uo) and g(vn,y) → g(uo) in L1(Ω). Thus,
taking the limit in (3.8) and (3.9) and using the fact that

⋃
n∈N Fn is dense in

H1
0(Ω), it follows that∫

Ω∇uo∇ψdx =
∫
Ω g(vo)ψdx,∫

Ω∇vo∇ϕdx =
∫
Ω f(uo)ϕdx,

∀ϕ,ψ ∈ H1
0(Ω).

Since f(uo), g(vo) ∈ L2(Ω) we conclude that uo, vo ∈ H2(Ω) and

−∆uo = g(vo) and −∆vo = f(uo)
in the strong sense.

Finally, it only remains to prove that uo and vo are nontrivial. Assume by
contradiction that uo ≡ 0. This implies that vo ≡ 0. Since g has subcritical
growth, we see that for all δ > 0 there exists Cδ > 0 such that

g(t) ≤ Cδeδt2
, ∀t ∈ R.

Now, using Hölder inequality we get

∣∣∣∣∫Ω g(vn,y)un,y dx
∣∣∣∣ ≤ Cδ|un,y |Lq′ |eδv2

n,y |Lq ≤ C̃δ|un,y |Lq′ ,

since by the Trudinger-Moser inequality (TM-2) we have

∣∣eδv2
n,y

∣∣q
Lq =

∫
Ω e

δqv2
n,y dx ≤ C.

Indeed, we can take δ and q such that qδ‖vn,y‖2 ≤ 4π . Now it follows from
(3.2) that ∫

Ω |∇un,y |2 dx =
∫
Ω g(vn,y)un,y dx ≤ C̃δ|un,y |Lq′ ,
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and so we conclude that un,y → 0 strongly in H1
0(Ω), because un,y → 0 in

Lq′(Ω). This implies that

(3.10) lim
n→+∞

∫
Ω∇un,y∇vn,y dx = 0.

Then we obtain by (3.2)

lim
n→+∞

∫
Ωun,yf (un,y)dx = 0 and lim

n→+∞

∫
Ω vn,yg(vn,y)dx = 0.

Using these limits and (H3) it follows that

(3.11) lim
n→+∞

∫
Ω F(un,y)dx = 0 and lim

n→+∞

∫
ΩG(un,y)dx = 0.

Observe that in this conclusion we have used the fact that∫
{x∈Ω|un,y (x)≤t0} F(un,y)dx → 0.

Finally, using (3.10) and (3.11) we see that cn,y → 0, which is a contradiction to
(3.1). Consequently, we have a nontrivial critical point of I, and thereby conclude
the proof of the Theorem 1.1.

4. CRITICAL CASE - PROOF OF THEOREM 1.2

In this section we assume that f and g have critical growth (see definition in
(1.4)).

Let d be the inner radius of Ω, that is, it is the radius of the largest open ball
contained in Ω. So Bd(x0) ⊂ Ω for some x0 ∈ Ω. We may assume that x0 = 0.

We start by introducing the following concentrating functions

yk(x) = ω̄k
(
x
d

)
, k ∈ N,

where

(4.1) ω̄k(x) = 1√
2π



(logk)1/2, |x| ≤ 1/k,

log(1/|x|)
(logk)1/2

, 1/k ≤ |x| ≤ 1,

0, |x| ≥ 1.

We also consider the sets

Qn,k := Qn,yk = {r(yk,yk)+w | w ∈ E−n, ‖w‖ ≤ R, and 0 ≤ r ≤ R1}.

Next we assume the following result, which will be proved later.
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Proposition 4.1. There exists k ∈ N such that

sup
R(yk,yk)⊕E−

I <
4π
α0
.

