VI Workshop in Nonlinear PDE's and Geometric Analysis of UFPB

Hénon type equations with jumping nolinearities involving critical growth

Eudes Barboza, João do Ó, Bruno Ribeiro
eudesmendesbarboza@gmail.com

UPE, UFPB, UFPB
December 27, 2017

Abstract

In this work, we search for two non-trivial radially symmetric solutions of the Dirichlet problem involving a Hénon-type equation of the form $$
\left\{\begin{align*} -\Delta u & =\lambda u+|x|^{\alpha} k\left(u_{+}\right)+f(x) & & \text { in } B_{1} \tag{1}\\ u & =0 & & \text { on } \partial B_{1} \end{align*}\right.
$$

where $\lambda>0, \alpha \geq 0, B_{1}$ is a unity ball centered at the origin of $\mathbf{R}^{N}(N \geq 3)$ and $k(s)=$ $s^{2_{\alpha}^{*}-1}+g(s)$ with $2_{\alpha}^{*}=2(N+\alpha) /(N-2)$ and $g(s)$ is a C^{1} function in $[0,+\infty)$ which is assumed to be in the subcritical growth range.

The proofs are based on variational methods and to ensure that the considered minimax levels lie in a suitable range, special classes of approximating functions which have disjoint support with Talenti functions (Hénon version) are constructed.

0.1 Hypotheses

Before stating our main results, we shall introduce the following assumptions on the nonlinearity g :
$\left(g_{0}\right) g \in C\left(\mathbb{R}, \mathbb{R}^{+}\right), g(s)=o(s)$ when $s \rightarrow 0_{+}$and $g(s)=0$ for all $s \leq 0$.
$\left(g_{1}\right)$ There exist positive constants c_{1}, D and s_{0} and $2<p+1<2_{\alpha}^{*}$ such that $g(s) \leq c_{1} s^{p}+D$ for all $s \geq s_{0}$.
$\left(g_{2}\right)$ There exists $c_{2}>0$ and q such that $g(s) \geq c_{2} s^{q}$ for all $s \in \mathbb{R}^{+}$, where

$$
\begin{cases}2_{\alpha}^{*}-\frac{2 N-8}{3 N-8}<q+1<2_{\alpha}^{*} & \text { for } N \geq 5 \tag{2}\\ (4+\alpha)-\frac{2}{5}<q+1<4+\alpha=2_{\alpha}^{*} & \text { for } N=4 \\ (6+2 \alpha)-\frac{2}{5}<q+1<6+2 \alpha=2_{\alpha}^{*} & \text { for } N=3\end{cases}
$$

Let us consider $\lambda_{1}<\lambda_{2} \leq \lambda_{3} \leq \ldots \leq \lambda_{j} \leq \ldots$ the sequence of eigenvalues of $\left(-\Delta, H_{0}^{1}\left(B_{1}\right)\right)$ and e_{j} is a $j^{\text {th }}$ eigenfunction of $\left(-\Delta, H_{0}^{1}\left(B_{1}\right)\right)$. Assuming $\left(g_{0}\right)$ and that $\lambda \neq \lambda_{j}$ for all j, one can prove that ψ is a nonpositive solution of 1 if and only if it is a nonpositive solution for the linear problem

$$
\left\{\begin{align*}
-\Delta \psi & =\lambda \psi+f(x) & \text { in } \quad B_{1} \tag{3}\\
\psi & =0 & \text { on } \partial B_{1}
\end{align*}\right.
$$

In order to obtain such solutions for 3 , we assume that
$\left(f_{1}\right) f(x)=h(x)+t e_{1}(x)$,
where $h \in L^{\mu}\left(B_{1}\right), \mu>N$ and

$$
\begin{equation*}
\int_{B_{1}} h e_{1} \quad d x=0 \tag{4}
\end{equation*}
$$

The parameter t will be used in the proof of the first Theorem of this work.

0.2 Statement of main results

We divide our results in two theorems. The first one deals with the first solution of the problem, which is nonpositive and is obtained by a simple remark about a linear problem related to our equation. The other theorem concerns the second solution and we need to consider the dimension which we are working. On condition $\left(f_{1}\right)$, for $N \geq 5$, we only need to assume $\mu>N$ in order to recover the compactness of the functional associated to Problem 1. In dimensions $N=4$ and 3 , we should consider $\mu \geq 8$ and $\mu \geq 12$, respectively, for this purpose.

Theorem 1 (The linear problem) Assume $\left(f_{1}\right)$ and $\lambda \neq \lambda_{j}$ for all $j \in \mathbb{N}$. Then there exists a constant $T=T(h)>0$ such that:
(i) If $\lambda<\lambda_{1}$, there exists $\psi_{t}<0$, a solution for 3 and, consequently, for 1 , for all $t<-T$.
(ii) If $\lambda>\lambda_{1}$, there exists $\psi_{t}<0$, a solution for 3 and, consequently, for 1 , for all $t>T$.

Furthermore, if f is radially symmetric, then ψ_{t} is radially symmetric as well.
Theorem 2 Assume the existence of nonpositive radial solution ψ of 1 , conditions $\left(g_{0}\right)-\left(g_{2}\right)$ and $\lambda \neq \lambda_{j}$ for all $j \in \mathbb{N}$. Then, 1 possesses a second radial solution provided that $f \in L^{\mu}\left(B_{1}\right)$ with $\mu \geq 12$ if $N=3, \mu \geq 8$ if $N=4$ and $\mu>N$ if $N \geq 5$.

