

## Universidade Federal da Paraíba CCEN - Departamento de matemática http://www.mat.ufpb.br

## 1<sup>a</sup> Prova: Cálculo Vetorial e Geometria Analítica

João Pessoa, 15 de agosto de 2023 Prof.: Pedro A. Hinojosa

| Nome:   | Matrícula: |
|---------|------------|
| Tionic: |            |

- **1 (2 pts.)** Seja ABCD um paralelogramo e seja G o ponto de interseção das diagonais. Sabendo que A = (2, -1, -5), B = (-1, 3, 2) e G = (4, -1, 7). Determine os vértices C e D.
- **2 (2 pts.)** Dados os pontos A = (1, 2, 0), B = (1, 2, 3) e C = (-1, -2, 2) determine as coordenadas de um ponto D de modo que os pontos A, B, C e D sejam coplanares e o vetor  $\overrightarrow{AD}$  seja ortogonal ao vetor  $\overrightarrow{AB}$ .
- **3 (2 pts.)** Sabe-se que o vetor  $\overrightarrow{v}$  é ortogonal aos vetores [1,1,0] e [-1,0,1]. Além disso,  $||\overrightarrow{v}|| = 2$  e se  $\theta$  é o ângulo entre os vetores  $\overrightarrow{v}$  e  $\overrightarrow{j}$ , então  $\cos(\theta) > 0$ . Determine o vetor  $\overrightarrow{v}$
- **4 (2 pts.)** Calcule o valor de t para que o volume do paralelepípedo determinado pelos vetores  $\overrightarrow{u} = [0, -1, 2], \ \overrightarrow{v} = [-4, 2, -1]$  e  $\overrightarrow{w} = [3, t, -2]$  seja igual a 33.
- **5 (2 pts.)** Considere os vetores  $\overrightarrow{a} = \frac{1}{\sqrt{3}}[1,1,1]$ ,  $\overrightarrow{b} = \frac{1}{\sqrt{2}}[1,0,-1]$   $\overrightarrow{e}$   $\overrightarrow{c} = \frac{1}{\sqrt{6}}[1,-2,1]$ . Verifique que eles formam uma base ortonormal e escreva o vetor  $\overrightarrow{v} = 3\overrightarrow{i} 2\overrightarrow{j} + \overrightarrow{k}$  como combinação linear dos vetores  $\overrightarrow{a}$ ,  $\overrightarrow{b}$   $\overrightarrow{e}$   $\overrightarrow{c}$ .

Boa Prova.

$$A = (2,-1,-5)$$
,  $B = (-4,3,2)$ ,  $G = (4,-1,7)$ 

Grépto médio de AC e de BD

Se 
$$C = (x, y, z)$$
, então  $G = \left(\frac{x+z}{2}, \frac{y-1}{2}, \frac{z-5}{2}\right)$ 

Dai

$$\frac{2+2}{2}=4$$
,  $\frac{3-1}{2}=-1$ ,  $\frac{2-5}{2}=7$ 

$$x=b$$
,  $y=-1$  e  $z=19$ 

Analogamente, supondo D=(r,s,t) temos

$$G = \begin{pmatrix} \frac{n-1}{2}, \frac{5+3}{2}, \frac{++2}{2} \end{pmatrix} : \frac{n-1}{2} = 4$$

Dai  $\pi = 9$ , s = -5, t = 12

$$D = (9, -5, 12)$$

2 
$$A = (1.2,0)$$
,  $B = (1.2,3)$ ,  $C = (-1,-2,2)$   
Determinan D de modo que  
 $A,B,C \in D$  sejam coplanares e  $\overrightarrow{AD} \perp \overrightarrow{AB}$ 

Suponha 
$$D = (x, y, 2)$$
.

$$\overrightarrow{AD} = \begin{bmatrix} \chi - 1, \chi - 2, \chi \end{bmatrix}$$
,  $\overrightarrow{AB} = \begin{bmatrix} 0, 0, 3 \end{bmatrix}$   
 $\overrightarrow{AD} \perp \overrightarrow{AB} \Rightarrow \chi = 0$ 

A,B,C,D coplanares  $\iff$   $\overrightarrow{AB}$ ,  $\overrightarrow{AC} \in \overrightarrow{AD}$  são e.d.  $\overrightarrow{AC} = [-2, -4, 2]$ 

$$\overrightarrow{AB}$$
,  $\overrightarrow{AC}$ ,  $\overrightarrow{AD}$  e.d.  $\iff$   $det \begin{pmatrix} 0 & 0 & 3 \\ -2 & -4 & 2 \\ x-1 & j-2 & 0 \end{pmatrix} = 0$ 

$$(=)$$
 -6(y-2) + 12(x-1) =0

Assim, um pto D que venfice as condições é

Nete caso, D= A.

