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1. Overview of the measure theory and probability

This chapter reviews some basic topics and concepts of the measure theory and
probability which are important for understanding the rest of the course.

1.1 The definition of measure

Definition 1.1. Let Ω be a set. A σ-algebra F is a family of subsets of Ω possessing
the following properties:

(1) The empty set ∅ belongs to F .

(2) If A ∈ F , then Ac ∈ F , where Ac = Ω�A is the complement of A in Ω.

(3) If A1, A2, . . . , An, . . . ∈ F , then
⋃∞
i=1Ai ∈ F .

Definition 1.2. A measure µ on F is a function F → [0,∞) such that for any
sequence of subsets {Ai}∞i=1, Ai ∈ F , with Ai ∩ Aj = ∅, i 6= j,

µ
( ∞⋃
i=1

Ai

)
=
∞∑
i=1

µ(Ai).

Definition 1.3. A signed measure on F is a function F → (−∞,∞) where the
rest of the properties is the same as for the measure.

Definition 1.4. We say that some property A holds almost everywhere (a.e.) if
the set of those point x ∈ E where the property A does not hold is zero.

Definition 1.5. A probability measure P on F is a function F → [0, 1] satisfying
the following conditions:

(1) P (∅) = 0, P (Ω) = 1.

(2) If a sequence of subsets {Ai}∞i=1, Ai ∈ F , is such that Ai ∩ Aj = ∅, i 6= j,
then

P
( ∞⋃
i=1

Ai

)
=
∞∑
i=1

P (Ai).

Sometimes, if a σ-algebra F of subsets of Ω is specified, we may use the expression
“a probability measure on Ω” keeping in mind that it is actually a probability
measure on the σ-algebra F of subsets of Ω. The F -measurable subsets of Ω are
often thought as events, while P (A) is thought as the probability that the event A
occurs. If P (A) = 1, we say that the event A occurs almost surely (a.s.).

The triple (Ω,F , P ) is called a probability space.
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1.2 Measurable functions and random variables

Let (E, µ) be a measurable space, i.e. a set E with the measure µ on a σ-algebra
G of subsets of E. A function Y : E → Rn is called F -measurable if for any Borel
subset U ⊂ Rn,

Y −1(U) = {ω ∈ Ω : Y (ω) ∈ U} ∈ G.

Let (Ω,F , P ) be a probability space.

Definition 1.6. An F-measurable function X : Ω→ Rn is called a random vari-
able.

Let B be the Borel σ-algebra of Rn. Every random variable X generates a σ-
algebra HX :

HX = {X−1(B), B ∈ B}.

Clearly, X is HX-measurable. Moreover, HX is the smallest σ-algebra among σ-
algebras with the property that X is measurable with respect to this σ-algebra.

Let I be a finite or infinite index set.

Definition 1.7.

(1) Two subsets A ∈ F and B ∈ F are called independent if

P (A ∩B) = P (A) · P (B).

(2) σ-algebras {Hi}, i ∈ I, are called independent if for any choice of sets
Hi1 ∈ Hi1, . . ., Hik ∈ Hik

P (Hi1 ∩ · · · ∩Hik) = P (Hi1) · · ·P (Hik).

(3) Random variables {Xi}, i ∈ I, are called independent if the σ-algebras HXi

generated by Xi are independent.

Theorem 1.8. If f : E → Rn is a measurable function, and g : Rn → Rm is another
measurable function, then the composition g ◦ f is a measurable function.

Remark. We assume that on Rn we are give the Borel σ-algebra.
Assumption. Below we assume that the σ-algebra G of subsets of the measurable
space E is augmented with all subsets of zero µ-measure sets.

Definition 1.9. A measure µ defined on a σ-algebra augmented with all subsets of
null sets is said to be complete.

Theorem 1.10. A funtion f : E → R is measurable if and only if the set {x ∈ E :
f(x) < c} is measurable for every c ∈ R.

Theorem 1.11. The sum, the difference, and the product of two measurable func-
tions f and g are measurable. If g(x) 6= 0 for all x ∈ E, then f

g
is also measurable.
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Definition 1.12. Let fn : E → R, and f : E → R. We say that fn(x) converges
to f(x) almost everywhere (a.e.) on E if the measure of those x ∈ E where the
convergence does not hold is zero.

Theorem 1.13. If a sequence of measurable functions fn converges to f almost
everywhere, then f is also measurable.

