UNIVERSIDADE FEDERAL DA PARAÍBA CENTRO DE CIÊNCIAS EXATAS E DA NATUREZA DEPARTAMENTO DE MATEMÁTICA

Lista de Exercícios - Cálculo Diferencial e Integral I

Professor: Alexandre de Bustamante Simas - Sala 233

E-mail: alexandre@mat.ufpb.br / Home page: http://www.mat.ufpb.br/~alexandre/

Lista 6 - Derivadas (Continuação)

1. Calcule as derivadas de f(x):

a)
$$f(x) = 5^x + \log_3 x$$
, b) $f(x) = 2^{x^2}$, c) $f(x) = 3^{2x+1} + \log_2(x^2 + 1)$, d) $f(x) = (2x + 1)^x$,

e)
$$x^{\text{sen}(3x)}$$
, f) $f(x) = (3 + \cos(x))^x$, g) $x^{\pi} + \pi^x$.

2. A função y = f(x) é dada implicitamente pela equação xy + 3 = 2x. Mostre que $x \frac{dy}{dx} = 2 - y$. Calcule $\frac{dy}{dx}\Big|_{x=2}$.

3. Expresse $\frac{dy}{dx}$ em termos de x e de y, onde y = f(x) é uma função diferenciável dada implicitamente pela equação:

a)
$$x^2 - y^2 = 4$$
, b) $y^3 + x^2y = x + 4$, c) $xy^2 + 2y = 3$, d) $y^5 + y = x$, e) $x^2 + 4y^2 = 3$,

f)
$$xy + y^3 = x$$
, g) $xe^y + xy = 3$, h) $y + \ln(x^2 + y^2) = 4$, i) $5y + \cos(y) = xy$, i) $2y + \sin(y) = x$.

4. Determine a derivada:

a)
$$f(x) = x \operatorname{arctg}(x)$$
, b) $f(x) = \operatorname{arcsen}(x^3)$, c) $f(x) = \operatorname{arctg}(x^3)$, d) $f(x) = e^{3x} \operatorname{arcsen}(2x)$,

e)
$$f(x) = \frac{e^{-x} \operatorname{arctg}(e^x)}{\operatorname{tg}(x)}$$
.

5. Função arco-co-seno. A função $f(x) = \cos(x), 0 \le x \le \pi$, é inversível, e sua inversa é a função $f^{-1}(x) = \arccos(x), -1 < x < 1$. Calcule $\arccos'(x)$.

6. Função arco-secante. A função $f(x) = \sec(x), 0 \le x \le \frac{\pi}{2}$ é inversível, e sua inversa é a função $f^{-1} = \operatorname{arcsec}(x), x \ge 1$. Calcule $\operatorname{arcsec}'(x)$.

7. Calcule a derivada:

a)
$$f(x) = \sqrt{1 + \sqrt{x}}$$
, b) $f(x) = \ln \sqrt{\frac{1 + \sin(x)}{1 - \sin(x)}}$, c) $f(x) = (2 + \sin(x))^x$,

d)
$$f(x) = \frac{1}{2}(\operatorname{tg}(x))^2 + \ln(\cos(x)),$$
 e) $f(x) = \log_x(a)$.

8. Determine a reta tangente à elipse $x^2 + 2y^2 = 9$ e que intercepta o eixo y no ponto de ordenada $\frac{9}{4}$.

9. Determine as retas tangente e normal à função $f(x) = \log_a(x)$, onde a > 1 e x > 1.

10. Seja $f: \mathbb{R} \to \mathbb{R}$ uma função tal que, quaisquer que sejam x e t:

$$|f(x) - f(t)| \le |x - t|^2$$
.

Calcule f'(t).

11. Suponha f definida em \mathbb{R} , derivável em 0 e f(0) = 0. Prove que existe g definida em \mathbb{R} , contínua em 0, tal que f(x) = xg(x), para todo $x \in \mathbb{R}$.

- 12. Sejam $f \in g$ definidas em \mathbb{R} , com g contínua em 0, e tais que, para todo x, f(x) = xg(x). Mostre que f é derivável em 0.
- 13. Sejam f e g deriváveis em p e tais que f(p) = g(p) = 0. Supondo que $g'(p) \neq 0$, mostre que

$$\lim_{x \to p} \frac{f(x)}{g(x)} = \frac{f'(p)}{g'(p)}.$$

14. Sejam f e g deriváveis até a segunda ordem em p, e tais que f(p) = g(p) = f'(p) = g'(p) = 0. Mostre que se $g''(p) \neq 0$, então:

$$\lim_{x \to p} \frac{f(x)}{g(x)} = \lim_{x \to p} \frac{f'(x)}{g'(x)} = \frac{f''(p)}{g''(p)}.$$

- 15. Calcule os seguintes limites (dica: use os exercícios 14 e 15):
- a) $\lim_{x\to 0} \frac{\ln(x+1)}{x^2 + \operatorname{sen}(x)}$, b) $\lim_{x\to \frac{\pi}{2}} \frac{e^{2x-\pi} 1}{2\operatorname{sen}(x) + \operatorname{sen}(6x) 2}$, c) $\lim_{x\to -1} \frac{x\sqrt[3]{x+1}}{\operatorname{sen}(\pi x^2)}$, d) $\lim_{x\to 0} \frac{x + \sqrt[3]{x^2 + \operatorname{sen}(3x)}}{\ln(x^2 + x + 1)}$, e) $\lim_{x\to 0} \frac{e^{-x^2} + x 1}{e^{4x} + x^5 1}$, f) $\lim_{x\to 1} \frac{\operatorname{sen}(\operatorname{sen}(\pi x))}{2 \sqrt{x} \sqrt[3]{x^2}}$, g) $\lim_{x\to 1} \frac{x^{100} + x 2}{x^{99} x}$, h) $\lim_{x\to 1} \frac{x^3 x^2 x + 1}{x^{10} 9x^2 + 8x}$,
- i) $\lim_{x\to -1} \frac{x^5 + 3x + 4}{x^{20} + 3x + 2}$