This proposition implies that there is δ > 0 such that for all n we have cn :=
cn,yk ≤ 4π/αo − δ, where cn,yk is defined in Proposition 2.5. In fact, in view
of Propositions 2.3, 2.5 and 4.1, there exists δ > 0 such that for each n we have
zn := zn,k ∈ Hn,k such that

‖zn‖ ≤ C in E,(4.2)

In,k(zn) = cn ∈
[
σ,

4π
αo

− δ
)
,(4.3)

(In,k)′(zn) = 0,(4.4)

zn := (un,vn) ⇀ (uo, vo) in E,(4.5)

un → uo and vn → vo in Lq(Ω), ∀q ≥ 1,(4.6)

un(x)→ uo(x) and vn(x)→ vo(x) a.e. in Ω.(4.7)

Using Proposition 2.3 we conclude

∫
Ω f(un)un dx ≤ C,

∫
Ω g(vn)vn dx ≤ C,(4.8) ∫

Ω F(un)dx ≤ C,
∫
ΩG(vn)dx ≤ C.(4.9)

Taking the test functions (0,ψ) and (ϕ,0) in (4.4),

∫
Ω∇un∇ψdx =

∫
Ω g(vn)ψdx, ∀ϕ ∈ Fn,(4.10) ∫

Ω∇vn∇ϕdx =
∫
Ω f(un)ϕdx, ∀ϕ ∈ Fn.(4.11)

Arguing as in the subcritical case, taking the limits in (4.10) and (4.11) and
using that

⋃
n∈N Fn is dense in H1

0(Ω), it follows that

∫
Ω∇uo∇ψdx =

∫
Ω g(vo)ψdx and

∫
Ω∇vo∇ϕdx =

∫
Ω f(uo)ϕdx,
∀ϕ,ψ ∈ H1

0(Ω).
So, it remains to prove that uo and vo are nontrivial. Assume by contradiction
that uo ≡ 0. This implies that vo ≡ 0. Now, if ‖un‖ → 0, then we get directly
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(4.15) below, and then a contradiction. Thus, assume that ‖un‖ ≥ b > 0, ∀n,
and consider

(4.12) ‖un‖2 =
∫
Ω g(vn)un dx.

Setting ūn = (4π/α0 − δ)1/2un/‖un‖, and using inequality (2.7) with s =
g(vn)/

√
α0 and t = √α0ūn we have

(
4π
α0

− δ
)1/2

‖un‖ =
∫
Ω g(vn)ūn dx

≤
∫
Ω(eα0ū2

n − 1)dx

+
∫
{x∈Ω|g(vn)(x)/√α0≥e1/4}

g(vn)√α0

[
log

(
g(vn)√α0

)]1/2

dx

+ 1
2

∫
{x∈Ω|g(vn)(x)/√α0≤e1/4}

[g(vn)]2

α0
dx.

Since ‖ūn‖2 = 4π/α0 − δ, we know by (TM-3) that the first term tends to zero,
while the third term tends to zero by Lebesgue’s dominated convergence theorem.
Using Remark 1.3(3) we can estimate the second term by

∫
Ω

1√
α0
g(vn)

(
log

(
Cε√
α0
e(α0+ε)v2

n

))1/2

≤ 1√
α0

∫
Ω g(vn)

log

(
Cε√
α0

)1/2

+ (α0 + ε)1/2vn


≤ o(1)+
(

1+ ε
α0

)1/2 ∫
Ω g(vn)vn,

and hence we obtain

(4.13)
(

4π
α0

− δ
)1/2

‖un‖ ≤ o(1)+
(

1+ ε
α0

)1/2 ∫
Ω g(vn)vn dx.

Repeating the same argument with

‖vn‖2 =
∫
Ω f(un)vn dx,

we see that also

(4.14)
(

4π
α0

− δ
)1/2

‖vn‖ ≤ o(1)+
(

1+ ε
α0

)1/2 ∫
Ω f(un)un dx.
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Since

lim
n→+∞

∫
Ω F(un)dx = 0 and lim

n→+∞

∫
ΩG(un)dx = 0,

we conclude from (4.3) that

∣∣∣∣∫Ω∇un∇vn dx
∣∣∣∣ ≤ o(1)+ 4π

α0
− δ,

which together with (4.4) implies that

∫
Ω f(un)un dx +

∫
Ω g(vn)vn dx ≤ o(1)+ 2

(
4π
α0

− δ
)
.

