INTERIOR REGULARITY RESULTS FOR ZERO-TH ORDER OPERATORS APPROACHING THE FRACTIONAL LAPLACIAN

DISSON DOS PRAZERES *

In this lecture we going to talk about interior regularity results for the solution $u_{\epsilon} \in C(\overline{\Omega})$ of the Dirichlet problem

$$\begin{cases} -\mathcal{I}_{\epsilon}(u) = f_{\epsilon} & \text{in } \Omega \\ u = 0 & \text{in } \Omega^{c}. \end{cases}$$
(0.1)

where $-\mathcal{I}_{\epsilon}$ is an approximation of the well-known fractional Laplacian of order σ , as ϵ tends to zero. The purpose of this talk is to understand how the interior regularity of u_{ϵ} evolves as ϵ approaches zero. We going to present recent results which provide that u_{ϵ} has a modulus of continuity which depends on the modulus of f_{ϵ} , which becomes the expected Hölder profile for fractional problems, as $\epsilon \to 0$. This analysis includes the case when f_{ϵ} deteriorates its modulus of continuity as $\epsilon \to 0$.

Joint work with P. Felmer (CMM-UC) and E. Topp (USACH).

^{*}Department of Mathematics, Sergipe Federal University, email: disson@mat.ufs.br