

Universidade Federal da Paraíba CCEN - Departamento de matemática http://www.mat.ufpb.br

Lista de Exercícios Nº 2 : Introdução à Álgebra Linear

Prof.: Pedro A. Hinojosa

- **1** Seja $\mathcal{B} := \{(2,1), (-1,2)\} \subseteq \mathbb{R}^2$. Mostre que \mathcal{B} é uma base para \mathbb{R}^2 e calcule $[(5,-2)]_{\mathcal{B}}$.
- **2** Em \mathbb{R}^2 considere os vetores u=(a,b) e v=(c,d) tais que ac+bd=0 e $a^2+b^2=c^2+d^2=1$. Mostre que $\mathcal{B}=\{u,v\}$ é uma base para \mathbb{R}^2 .
- **3** Sejam \mathcal{B}_1 e \mathcal{B}_2 duas bases de \mathbb{R}^2 . Se $\mathcal{B}_2 = \{(1,3),(2,-4)\}$ e $[I]_{\mathcal{B}_1}^{\mathcal{B}_2} = \begin{pmatrix} -7 & 6 \\ -11 & 8 \end{pmatrix}$, Determine a base \mathcal{B}_1 .
- **4** Sejam $\mathcal{B}_1 := \{v_1, v_2, v_3\}$ e $\mathcal{B}_2 = \{w_1, w_2, w_3\}$ duas bases ordenadas de \mathbb{R}^3 tais que :

$$\begin{aligned}
 w_1 &= v_1 + v_2 \\
 w_2 &= 2v_1 + v_2 + v_3 \\
 w_3 &= v_1 + 2v_2 + v_3.
 \end{aligned}$$

Determine as matrizes de mudança de base $[I]_{\mathcal{B}_1}^{\mathcal{B}_2}$ e $[I]_{\mathcal{B}_2}^{\mathcal{B}_1}$.

- **5** Seja $P_3(\mathbb{R})$ o espaço vetorial real dos polinômios de grau menor ou igual a 3 com coeficientes reais. Mostre que o conjunto $\mathcal{B} := \{1, 1-x, (1-x)^2, (1-x)^3\}$ é uma base para $P_3(\mathbb{R})$ e calcule $[3-2x+x^2]_{\mathcal{B}}$.
- **6** Seja M(2) o espaço das matrizes 2×2 sobre \mathbb{R} e seja W o subespaço gerado por: $\begin{pmatrix} 3 & 4 \\ 0 & -1 \end{pmatrix}$, $\begin{pmatrix} 1 & 1 \\ 3 & 2 \end{pmatrix}$, $\begin{pmatrix} 4 & 5 \\ 3 & 1 \end{pmatrix}$ e $\begin{pmatrix} 0 & 3 \\ 2 & -1 \end{pmatrix}$.

Encontre uma base e a dimensão de W

- 7 Seja $W := \{(x, y, z) \in \mathbb{R}^3 : x y + 2z = 0\} \subseteq \mathbb{R}^3.$
- (a) Mostre que W é um subespaço de \mathbb{R}^3 ;
- (b) Encontre um subespaço V de \mathbb{R}^3 tal que $V \oplus W = \mathbb{R}^3$;
- (c) Dê exemplos de dois subespaços $V, W \subseteq \mathbb{R}^3$, de dimensão 2, tais que $V + W = \mathbb{R}^3$. A soma é direta?
- 8 Sejam $V := \{(x, y, z, t) \in \mathbb{R}^4 : x + y = 0, z = t\}$ $eW := \{x y z + t = 0\}$ subespaços $de \mathbb{R}^4$. Determine $V \cap W$ eV + W. Encontre bases para $V \cap W$ eV + W. $\mathbb{R}^4 = V \oplus W$?