Definition 1.14. A sequence of functions fn : E → R is said to converge in
measure to a function f : E → R if for every ε > 0,

lim
n→∞

µ{x : |fn(x)− f(x)| > ε} = 0.

Theorem 1.15. If a sequence of measurable functions {fn} converges to a function
f almost everywhere, then it converges to the same functions in measure.

Theorem 1.16. If a sequence of measurable functions {fn} converges to a function
f in measure, then there exists a subsequence {fnk} of {fn} that converges to f
almost everywhere.

1.3 Integration and expectations

Below we assume that a measure µ is given on a complete σ-algebra of subsets of
E.

Definition 1.17. A function f on (E, µ) is called simple if it takes no more than
countable number of values.

Theorem 1.18. A function f taking no more than countable number of different
values

y1, . . . , yn, . . . ,

is measurable if and only if the sets

An = {x : f(x) = yn}

are measurable.

Theorem 1.19. A function f is measurable if and only if one can represent it as a
limit of a uniformly convergent sequence of simple measurable functions.

Let f =
∑∞

i=1 yi IAi where yi 6= yj if i 6= j and the sets Ai are µ-measurable.

Definition 1.20. The integral of f over a µ-measurable set A with respect to the
measure µ is defined as follows:∫

A

f(x)µ(dx) =
∞∑
i=1

yiµ(Ai ∩ A).

If the series on the right-hand side converges, then the function f is called inte-
grable on the set A.
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Below we list some properties of the integral for simple functions.

1. Additivity: ∫
A

[f(x) + g(x)]µ(dx) =

∫
A

f(x)µ(dx) +

∫
A

g(x)µ(dx),

moreover, the existence of the integrals on the right-hand side implies the
existence of the integral on the left-hand side.

2. Multiplicativity: If k ∈ R, then∫
A

kf(x)µ(dx) = k

∫
A

f(x)µ(dx),

moreover, the existence of the integrals on the right-hand side implies the
existence of the integral on the left-hand side.

3. If f is bounded on A by a constant M , then∣∣∣ ∫
A

f(x)µ(dx)
∣∣∣ 6Mµ(A).

Definition 1.21. A function f is called integrable on A if there exists a sequence
of simple functions {fn} which converges to f uniformly. The limit

lim
n→∞

∫
A

fn(x)µ(dx) (1)

is denoted
∫
A
f(x)µ(dx) and called the integral of f over A with respect to µ.

The integral of f over A with respect to µ is well defined. Indeed, limit (1) exists
for any uniformly convergent system of simple functions since∣∣∣ ∫

A

fn(x)µ(dx)−
∫
A

fm(x)µ(dx)
∣∣∣ 6 µ(A) sup

x∈A
|fn(x)− fm(x)|.

The above inequality also implies that limit (1) does not depend on the choice of a
sequence of simple functions that uniformly converges to f . Properties 1, 2, and 3
easily follow for the integral defined for an arbitrary integrable function. Below we
will list some additional properties.

4. If f(x) > g(x), then ∫
A

f(x)µ(dx) >
∫
A

g(x)µ(dx).

5. If µ(A) = 0, then
∫
A
f(x)µ(dx) = 0.
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6. If f(x) = g(x) almost everywhere on A, then∫
A

f(x)µ(dx) =

∫
A

g(x)µ(dx).

7. σ-additivity: If A = ∪nAn where Ai ∩ Aj = ∅ (i 6= j), then∫
A

f(x)µ(dx) =
∑
n

∫
An

f(x)µ(dx).

Moreover, from the existence of the integral on the left-hand side it follows that
each integral over An on the right-hand side exists, and the series converges.

8. If µ(A) 6= 0, and ∫
A

|f(x)|µ(dx) = 0,

then f(x) = 0 on A a.e..

9. Chebyshev’s inequality: if f(x) > 0 and c > 0, then

µ{x ∈ A : f(x) > c} 6 1

c

∫
A

f(x)µ(dx).

10. Absolute continuity of the integral: If f is integrable on A, then for every
ε > 0, there exists a δ > 0 such that for every µ-measurable subset C ⊂ A
with µ(C) < δ, ∣∣∣ ∫

C

f(x)µ(dx)
∣∣∣ < ε.

Passing to the limit under the integral sign

Theorem 1.22 (Lebesgue’s [or dominated convergence] theorem). Let fn converge
to f on A a.e. and for all n

|fn(x)| 6 φ(x) a.e.

where φ is integrable on A. Then, the function f is integrable on A, and

lim
n→∞

∫
A

fn(x)µ(dx) =

∫
A

f(x)µ(dx).

