

UNIVERSIDADE FEDERAL DA PARAÍBA

CCEN - Departamento de Matemática

http://www.mat.ufpb.br

Cálculo I - Lista de Exercícios N^o 05

Prof.: Pedro A. Hinojosa

- **1** Justifique sua resposta. É possível que uma função $f: \mathbb{R} \to \mathbb{R}$ verifique, ao mesmo tempo, as três propriedades seguintes:
 - (i) $f(x) > 0, \forall x \in \mathbb{R}$, (ii) $f'(x) < 0, \forall x \in \mathbb{R}$, (iii) $f''(x) < 0, \forall x \in \mathbb{R}$.
- ${\bf 2} \ \ Em \ cada \ caso, \ esboce \ o \ gr\'afico \ de \ uma \ funç\~ao \ com \ todas \ as \ propriedades \ do \ enunciado.$
- (a) f(0) = 0, f(2) = f(-2) = 1, f'(0) = 0, f(x) > 0 para x > 0, f'(x) < 0, para x < 0, f''(x) > 0 para |x| < 2, f''(x) < 0 para |x| > 2 $\lim_{x \to +\infty} f(x) = 2$, $\lim_{x \to -\infty} f(x) = 2$
- $\begin{array}{lll} (b) \ \ f(2) = 4, & f'(x) > 0 \ \ para \ x < 2, & f'(x) < 0 & para \ x > 2, \\ f''(x) > 0 \ \ para \ x \neq 2, & \lim_{x \to 2} |f'(x)| = \infty, & \lim_{x \to +\infty} f(x) = 2, & \lim_{x \to -\infty} f(x) = 2. \end{array}$
- **3** Determine A de modo que $y = x^3 Ax^2 + 1$ tenha um ponto de inflexão em x = 1.
- 4 Determine pontos de máximos e mínimos locais, pontos de inflexão, intervalos de crescimento e decrescimento, assíntotas e esboçe o gráfico das funções abaixo:

(a)
$$f(x) = \frac{4x^2}{x^2 + 3}$$
, (b) $f(x) = \frac{9}{x^2 - 9}$, (c) $f(x) = \frac{1}{x^2} - \frac{1}{x}$, (d) $f(x) = x^4 - 2x^2$,

(e)
$$f(x) = x^3 + 3x^2 + 5$$
; (f) $f(x) = \frac{1}{x^2 + x}$, (g) $f(x) = 3x^5 - 5x^4$, (h) $\frac{x}{(x-4)^2}$.

- 5 Determine uma função F(x) cuja derivada seja f(x) = 4x + 3. A função F(x) é única?
- **6** Verifique que a função $y = xe^{-x}$ satisfaz a equação xy' = (1-x)y.
- 7 Suponha que a equação F(x,y)=0 abaixo define, em cada caso, y como função de x. Calcule y'.

(a)
$$F(x,y) = x^3 + y^3 - 8$$
, (b) $F(x,y) = \sqrt{x} - \sqrt{y}$, (c) $F(x,y) = xy - \tan(xy)$.

- 8 Determine as retas tangentes e normal à circunferência de centro (2,0) e raio 2, nos pontos en que x=1.
- **9** Um tren deixa uma estação, num certo instante, e vai para a direção norte à razão de $80\frac{km}{h}$. Um segunda tren deixa a mesma estação 2 horas depois e vai na direção leste à razão de $95\frac{km}{h}$. Ache a taxa na qual estão se separando os dois trens 2 horas e 30 minutos depois do segundo trem deixar a estação.
- 10 Um liquido goteja num recipiente. Após t horas, há $5t \sqrt{t}$ litros de água no recipiente. Qual a taxa de gotejamento de liquido no recipiente, em uma hora, quando t=16 horas?