

Universidade Federal da Paraíba CCEN - Departamento de matemática http://www.mat.ufpb.br

Lista de Exercícios $N^{\underline{o}}$ 2 : Cálculo Vetorial e Geometria Analítica Prof.: Pedro A. Hinojosa

- 1 Verifique se os vetores $\overrightarrow{u} = 2\overrightarrow{i} + 3\overrightarrow{j} 2\overrightarrow{k}$, $\overrightarrow{v} = \overrightarrow{i} + \overrightarrow{j} \overrightarrow{k}$ e $\overrightarrow{w} = -3\overrightarrow{i} + \overrightarrow{j} 2\overrightarrow{k}$ são li.
- 2 Verifique que os vetores $\overrightarrow{u} = 2\overrightarrow{i} + \overrightarrow{j} 2\overrightarrow{k}$, $\overrightarrow{v} = -\overrightarrow{i} + \overrightarrow{j} \overrightarrow{k}$ e $\overrightarrow{w} = -\overrightarrow{i} + \overrightarrow{j} 2\overrightarrow{k}$ formam uma base para \mathbb{R}^3 . Determine as coordenadas do vetor $\overrightarrow{i} 3\overrightarrow{j} + 5\overrightarrow{k}$ nesta base.
- **3** Seja ABCD um paralelogramo e seja G o ponto de interseção das diagonais. Sabendo que A = (2, -1, -5), B = (-1, 3, 2) e G = (4, -1, 7). Determine os vértices C e D.
- **5** Escreva o vetor $\overrightarrow{v}=[1,-2,5]$ como combinação linear dos vetores $\overrightarrow{v}_1=[1,1,1]$, $\overrightarrow{v}_2=[1,2,3]$ e $\overrightarrow{v}_3=[2,-1,1]$.
- **6** Verifique que o conjunto $\{[1,1,1],[0,1,2],[0,0,1],[2,3,4]\}$ não é uma base para \mathbb{R}^3 . Pode-se extrair uma base para \mathbb{R}^3 desse conjunto?
- 7 Verifique que os vetores $\overrightarrow{u} = [1, 1, 1]$, $\overrightarrow{v} = [-1, 1, 0]$ e $\overrightarrow{w} = [1, 0, -1]$ formam uma base para \mathbb{R}^3 e determine as coordenadas do vetor $\overrightarrow{a} = [2, 1, -2]$ nessa base
- 8 Determine os valores de x e y sabendo que os vectores \overrightarrow{u} e \overrightarrow{v} são li. e que $(x-1)\overrightarrow{u} + y\overrightarrow{v} = y\overrightarrow{u} (x+y)\overrightarrow{v}$.
- 9 Sejam $\overrightarrow{u} = \overrightarrow{i} + \overrightarrow{j}$, $\overrightarrow{v} = \overrightarrow{i} + \overrightarrow{j} + \overrightarrow{k}$ $e \overrightarrow{w} = x \overrightarrow{i} + y \overrightarrow{j} + z \overrightarrow{k}$. Determine uma condição necessária e suficiente, sobre x, y e z pa que os vetores \overrightarrow{u} , \overrightarrow{v} $e \overrightarrow{w}$ sejam li.
- **10** Considere os vetores $\overrightarrow{u} = 2\overrightarrow{i} \overrightarrow{j}$, $\overrightarrow{v} = \overrightarrow{j} + 2\overrightarrow{k}$, $\overrightarrow{v} = \overrightarrow{i} + 2\overrightarrow{k}$. M
- (a) Mostre que \overrightarrow{u} , \overrightarrow{v} e \overrightarrow{w} formam uma base para \mathbb{R}^3 ;
- (b) Escreva o vetor $\overrightarrow{a} = 2\overrightarrow{i} \overrightarrow{j} + 3\overrightarrow{k}$ como combinação linear dos vetores \overrightarrow{u} , \overrightarrow{v} e \overrightarrow{w} .
- **11** Sejam $\overrightarrow{u} = [3, 2, 1]$, $\overrightarrow{v} = [x 1, x + 1, -1]$ $e \overrightarrow{w} = [x + 1, x 1, 1]$. Para que valores de x os vetores \overrightarrow{u} , \overrightarrow{v} $e \overrightarrow{w}$ são ld?