Theorem 1.23 (Beppo Levy’s [or monotone convergence] theorem). Let f1(x) 6
f2(x) 6 · · · 6 fn(x) 6 · · · on A, moreover, all fn are integrable and their integrals
are bounded: ∫

A

fn(x)µ(dx) 6 K.
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Then, almost everywhere on A there exists a limit

lim
n→∞

fn(x) = f(x).

Moreover, the function f(x) is integrable on A, and

lim
n→∞

∫
A

fn(x)µ(dx) =

∫
A

f(x)µ(dx).

Theorem 1.24 (Fatou Lemma). Let a sequence of integrable non-negative functions
fn converge to f a.e. on A, and∫

A

fn(x)µ(dx) 6 K.

Then f is integrable on A, and ∫
A

f(x)µ(dx) 6 K.

Fubini’s theorem

Let A ⊂ U × V . Define

Ax = {y ∈ Y : (x, y) ∈ A} (x is fixed)

Ay = {x ∈ X : (x, y) ∈ A} (y is fixed).

Theorem 1.25. Let the measures µU and µV be defined on U and V , respectively, σ-
additive, and complete. Further let µ = µU⊗µV and the function f(x, y) be integrable
on the set A ⊂ U × V . Then∫

A

f(x)µ(dx) =

∫
U

µU(dx)

∫
Ax

f(x, y)µV (dy) =

∫
V

µV (dy)

∫
Ay

f(x, y)µU(dx). (2)

Corollary 1.26. Let one the integrals∫
U

µU(dx)

∫
Ax

|f(x, y)|µV (dy) or∫
V

µV (dy)

∫
Ay

|f(x, y)|µU(dx).

exists. Then f is integrable on A and (2) holds.

Distributions, expectations, characteristic functions

Every random variable X induces a probability distribution µX on Rn defined on
the σ-algebra of Borel subsets of Rn by the formula:

µX(B) = P
(
X−1(B)

)
. (3)
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Definition 1.27. The measure µX defined by (3) is called the distribution of X.

Definition 1.28. The number

E[X] =

∫
Ω

X(ω)P (dω) =

∫
Rn
xµX(dx)

is called the expectation of X.

Definition 1.29. The characteristic function of a random variable X : Ω→ Rn
is the functio ϕX : Rn → C (where C denotes the complex numbers) defined by

ϕX(y1, . . . , yn) = E[exp{i (y1X1 + · · ·+ ynXn)}] =

∫
Rn
ei(y,x)Rn (P ◦X−1)(dx)

where X1, . . . , Xn are the coordinates of X in Rn, (y, x)Rn is the scalar product in
Rn.

Theorem 1.30. The characteristic function of X determines the distribution P ◦
X−1 of X uniquely.

Proof. The characteristic function is actually the Fourier transform of the measure
P ◦X−1, and therefore defines this measure uniquely.

Conditional expectations

Definition 1.31. Let a measure µ and a signed measure ν be defined on a σ-algebra
G of the space E. The signed measure ν is said to be absolutely continuous with
respect to the measure µ if ν(A) = 0 for any set A ∈ G with µ(A) = 0.

Theorem 1.32 (Radon-Nikodym’s theorem). Let µ be a measure on a σ-algebra G
of the space E, and let the measure ν, defined on the same σ-algebra G, be absolutely
continuous with respect to µ. Then, there exists an integrable function f on E such
that for any A ∈ G

ν(A) =

∫
A

f(x)µ(dx).

The function f is called the derivative of ν with respect to µ and denoted f = dν
dµ

.

Now let (Ω,F , P ) be a probability space, X be a random variable and B ⊂ F
be a sub-σ-algebra.

Definition 1.33 (Conditional expectation). A B-measurable random variable Y
is called the conditional expectation of X with respect to B, and denoted Y =
E[X|B], if for any B-measurable set A, it holds that∫

A

Y (ω)P (dω) =

∫
A

X(ω)P (dω).
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Conditional expectation always exists by Radon-Nikodym’s theorem. Indeed,
consider the restriction of the measure P to B. We denote this restriction by the
same symbol P . Define the signed measure ν(A) =

∫
A
X(ω)P (dω) on the σ-algebra

B. Clearly, ν(A) is absolutely continuous with respect to P . By Radon-Nikodym’s
theorem, there exists a B-measurable function Y such that ν(A) =

∫
A
Y (ω)P (dω).

