

Universidade Federal da Paraíba CCEN - Departamento de Matemática Pós-Graduação em Matemática

http://www.mat.ufpb.br/~pgmat

Geometria Diferencial

Turma: Mestrado 1ª Prova, João Pessoa, 17 de novembro de 2006

Prof. Pedro A. Hinojosa

Nome:	Matrícula:
Nome:	Matricula:

Questão 1 Seja S uma superfície regular. Mostre que a curvatura média H num ponto $p \in S$ é dada por: $H = \frac{1}{\pi} \int_0^{\pi} k_n(\theta) d\theta$ onde $k_n(\theta)$ é a curvatura normal em $p \in S$ ao ,longo de uma direção que faz um ângulo θ com uma direção fixa

Questão 2 Sejam $\lambda_1, \lambda_2, ..., \lambda_n, n > 2$, as curvaturas normais em $p \in S$ ao longo de direções que fazem angulos $0, \frac{2\pi}{n}, ..., (n-1)\frac{2\pi}{n}$ com uma direção principal. Prove que: $\lambda_1 + \lambda_2 + ... + \lambda_n = nH$ onde H é a curvatura média em p.

Questão 3 O gradiente de uma funçõa diferenciável $f: S \to \mathbb{R}$ é uma aplicação diferenciável grad $f: S \to \mathbb{R}^3$ que associa a cada ponto $p \in S$ um vetor $grad f(p) \in T_p S \subset \mathbb{R}^3$ tal que

$$< grad f(p), v>_p = df(p)v \qquad \forall v \in T_p S$$

Prove que:

a) se E, F e G são os coeficientes da primeira forma fundamental numa parametrização $X: U \to S$, então grad f sobre X(U) é dado por:

$$grad f = \frac{f_u G - f_v F}{EG - F^2} X_u + \frac{f_v E - f_u F}{EG - F^2} X_v.$$

Em particular, se $S = \mathbb{R}^2$ com coordenadas x, y, então grad $f = f_x e_1 + f_y e_2$ onde $\{e_1, e_2\}$ é a base canônica de \mathbb{R}^2 ;

- b) se fixamos $p \in S$ e fazemos variar v no círculo unitário de T_pS (||v|| = 1), então df(p) é máximo se, e só se, $v = \frac{grad \ f}{||grad \ f||}$;
- c) se grad $f \neq 0$ em todos os pontos de uma curva de nível $C = \{q \in S : f(q) = cte.\}$, então C é uma curva regular em S e grad f é normal a C em todos os seus pontos.

Questão 4 Seja S uma superfície regular compacta em \mathbb{R}^3 . Mostre que:

- a) S tem um ponto elíptico.
- b) S não pode ser uma superfície mínima.

Questão 5 Seja $F: \mathbb{R}^3 \to \mathbb{R}^3$ a aplicação definida por F(p) = cp, onde $p \in \mathbb{R}^3$ e c é uma constante positiva. Sejam $S \subset \mathbb{R}^3$ uma superfície regular e $\overline{S} := F(S)$. Mostre que \overline{S} é uma superfície regular e encontre fórmulas relacionando as curvaturas média e gaussiana, $H \in K$, de S com as curvaturas respectivas, $\overline{H} \in \overline{K}$ de \overline{S} .