So, from (4.13)-(4.14) we obtain

‖un‖ + ‖vn‖ ≤ o(1)+ 2
(

1+ ε
α0

)1/2 (4π
α0

− δ
)1/2

≤ 2
(

4π
α0

− δ
2

)1/2

,

for ε > 0 sufficiently small and n sufficiently large. It follows that there is a
subsequence of (un) or (vn) (without loss of generality assume it is (vn)) such
that

‖vn‖ ≤
(

4π
α0

− δ
2

)1/2

.

Thus, using (1.6) with ε > 0 and the Hölder inequality with q > 1 such that
(α0 + ε)(4π/α0 − δ/2)q ≤ 4π , we get

∣∣∣∣∫Ω g(vn)vn dx
∣∣∣∣ ≤ Cε|vn|Lq′ |e(α0+ε)v2

n|Lq ≤ C|vn|Lq′ .

Since |vn|Lq′ → 0 we conclude by (4.12) that un → 0 strongly in H1
0(Ω), and

hence

(4.15) lim
n→+∞

∫
Ω∇un∇vn dx = 0.

By (3.10) and (3.11) we conclude that cn → 0, which is a contradiction to (4.3).

4.1. On the mini-max level – Proof of Proposition 4.1.

Proof. Suppose by contradiction that for all k,

sup
R(yk,yk)⊕E−

I ≥ 4π
α0
.
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So, for all fixed k, there exists δn → 0 as n→∞ and

ηn,k = τn,k(yk,yk)+ (un,k,−un,k) ∈ Qn,k

such that

I(ηn,k) ≥ 4π
α0

− δn.

Let h : [0,∞) → R, h(t) := I(tηn,k); as h(0) = 0 and limt→+∞ h(t) = −∞,
there exists a maximum point t̄ηn,k with I(t̄ηn,k) ≥ 4π/α0 − δn. We may
assume that ηn,k is this point, and thus I′(ηn,k)ηn,k = 0. Let us write in detail
I(ηn,k) ≥ 4π/α0 − δn and I′(ηn,k)ηn,k = 0:

(4.16) τ2
n,k −

∫
Ω |∇un,k|2 −

∫
Ω[F(τn,kyk +un,k)+G(τn,kyk −un,k)]

≥ 4π
α0

− δn;

(4.17) τ2
n,k −

∫
Ω |∇un,k|2

=
∫
Ω[f (τn,kyk +un,k)(τn,kyk +un,k)+ g(τn,kyk −un,k)(τn,kyk −un,k)].

From (4.16), we get 4π/α0+sn,k := τ2
n,k ≥ 4π/α0−δn. From (H5), there exists

β0 > 4/α0d2 such that

(4.18) lim
t→+∞

tf (t)e−αot
2 ≥ β0 and lim

t→+∞
tg(t)e−αot

2 ≥ β0.

So, given ε > 0, there exists Rε such that

tf (t), tg(t) ≥ (β0 − ε)eα0t2
for all t ≥ Rε.

Next, choosing k sufficiently large such that τn,k(logk/2π)1/2 ≥ Rε, we get that
max{τn,kyk +un,k, τn,kyk −un,k} ≥ Rε for all x ∈ Bd/k(0). So, on Bd/k(0),

4π
α0

+ sn,k ≥ (β0 − ε)
∫
Bd/k(0)

eα0τ2
n,k logk/2π(4.19)

≥ (β0 − ε)πd
2

k2 e
α0(4π/α0+sn,k) logk/2π

= (β0 − ε)πd2eα0sn,k logk/2π.
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Note that by (4.16) we have for each fixed k, limn→∞ sn,k → s0,k ≥ 0, and then
(4.19) implies that s0,k = 0. Thus we see that

4π
α0

≥ (β0 − ε)πd2.

This contradicts (4.18), since ε > 0 is arbitrary. ❐
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