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1 Introdução

Um tema muito antigo, mas que ainda desperta muito interesse são os Ternos Pitagóricos (TP). Existem vários

modelos de se produzir (TP). Em ([2,3]) é apresentada uma maneira de associar um (TP) a um elemento de um

grupo P. Este trabalho tem como objetivo apresentar algumas propriedade do grupo P.

Uma identidade famosa atribuida a Diophantus (325 - 409 A.D.) mostra que dados dois inteiros, que podem ser

escritos como a soma de dois quadrados, o seu produto também é soma de dois quadrados, ver([1]), ou seja,

(a2 + b2)(x2 + y2) = (ax− by)2 + (ay + bx)2 (1.1)

De fato,

(a2 + b2)(x2 + y2) = a2x2 + a2y2 + b2x2 + b2y2

(a2 + b2)(x2 + y2) = (a2x2 − 2axby + b2y2) + (a2y2 + 2axby + b2x2)

(a2 + b2)(x2 + y2) = (ax− by)2 + (ay + bx)2.

Fazendo a2 + b2 = c2 e x2 + y2 = z2 com c, z ∈ Z, esta identidade sugere uma maneira de construir um

terno pitagórico (TP) a partir de outros dois, ou seja, uma nova tripla onde suas coordenadas satisfazem o Teorema

de Pitágoras. Observe que se os ternos (a,b,c) e (x,y,z) são pitagóricos, então

(ax− by, ay + bx, cz)

também é pitagórico.

Assim, se (a,b,c) é um TP, dizemos que ele representa um Triângulo Pitagórico, ou seja, triângulo retângulo

com catetos a, b e hipotenusa c. Deste modo, podemos definir uma operação ⊕, a qual chamaremos de adição, que

associa a dois ternos pitagóricos (a,b,c) e (x,y,z) o novo terno pitagórico (ax− by, ay + bx, cz).

Um Terno Pitagórico Pimitivo (ou Triângulo Pitagórico Primitivo) é umTP (a,b,c), com a, b, c ∈ Z emdc(a,b,c) =

1. Ao invés de considerar o conjunto de todos os ternos pitagóricos, iremos considerar apenas o conjunto P =

{(a, b, c) : a, b, c ∈ Z, a2 + b2 = c2 e mdc(a, b, c) = 1}, onde terno (ka, kb, kc) será representado pelo seu primi-

tivo (a, b, c). Assim, vamos definir em P a operação ⊕, chamada de adição de dois ternos pitagóricos por:

(a, b, c)⊕ (x, y, z) = (ax− by, ay + bx, cz). (1.2)
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Vamos assumir que ax− by > 0 e mostraremos que o conjunto P com esta operação de adição é um grupo. Para

facilitar a verificação das propriedades de P iremos fazer uma identificação de uma tripla em P com pontos no ćırculo

unitário no plano complexo, ou seja, mostraremos que P é isomorfo a um subgrupo do ćırculo unitário S1, o que nos

levará a uma representação geométrica dos elementos de P. Em seguida, verificaremos algumas propriedades deste

grupo constatando que o mesmo é um grupo abeliano gerado pelo conjunto de triângulos que tem como hipotenusa

um primo da forma 4n + 1 e que isto nos diz quantos triângulos retângulos tem a mesma hipotenusa, conforme

([2,3]).

2 Algumas propriedades de P

Cada terno pitagórico primitivo (a,b,c) determina um número complexo z = a+ib, com módulo |z| = √
a2 + b2 =

c. Para z = a+ib e w = x+iy, podemos escrever (1.1) na forma |z| |w| = |zw|. O segmento da origem a z intercepta

o ćırculo unitário S1, no plano complexo, num ponto eiα =
a

c
+ i

b

c
.

