36. Para cada uma das funções f definidas abaixo, comprove a existência da função inversa g, determine o domínio desta última e uma expressão que a defina explicitamente. Esboce, ainda, o gráfico de f e o de g.

36a)
$$f(x) = \frac{x^2}{x^2 + 1}, x \ge 0$$
 36b) $f(x) = \frac{x^2}{x^2 + 1}, x \le 0$ **36c)** $f(x) = x^2 - 4, x \le 0$

36d)
$$f(x) = x^2 - 4, x \ge 0$$
 36e) $f(x) = -\sqrt{1-x}, x \le 1$ **36f)** $f(x) = \frac{x}{x+1}, x > -1$

37. Por meio de restrições adequadas, faça com que cada uma das funções dadas abaixo gere duas funções invertíveis f_1 e f_2 , determinando, em seguida, as respectivas inversas g_1 e g_2 . Calcule as derivadas dessas inversas e esboce os gráficos das funções f_i e g_i , i=1,2, em cada caso.

a)
$$y = x^2 - 2x - 3$$
 b) $y = -x^2 + x + 2$ **c)** $y = \sqrt{1 - x^2}$ **d)** $y = -\sqrt{4 - x^2}$

- **38.** Verifique que a função $y = f(x) = \frac{x}{\sqrt{1+x^2}}$, definida para todo x real, tem como inversa a função $x = g(y) = \frac{y}{\sqrt{1-y^2}}$, definida para |y| < 1.
- **39.** Qual é a inversa da função $f(x) = \frac{1}{x}$? E da função $f(x) = \frac{x}{x+1}$? Especifique os domínios e as imagens, esboçando, também, os gráficos.
- **40.** Considere a função $y = f(x) = x^2 x 2$, definida para $x \ge 1/2$, e seja x = g(y) sua inversa.
 - a) Qual o domínio e qual a imagem de g?
 - **b)** Sabendo-se que g(-2) = 1, calcule g'(-2).
- **41.** Considere as funções $f(x) = arctgx + arctg\left(\frac{1}{x}\right)$ e g(x) = arcsenx + arccosx, definidas, respectivamente, para x > 0 e para $x \in [-1,1]$.
 - **a)** Mostre que $f'(x) = 0, \forall x > 0, \text{ e que } g'(x) = 0, \forall x \in (-1, 1).$
 - **b)** Lembrando que as funções constantes são as que possuem derivada nula, mostre que $f(x) = \frac{\pi}{2}, \forall x > 0$, e que $g(x) = \frac{\pi}{2}, \forall x \in [-1, 1]$.
- **42.** Se f é uma função derivável, tal que f(2) = 1 e f'(2) = 1/2, determine a equação da reta tangente à curva y = arctg(f(x)), no ponto de abscissa x = 2.
- **43.** Sabendo-se que no ponto (0,1) o gráfico da função $f(x) = e^{x^2 + 2x}$ possui a mesma reta tangente que o de uma certa função g, determine g'(0).
- **44.** Se f é uma função derivável, tal que f'(x) = 2xf(x), mostre que a função g dada por $g(x) = \frac{f(x)}{e^{x^2}}$ é constante.

45. Para cada uma das funções definidas abaixo, determine o domínio e calcule a derivada de primeira ordem.

45a)
$$f(x) = ln(\sqrt{5-x^2})$$
 45b) $f(x) = ln(sen x)$

$$5b) \quad f(x) = \ln(sen x)$$

$$45c) f(x) = x \ln x - x$$

$$45d) \quad f(x) = \ln|x|$$

45d)
$$f(x) = ln |x|$$
 45e) $f(x) = \frac{1}{lnx}$

$$45f) \quad f(x) = \ln(\ln x)$$

45g)
$$f(x) = ln\left(\sqrt{\frac{2-x}{3-x}}\right)$$
 45h) $f(x) = ln(cos(3x+5))$ **45i)** $f(x) = sen(ln(2x+3))$

45h)
$$f(x) = ln(cos(3x+5))$$

45i)
$$f(x) = sen(ln(2x + 3))$$

- **46.** Considere a função $f(x) = ln(x^2 + 1)$.
 - a) Qual é o domínio de f?
 - b) Qual é a equação da reta tangente ao gráfico de f, no ponto de abscissa -1? E no ponto de abscissa 0?
- 47. O logaritmo de um número N > 0, numa base $0 < b \ne 1$, é definido por meio da equivalência

$$log_b N = a \iff b^a = N$$
.

- a) Prove a propriedade de Mudança de Base: $\log_b N = \frac{\ln N}{\ln b}$.
- **b)** Se f é a função definida por $f(x) = \log_b x$, para x > 0, mostre que $f'(x) = \frac{1}{v \ln h}$.
- 48. Calcule a derivada de primeira ordem de cada uma das funções abaixo.