The latter implies that Y = E[X|B].

Theorem 1.34 (Properties of conditional expectations). Let, as before, B be a sub-
σ-algebra of F .

1. If a random variable X is B-measurable, then E[X|B] = X.

2. For any square integrable B-measurable Z, E[ZX] = E[Z E[X|B]].

3. E[X] = E[E[X|B]].

4. • Additivity: E[X + Y |B] = E[X|B] + E[Y |B].

• Linearity: E[cX + d|B] = cE[X|B] + d, where c, d ∈ R.

5. If Z is B-measurable, then E[ZX|B] = ZE[X|B] a.s..

6. If H ⊂ B is a sub-σ-algebra, then E[E[X|B]|H] = E[X|H].

7. If X 6 Y where Y is another random variable, then E[X|B] 6 E[Y |B] a.s..

1.4 Examples

Example 1.(Wiener’s probability space). Let Ω = [0, 1]. Define a σ-algebra F as
the σ-algebra of all Lebesgue-measurable subsets of [0, 1], and let P be the Lebesgue
measure on [0, 1]. The triple (Ω,F , P ) builds a probability space. This probability
space is called Wiener’s probability space.
Example 2.(Gaussian measure, Gaussian random variable). A probability measure
γ on the real line is called Gaussian if its density is given by the formula:

p(x) =
1

σ
√

2π
exp
(
−(x− a)2

2σ2

)
.

This means that the measure γ of a Borel subset A ⊂ R is defined by

γ(A) =

∫
A

p(x) dx.

The numbers a and σ2 are called the mean and resp. the variance. A real-valued
random X variable is called Gaussian if its distribution is a Gaussian measure. If
a = 0 and σ2 = 1 the random variable X is called standard Gaussian random
variable. A Gaussian random variable is also called a normally distributed random
variable.
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Example 3.(Multi-normal distribution). An Rn-valued random variable X is called
multi-normal of its distribution has the density:

pX(x1, . . . , xn) =

√
|A|

(2π)
n
2

exp
(
−1

2

n∑
j,k=1

(xj −mj)ajk(xk −mk)
)

(4)

where m = (m1, . . . ,mn) ∈ Rn and A = {ajk} ∈ Rn×n is a symmetric positive
definite matrix. The vector m is called the mean, and the matrix C = {cjk} = A−1 is
called the covariance matrix of X. One can explicitly compute the Fourier transform
of the distribution of the random variable X. Indeed,

ϕX(y1, . . . , yn) =

∫
Rn
ei(y,x) (P ◦X−1)(dx) =

∫
Rn
ei(y,x)RnpX(x) dx

= exp
(
−1

2

∑
j,k

yjcjkyk + i
∑
j

yjmj

)
. (5)

Example 4.(Discrete random variable, Poisson distribution, Poisson random vari-
able). A random variable X is called a discrete random variable if it can be written
in the from:

X =
∑
i

ui IΩi ,

where IΩi is the indicator function of Ωi, Ωi are disjoint subsets of Ω such that
∪iΩi = Ω, and ui are the values that the random variable X takes with a non-zero
probability. Namely,

P (Ωi) = P (ω : X(ω) = ui) > 0.

A Poisson random variable X is a discrete random variable taking non-negative
integer values k = 0, 1, 2, . . . and having a Poisson probability distribution (with
some parameter λ), i.e.

P (X = k) =
eλ λk

k!
.

2. Stochastic processes

Definition 2.1. Let (Ω,F , P ) be a probability space. A stochastic process is a
parametrized collection of Rn-valued random variables:

{Xt}t∈T

defined on the probability space (Ω,F , P ).
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T here is a parameter set. Usually it is the halfline [0,∞), or an interval [a, b] ⊂
[0,∞). It can also be the set of non-negative integers. Let us emphasize that in the
definition of a stochastic process, for each fixed t ∈ T ,

ω 7→ Xt(ω)

is a random variable. Let us fix ω0 ∈ Ω and consider the function

t 7→ Xt(ω0).

This function is called a path of the process Xt.

Definition 2.2. A non-decreasing family {Ft} of sub-σ-algebras of F is called a
filtration, i.e. for all 0 6 s < t <∞,

Fs ⊆ Ft ⊆ F .

Definition 2.3. A filtered probability space (Ω,F ,Ft, P ) is a probability space
with a filtration {Ft} of the σ-algebra F .

Definition 2.4. A stochastic process Xt is called adapted with respect to the fil-
tration Ft if for every t > 0 the random variable Xt is Ft-measurable.

