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Abstract

This work addresses the study of the controllability for a one-dimensional wave equation in domains with

moving boundary. This equation models the motion of a string where an endpoint is fixed and the other one

is moving. When the speed of the moving endpoint is less than 1 − 2
1+e2

, the controllability of this equation is

established.

1 Introduction

As in [1], given T > 0, we consider the non-cylindrical domain defined by

Q̂ =
{

(x, t) ∈ R2; 0 < x < αk(t), t ∈ (0, T )
}
,

where

αk(t) = 1 + kt, 0 < k < 1.

Its lateral boundary is defined by Σ̂ = Σ̂0 ∪ Σ̂∗0, with

Σ̂0 = {(0, t); t ∈ (0, T )} and Σ̂∗0 = Σ̂\Σ̂0 = {(αk(t), t); t ∈ (0, T )}.

We also represent by Ωt and Ω0 the intervals (0, αk(t)) and (0, 1), respectively. Consider the following wave equation

in the non-cylindrical domain Q̂: ∣∣∣∣∣∣∣∣∣∣∣∣∣

u′′ − uxx = 0 in Q̂,

u(x, t) =


w̃(t) on Σ̂0,

0 on Σ̂∗0,

u(x, 0) = u0(x), u′(x, 0) = u1(x) in Ω0,

(1.1)

To obtain a result of controllability the idea is to transform the problem (1.1) from a non-cylindrical domain

into a cylindrical domain by a change of variable; see [2] for more details.

2 Main Results

Associated with the solution u = u(x, t) of (1.1), we will consider the (secondary) functional

J̃2(w̃1, w̃2) =
1

2

∫∫
Q̂

(u(w̃1, w̃2)− ũ2)
2
dxdt+

σ̃

2

∫
Σ̂2

w̃2
2 dΣ̂, (2.1)
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and the (main) functional

J̃(w̃1) =
1

2

∫
Σ̂1

w̃2
1 dΣ̂, (2.2)

where σ̃ > 0 is a constant and ũ2 is a given function in L2(Q̂).

The control problem that we will consider is as follows: the follower w̃2 assumes that the leader w̃1 has made a

choice. Then, it tries to find an equilibrium of the cost J̃2 , that is, it looks for a control w̃2 = F(w̃1) (depending

on w̃1), satisfying:

J̃2(w̃1, w̃2) ≤ J̃2(w̃1, ŵ2), ∀ ŵ2 ∈ L2(Σ̂2). (2.3)

In another way, if the leader w̃1 makes a choice, then the follower w̃2 makes also a choice, depending on w̃1,

which minimizes the cost J̃2, that is,

J̃2(w̃1, w̃2) = inf
ŵ2∈L2(Σ̂2)

J̃2(w̃1, ŵ2). (2.4)

This is equivalent to (2.3). This process is called Stackelberg-Nash strategy; see Dı́az and Lions [3].

As in [1], we assume that

T >
e

2kM
(1−k)(1−kM) − 1

k
where M =

1

2k
ln
(1 + k

1− k

)
, (2.5)

and

0 < k < 1− 2

1 + e2
. (2.6)

Theorem 2.1. Assume that (2.5) and (2.6) hold. Let us consider w1 ∈ L2(Σ1) and w2 a Nash equilibrium in the

sense (2.4). Then (v(T ), v′(T )) = (v(., T, w1, w2), v′(., T, w1, w2)), where v solves the optimality system, generates

a dense subset of L2(0, 1)×H−1(0, 1).

Proof To prove theorem, we apply Holmgren’s Uniqueness Theorem (cf. [4]; and see also [1] for additional

discussions).
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