48a)
$$f(x) = e^{sen x}$$

48b)
$$f(x) = e^{x^2}$$

48c)
$$f(x) = (e^x)^2$$

48d)
$$f(x) = 3^{-x}$$

48e)
$$f(x) = x^x$$

48f)
$$f(x) = x^{(x^x)}$$

48g)
$$f(x) = (x^x)^x$$

48h)
$$f(x) = x^2 3^{x \, sen \, x}$$

48i)
$$f(x) = 2^{x^x}$$

49. As funções trigonométricas hiperbólicas - seno hiperbólico, cosseno hiperbólico, tangente hiperbólica e cotangente hiperbólica – denotadas, respectivamente, por senh, cosh, tgh e cotgh, são definidas pelas expressões abaixo:

$$senhx = \frac{e^x - e^{-x}}{2}$$

$$coshx = \frac{e^x + e^{-x}}{2}$$

$$tghx = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

$$senhx = \frac{e^{x} - e^{-x}}{2} \qquad coshx = \frac{e^{x} + e^{-x}}{2} \qquad tghx = \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}} \qquad cotghx = \frac{e^{x} + e^{-x}}{e^{x} - e^{-x}}$$

Com base nessas definições, mostre que:

a)
$$(coshx)^2 - (senhx)^2 = 1$$
 b) $\lim_{x \to 0} \frac{senhx}{x} = 1$

b)
$$\lim_{x \to 0} \frac{senh x}{x} =$$

c)
$$(senh x)' = cosh x$$

$$d) \left(\cosh x \right)' = senh x$$

d)
$$(\cosh x)' = \sinh x$$
 e) $(tghx)' = 1/(\cosh x)^2$

$$f) (cotghx)' = -1/(senhx)^2$$

50. Para cada uma das funções dadas abaixo, calcule o limite quando $x \mapsto 0$.

$$a) f(x) = \frac{sen2x}{2}$$

$$b) f(x) = \frac{sen x}{3x}$$

$$c) f(x) = \frac{tgx}{sen x}$$

$$\mathbf{d)} \ f(x) = \frac{\cos 2x}{1 + sen x}$$

d)
$$f(x) = \frac{\cos 2x}{1 + \sin x}$$
 e) $f(x) = \frac{\sin (x^2)}{x}$

$$f(x) = \frac{sen(2x^2)}{3x}$$

$$g) f(x) = \frac{sen(x^3)}{x^3}$$

g)
$$f(x) = \frac{sen(x^3)}{x^3}$$
 h) $f(x) = \frac{x sen x}{sen(2x^2)}$

i)
$$f(x) = \frac{(sen x)(sen 2x)}{x sen 3x}$$

- **51.** Uma partícula se move de modo que, no instante t, a distância percorrida é dada por $s(t) = \frac{t^3}{2} - t^2 - 3t$.
 - a) Encontre as expressões que fornecem a velocidade e a aceleração da partícula.
 - b) Em que instante a velocidade é zero?
 - c) Em que instante a aceleração é zero?
- **52.** Uma partícula move-se sobre a parábola $y = x^2$. Sabendo-se que suas coordenadas x(t) e y(t) são funções deriváveis, em que ponto da parábola elas deslocam-se à mesma taxa?
- **53.** Um ponto move-se ao longo da curva $y = \frac{1}{x^2 + 1}$, de tal modo que sua abscissa x varia a uma velocidade constante de 3cm/s. Qual será a velocidade da ordenada y, quando $x = 2 \,\mathrm{cm}$?
- **54.** Um ponto move-se sobre a parábola $y = 3x^2 2x$. Supondo-se que suas coordenadas x(t) e y(t) são funções deriváveis e que $x'(t) \neq 0$, em que ponto da parábola a velocidade da ordenada y será o triplo da velocidade da abscissa x?
- 55. Um cubo se expande de modo que sua aresta varia à razão de 12,5 cm/s. Encontre a taxa de variação de seu volume, no instante em que a aresta atinge 10cm de comprimento.
- 56. Uma esfera aumenta de modo que seu raio cresce à razão de 2,5 cm/s. Quão rapidamente varia seu volume no instante em que o raio mede 7,5cm? (Obs.: O volume de uma esfera de raio r é dado por $\frac{4}{3}\pi r^3$)
- 57. Sejam x e y os catetos de um triângulo retângulo e θ o ângulo oposto a y. Supondo-se que x = 12 e que θ decresce à razão de 1/30 rad/s, calcule y'(t) quando $\theta = \pi/3$.
- 58. Uma escada de 8m está encostada em uma parede vertical. Se a extremidade inferior da escada for afastada do pé da parede a uma velocidade constante de 2m/s, com que velocidade a extremidade superior estará descendo no instante em que a inferior estiver a 3m da parede?

- **59.** Uma viga medindo 30m de comprimento está apoiada numa parede e o seu topo está se deslocando a uma velocidade de 0,5m/s. Qual será a taxa de variação da medida do ângulo formado pela viga e pelo chão, quando o topo da viga estiver a uma altura de 18m?
- **60.** A Lei de Boyle para a dilatação dos gases é dada pela equação PV = C, onde P é a pressão, medida em Newtons por unidade de área, V é o volume e C é uma constante. Num certo instante, a pressão é de $3.000\,N/m^2$, o volume é de $5\,m^3$ e está crescendo à taxa de $2\,m^3/{\rm min}$. Qual é a taxa de variação da pressão nesse instante?

 $\phi \phi \phi \phi$