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Abstract
We study the existence and non-existence of non negative solutions in

the whole Euclidean space of coercive quasi-linear and fully nonlinear elliptic
equations described by

∆pu = f(u)± g(|∇u|)

where

f ∈ C([0,∞)), g ∈ C0,1([0,∞)) are strictly increasing with f(0) = g(0) = 0.

We give conditions on f and g which guarantee the existence or absence of
positive solutions of this problem in Rn. These results represent a generaliza-
tion to a result obtained for the case of the Laplacian operator, by Patricio
Felmer, Alexander Quaas and Boyan Sirakov.
In the particular case of the problem with plus sign on the right hand side
we obtain generalized Keller- Osserman integral conditions. It turns out that
different conditions are needed when p ≥ 2 or p ≤ 2 to deal with the exis-
tence results. The existence and non-existence in this case are established in
a weak sense (the Sobolev sense).
For the problem with minus sign we show the existence also independently
of the operator whenever possible to ensure the non-negativity of the non-
linearity. The result of non-existence in this case is obtained independently
of the gradient term.
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