Figura 1: Ćırculo Unitário S1 no Plano Complexo

De fato, seja w = cosα+ i sinα o ponto de interseção entre o ćırculo unitário e z = a+ ib. Temos que w = kz e

|w| = 1, k ∈ R. Segue dáı que k =
1

c
, logo w = eiα =

a

c
+ i

b

c
.

Lema 2.1. Seja S1 o ćırculo unitário no plano complexo, então a função φ : P → S1 definida por φ((a, b, c)) =

eiα =
a

c
+ i

b

c
é um homomorfismo injetor.

Prova: Sejam (a, b, c) e (x, y, z) ∈ P, considere φ((a, b, c)) = eiα =
a

c
+ i

b

c
e φ((x, y, z)) = eiβ =

x

z
+ i

y

z
. Então

φ((a, b, c)⊕ (x, y, z)) = φ((ax− by, ay + bx, cz)) =
ax− by

cz
+ i

ay + bx

cz

φ((a, b, c)⊕ (x, y, z)) =

(
a+ ib

c

)(
x+ iy

z

)
= eiαeiβ = φ((a, b, c))φ((x, y, z)).

Logo φ é um homomorfismo. Além disso, se eiα = eiβ então
a

c
=

x

z
e
b

c
=

y

z
⇒ ay = bx. Como mdc(x, y, z) = 1,

existem r, s ∈ Z tais que xr + ys = 1. Segue dáı que a = x(ar + bs), b = y(ar + bs) e c = z(ar + bs). Mas

mdc(a, b, c) = 1, logo (a, b, c) = (x, y, z). Portanto φ é um homomorfismo injetor.

Deste modo, a soma de ternos pitagóricos em P corresponde ao produto de números complexos. Visualizando

no ćırculo unitário, temos que a nossa adição em P corresponde a adição de ângulos em S1. Segue, diretamente

desta correspondência, que a adição definida em (1.2) tem as seguintes propriedades:

• associativa: [(a, b, c)⊕ (x, y, z)]⊕ (u, v, w) = (eiαeiβ)eiγ = eiα(eiβeiγ) = (a, b, c)⊕ [(x, y, z)⊕ (u, v, w)]



• comutativa: (a, b, c)⊕ (x, y, z) = eiαeiβ = eiβeiα = (x, y, z)⊕ (a, b, c)

• O triângulo degenerado (1,0,1) é o elemento identidade, pois (a, b, c)⊕ (1, 0, 1) = eiαei0 = eiα = (a, b, c)

• Para garantir que P é fechado para esta soma, precisamos analisar o caso ignorado até agora ax− by ≤ 0, ou

seja, γ = α+ β ≥ π
2 . Considere γ = θ + π

2 , com 0 ≤ θ < π
2 , então o triângulo (cos γ, sin γ, 1) é congruente

ao triângulo (cos θ, sin θ, 1), que é obtido por uma rotação de −π
2 em relação a origem.

• Para garantir o inverso em P, sempre que γ = α+β ≥ π
2 reduziremos o ângulo soma módulo π

2 . Por exemplo,

reduzimos o ângulo γ = π
2 módulo π

2 para 0, que corresponde ao elemento (1,0,1). Segue dáı que (a, b, c) e

(b, a, c) são inversos um do outro, pois γ = α+ β = π
2 então (a, b, c)⊕ (b, a, c) = (1, 0, 1). Note que embora os

triângulos (a, b, c) e (b, a, c) sejam congruentes, estamos considerando-os como elementos diferentes em P.

Figura 2: Representação de um complexo sobre S1

Em resumo, o conjunto P dos ternos pitagóricos primitivos é um grupo abeliano com a operação de adição

definida por :

(a, b, c)⊕ (x, y, z) =

{
(ax− by, ay + bx, cz), se ax− by > 0

(ay + bx, ax− by, cz), se ax− bt ≤ 0.

O elemento identidade de P é o triângulo degenerado (1,0,1) e o inverso aditivo de (a, b, c) é (b, a, c). E o núcleo

ker(φ) = {(a, b, c) : φ(a, b, c) = 1} = {(1, 0, 1)} o que é equivalente a dizer que φ é injetiva.