com x=2, por exemplo, obtenios D=(2,4,0)

$$\overrightarrow{r} \perp \begin{bmatrix} 1 & 1 & 1 & 0 \end{bmatrix} \Rightarrow \lambda + \overrightarrow{j} = 0 \longrightarrow \overrightarrow{j} = -\lambda$$

$$\overrightarrow{r} \perp \begin{bmatrix} -1 & 0 & 1 \end{bmatrix} \Rightarrow -\lambda + 2 = 0 \longrightarrow \overline{z} = \lambda$$

$$||\overrightarrow{r}|| = 2 \Rightarrow \sqrt{\lambda^2 + y^2 + 2^2} = \lambda$$

$$\Rightarrow \sqrt{\lambda^2 + (-\lambda)^2 + \lambda^2} = 2$$

$$\Rightarrow \sqrt{3x^2} = 2$$

$$\Rightarrow |x|\sqrt{3} = 2$$

$$|x|\sqrt{3} = 2$$

Note que 
$$x = -y \in y > 0$$
, logo  $x < 0$   
 $\therefore (x = -2/\sqrt{3})$ 

$$\vec{y} = [x, -x, x] = [-3/3, 3/3, -3/3]$$

$$\vec{u} = [0, -1, 2], \vec{v} = [-4, 2, -1], \vec{w} = [3, t, -2]$$

volume do paralelepipedo determinado por ri, F e w igual a 33 Calcular t.

$$\vec{u} \times \vec{r} = \det \begin{pmatrix} \vec{\lambda} & \vec{k} & \vec{k} \\ 0 & -1 & 2 \\ -4 & 2 & -1 \end{pmatrix} = -3\vec{\lambda} - 8\vec{j} - 4\vec{k}$$

$$\vec{u} \times \vec{v} \cdot \vec{w} = -9 - 8t + 8$$

$$\Rightarrow \begin{cases} 8t+1=33 \\ on \\ -8t-1=33 \end{cases}$$

$$\Rightarrow$$
  $t=4$  on  $t=\frac{-17}{4}$ 

 $\vec{w} = [3, 4, -2]$  ou  $\vec{w} = [3, -\frac{17}{4}, -2]$ 

(5) 
$$\vec{a} = \frac{1}{\sqrt{3}} [1,1,1], \vec{b} = \frac{1}{\sqrt{2}} [1,0,-1], \vec{c} = \frac{1}{\sqrt{6}} [1,-2,1]$$

$$\vec{\nabla} = 3\vec{c} - 2\vec{j} + \vec{k}$$

$$\vec{a} \cdot \vec{b} = \frac{1}{\sqrt{3}\sqrt{2}} (1+0-1) = 0$$
  $\vec{a} \perp \vec{b}$ 

$$\vec{a} \cdot \vec{c} = \frac{1}{\sqrt{3}\sqrt{6}} (1-2+1) = 0$$
 \(\hat{1}\) \(\hat{a}\) \(\frac{1}{5}\)

$$\vec{b} \cdot \vec{c} = \frac{1}{\sqrt{2}\sqrt{6}} (1+0-1) = 0$$
 :  $\vec{b} + \vec{c}$ 

$$\|\vec{a}\| = \sqrt{\frac{1}{3}(1+1+1)} = \sqrt{\frac{3}{3}} = \sqrt{1} = 1$$

$$\|\vec{b}\| = \sqrt{\frac{1}{2}(1+0+1)} = \sqrt{\frac{2}{2}} = \sqrt{1} = 1$$

$$\|\vec{b}\| = 1$$

$$\|\vec{c}\| = \sqrt{\frac{1}{6}(1+4+1)} = \sqrt{\frac{6}{6}} = \sqrt{1} = 1$$

$$\|\vec{c}\| = 1$$

$$\vec{\nabla} = x\vec{a} + y\vec{b} + z\vec{c}$$

$$\chi = \vec{\nabla} \cdot \vec{a} = \frac{1}{\sqrt{3}} (3-2+1) = \frac{2}{\sqrt{5}} \qquad \qquad \chi = \frac{3}{\sqrt{5}}$$

$$\vec{J} = \vec{\nabla} \cdot \vec{b} = \frac{1}{\sqrt{2}} (3+0-1) = \frac{2}{\sqrt{2}} \qquad \qquad \vec{J} = \frac{3}{\sqrt{5}} = \sqrt{2}$$

$$\vec{J} = \vec{\nabla} \cdot \vec{c} = \frac{1}{\sqrt{6}} (3+4+1) = \frac{8}{\sqrt{6}} \qquad \qquad \vec{J} = \frac{2}{\sqrt{6}}$$

Assim,

$$\vec{r} = \frac{2}{\sqrt{3}} \vec{a} + \sqrt{2} \vec{b} + \frac{8}{\sqrt{6}} \vec{c}$$