UFPB/CCEN/Departamento de Matemática

Introdução à Análise Funcional

Lista 2: Operadores limitados, dualidade, transformações lineares

1. Sejam X um espaço de Banach e $T \in L(X)$. Mostre que, para todo $t \in \mathbb{F}$, o operador $\exp(tT)$ definido por

$$\exp(tT) = \sum_{j=0}^{\infty} \frac{(tT)^j}{j!}$$

pertence a L(X) e $\|\exp(tT)\| \le \exp(|t|\|T\|)$.

- 2. Mostre que se X_1 e X_2 são espaços normados e $T \in L(X_1, X_2)$ então seu núcleo N(T) é um subespaço vetorial fechado. Verifique que $S: l^1(\mathbb{N}) \to l^1(\mathbb{N}), (Sx)_n = \frac{x_n}{n}$ é limitado mas sua imagem img(S) não é fechado, e que seu operador inverso $S^{-1}: img(S) \to l^1(\mathbb{N})$ existe e não é limitado.
- 3. Seja f um funcional linear sobre o espaço vetorial normado X.
 - (a) Mostre que $f \in X^*$ se, e somente se, existe C > 0 com $|f(x)| \le C$ para todo x em alguma bola $B(y, \delta)$. Generalize para operadores lineares entre espaços normados.
 - (b) Mostre que $f \in X^*$ se, e somente se, N(f) é fechado. Dê um exemplo para mostrar que isso nem sempre vale para operadores lineares.
 - (c^*) Mostre que se f é ilimitado então seu núcleo é denso.
- 4. Discuta se o núcleo do funcional $f:(l^1(\mathbb{N}),\|.\|_{\infty})\to\mathbb{F}$, definido por $f(x_1,x_2,...)=\sum_{j=1}^{\infty}x_j$, é fechado.
- 5. Seja X um espaço vetorial normado de dimensão infinita. Contrua um funcional linear $f:X\to\mathbb{R}$ descontínuo.
- 6. Mostre que o operador $I\psi(t) = \int_a^t \psi(s) \, ds$ pertence a L(C[a,b]). Mostre também que ele não possui autovalores, isto é, não existem $\lambda \in \mathbb{F}$ e $\psi \neq 0$ contínua tais que $I\psi = \lambda \psi$.
- 7. Para cada $a \in \mathbb{R}$ considere o funcional em C[-1,1] dado por

$$f_a(\psi) = \int_{-1}^{1} \psi(t) dt + a\psi(0)$$

Mostre que f_a é um elemento do dual e que $||f_a|| = 2 + |a|$.

8. Mostre que não existem operadores $S,T\in L(X)$ tais que TS-ST=1.

Dica: Supondo que existem tais operadores, mostre que $TS^n-S^nT=nS^{n-1}$ para todo $n\in\mathbb{N},$ e portanto $\|S^{n-1}\|\leq \frac{2\|T\|\|S\|\|S^{n-1}\|}{n},$ de forma que $S^N=0$ para todo N

1

suficientemente grande. Com isso, chegue a uma contradição, mostrando que $0=S^N=S^{N-1}=\cdots=S=S^0=1.$

9. Seja $\psi:X\to\mathbb{R}$ um funcional contínuo com a propriedade

$$\psi(x+y) = \psi(x) + \psi(y),$$

para todos $x, y \in X$. mostre que $\psi(\alpha x) = \alpha \psi(x)$ para todo $\alpha \in \mathbb{R}$.