A construção geométrica do produto de dois complexos dá uma interpretação alternativa da operação do grupo

P. Dados (a, b, c), (x, y, z) ∈ P podemos multiplicar v = a+ ib e w = x + iy geométricamente, para o caso em que

α+ β ≤ π
2 , obtendo a soma (a, b, c)⊕ (x, y, z).

Figura 3: Representação Geométrica da soma de TPP



3 P é um grupo ćıclico infinito

Para cada (a, b, c) em P, o conjunto 〈(a, b, c)〉 = {n(a, b, c) : n ∈ Z}, onde

n(a, b, c) =





(1, 0, 1), se n = 0

(a, b, c)⊕ · · · ⊕ (a, b, c)︸ ︷︷ ︸
n−vezes

, se n ∈ N = {1, 2, 3, ....}.

Lembramos que −n(a, b, c) é o inverso de n(a, b, c), e que 〈(a, b, c)〉 é um subgrupo de P, chamado de subgrupo

ćıclico gerado por (a, b, c). Vamos mostrar que P é soma direta de grupos ćıclicos infinitos, ou seja, se {gi} é o

conjunto de geradores de subgrupos de P, então cada g ∈ P é uma combinação linear da forma n1gi1 ⊕ · · · ⊕ nkgik ,

com gik distintos, os coeficientes ni ∈ Z inteiros não nulos e k ∈ N.

Lema 3.1. Se a, b, r, k, s ∈ Z e p é primo tal que rsab 6≡ p2k (mod p2) e a2 + b2 ≡ r2 + s2 ≡ 0 (mod p2), então

exatamente uma das afirmações é verdadeira:

ra+ sb ≡ rb− sa ≡ 0 (mod p2) ou ra− sb ≡ rb+ sa ≡ 0 (mod p2).

Prova: Temos que (ra − sb)(ra + sb) = r2(a2 + b2) − b2(r2 + s2). Mas a2 + b2 ≡ r2 + s2 ≡ 0 (mod p2), então

(ra+ sb)(ra− sb) ≡ 0 (mod p2).

• Se p|(ra + sb) e p|(ra − sb), então p|2sb e p|2ra, o que implica que p2|2rasb, contrariando a hipótese de que

rsab 6≡ p2k (mod p2). Logo ra+ sb ≡ 0 (mod p2) ou ra− sb ≡ 0 (mod p2).

• Se ra + sb ≡ 0 (mod p2), então (ra + sb)2 ≡ 0 (mod p4). Por hipótese (a2 + b2)(r2 + s2) ≡ 0 (mod p4) e

como (rb− sa)2 + (ra+ sb)2 = (a2 + b2)(r2 + s2) ≡ 0 (mod p4), temos que (rb− sa)2 ≡ 0 (mod p4), ou seja,

(rb− sa) ≡ 0 (mod p2). Portanto, ra+ sb ≡ rb− sa ≡ 0 (mod p2). Analogamente, se ra− sb ≡ 0 (mod p2),

então ra− sb ≡ rb+ sa ≡ 0 (mod p2).

Proposição 3.1. O grupo P dos ternos pitagóricos primitivos é um grupo ćıclico infinito, gerado pelo conjunto dos

ternos (a, b, p), com p primo, p ≡ 1 (mod 4) e a > b.

Prova: Tome (r, s, d) ∈ P, (r, s, d) 6= (1, 0, 1) e consideremos a decomposição em fatores primos de d, ou seja,

d = pn1
1 ·pn2

2 · · · pnk

k . Nosso objetivo é mostrar que podemos escrever (r, s, d) = e1n1(a1, b1, p1)⊕· · ·⊕eknk(ak, bk, pk),

onde aj > bj , ej = ±1, pj ≡ 1 (mod 4), 1 ≤ j ≤ k. Para isso consideremos as seguintes afirmações, ver([4]).

I.) Um terno pitagórico (r, s, d) é unicamente determinado por um par de inteiros positivos relativamente primos

(m,n) com m > n e de paridade opostas tal que r = m2 − n2, s = 2mn e d = m2 + n2.

II.) Um inteiro positivo primo d e ı́mpar se escreve como a soma de dois quadrados se, e somente se, d ≡ 1 (mod 4).

Portanto, podemos afirmar que o primo p será a hipotenusa de um triângulo pitgórico primitivivo se, e somente

se, p ≡ 1 (mod 4). E esta hipotenusa terá representação única como soma de dois quadrados: p = m2 + n2. Para

a = m2 − n2, b = 2mn, temos que p2 = a2 + b2. Assim, se d = p, temos duas possibilidades (r, s, d) = (a, b, p) ou

(r, s, d) = (b, a, p) = −(a, b, p).

Considere um triângulo (r, s, d), onde d = pq, com p, q primos e p ≡ 1 (mod 4). Então existe um único par de

inteiros (a, b) com a > b tal que p2 = a2 + b2, de modo que as equações

(r, s, pq) = (a, b, p)⊕ (x, y, z) e (r, s, pq) = (−(a, b, p))⊕ (x, y, z),

tem as seguintes soluções



(x, y, z) = (r, s, pq)⊕ (−(a, b, p)) = (rb− sa, ra+ sb, p2q) e (x, y, z) = (r, s, pq)⊕ (a, b, p) = (ra− sb, rb+ sa, p2q).

Desde que rsab 6≡ p2k mod p2 e a2 + b2 ≡ r2 + s2 ≡ 0 mod p2. Pelo lema, apenas uma das soluções (x, y, z)

acontece. Além disso, p2 é fator comum a todas as coordenadas da tripla (x, y, z). Cancelando p2 da solução,

concluimos que (x, y, z) = (u, v, q), onde u =
rb− sa

p2
, v =

ra+ sb

p2
ou u =

ra− sb

p2
, v =

rb+ sa

p2
são inteiros.

Logo

(r, s, pq) = (u, v, q)⊕ (a, b, p) ou (r, s, pq) = (u, v, q)⊕ (−(a, b, p)). (1.3)

Agora, basta analizar os seguintes casos:

Caso 1.) Se p = q então (r, s, p2) = 2(a, b, p) ou (r, s, p2) = (1, 0, 1) e (r, s, p2) = (1, 0, 1) ou (r, s, p2) =

−2(a, b, p), obtemos dois triângulos.

Caso 2.) Se p 6= q e como q é a hipotenusa do triângulo pitagórico (u, v, q), então existe um único par de inteiros

(f, g) com f > g tal que q2 = f2 + g2, ou seja, (u, v, q) = (f, g, q) ou (u, v, q) = (g, f, q) = −(f, g, q).

Substituindo em (1.3), obtemos quatro triângulos

(r, s, d) =

{
(f, g, q)⊕ (a, b, p) ou (f, g, q)⊕ (−(a, b, p))

(−(f, g, q)⊕ (a, b, p) ou (−(f, g, q))⊕ (−(a, b, p)).

Para d = pn1
1 · pn2

2 · · · pnk

k , temos um número finito de primos e prosseguindo com este racioćınio, temos que

(r, s, d) = e1n1(a1, b1, p1) ⊕ · · · ⊕ eknk(ak, bk, pk), onde aj > bj , ej = ±1, pj ≡ 1 (mod 4), 1 ≤ j ≤ k. Portanto,

temos que P = 〈(ak, bk, pk)〉, ak > bk, pk ≡ 1 (mod 4), pk um fator primo de d e k ∈ N.

Este resultado nos permite concluir que existem 2k triângulos pitagóricos primitivos com a mesma hipotenusa

d = pn1
1 · pn2

2 · · · pnk

k .
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