Definition 2.5. The finite-dimensional distributions of a process Xt are the
measures µt1,...,tk on Rnk, k = 1, 2, . . ., defined by:

µt1,...,tk(A1 × · · · × Ak) = P (Xt1 ∈ A1, · · · , Xtk ∈ Ak),

where A1, . . . , Ak are Borel subsets in Rn.

Let stochastic processes Xt and Yt be defined on probability spaces (Ω,F , P )
and resp. on (Ω̃, F̃ , P̃ ).

Definition 2.6. The processes Xt and Yt are said to have the same finite-
dimensional distributions if for any k ∈ N, for any choice of t1, . . . , tk ∈ T , the
finite-dimensional distributions µXt1,...,tk and µYt1,...,tk of Xt and resp. Yt coinside.

Let us consider now a converse problem. Suppose we are given a family
{νt1,...,tk , k ∈ N, ti ∈ T} of probability measures on Rnk. We would like to con-
struct a stochastic process Xt whose finite-dimenstional distributions coincide with
νt1,...tk .

Theorem 2.7 (Kolmogorov’s extension theorem). For all t1, . . . tk, k ∈ N, let νt1,...,tk
be probability measures on Rnk satisfying the two following properties (consistency
conditions):

1. νtσ(1),...,tσ(k)(F1 × · · · × Fk) = νt1,...tk(Fσ−1(1) × · · · × Fσ−1(k));
for all permutations σ of {1, 2, . . . , k} and for all Borel subsets Fi ⊂ Rn.
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2. νt1,...tk(F1 × · · · × Fk) = νt1,...,tk,tk+1,...,tk+m(F1 × · · · × Fk × Rn × · · · × Rn︸ ︷︷ ︸
m

)

for all m ∈ N and for all Borel subsets Fi ⊂ Rn.

Then there exists a probability space (Ω,F , P ) and an Rn-valued stochastic process
Xt on it, such that

νt1,...,tk(F1 × · · · × Fk) = P (Xt1 ∈ F1, · · · , Xtk ∈ Fk)

for all ti ∈ T , k ∈ N, and all Borell subsets Fi ⊂ Rn.

Proof. Without proof. A proof can be found, for example, in the book by Koralov,
L., Sinai, Y. “Theory of probability and random processes”, 2007, p. 167.

Let Xt and Yt be stochastic proesses given on the same probability space
(Ω,F , P ).

Definition 2.8. We say that the process Yt is a version or modification of Xt if
for all t ∈ T

P{ω : Xt(ω) = Yt(ω)} = 1.

Note that the finite-dimensional distributions of Xt and Yt coincide. However,
their path properties can be different. If the process Yt in Definition 2.8 has contin-
uous paths, then it is called a continuous path modification of Xt.

Theorem 2.9 (Kolmogorov’s continuity theorem). Suppose that the process Xt,
t > 0, satisfies the following assumption: for all Λ > 0 there exist positive constants
M , α, and β such that

E[|Xs −Xt|α] 6M |s− t|1+β,

for all 0 6 s, t 6 Λ. Then, there exists a continuous path modification of Xt.

Proof. Without proof. A proof can be found in the book by Kunita, H. “Stochastic
flows and stochastic differential equations”, 1997, p. 31.

Examples of basic stochastic processes

Brownian motion. Let (Ω,F ,Ft, P ) be a filtered probability space.

Definition 2.10. A (standard, one-dimesional) Brownian motion is a con-
tinuous Ft-adapted stochastic process Bt, t > 0, defined on (Ω,F ,Ft, P ) and pos-
sessing the following properties:

1. B0 = 0 a.s.

2. For all 0 6 s < t, the increment Bt −Bs is independent of Fs.

3. For all 0 6 s < t, the increment Bt − Bs is a Gaussian random variable with
mean zero and variance t− s

13



Poisson point process. A Poisson process Nt on the interval [0,∞) counts a
number of times some premitive event has occured during the time interval [0, t].
More precisely, let (Ω,F , P ) be a probability space. A Poisson process with the
parameter λ is a process with the following properties:

1. N0 = 0 a.s.

2. Nt is a process with independent increments, i.e. for all 0 6 t1 6 · · · 6 tk, the
random variables Nt1 , Nt2 −Nt1 , . . ., Ntk −Ntk−1

are independent.

3. For any 0 6 s < t < ∞, the random variable Nt − Ns has the Poisson
distribution with the parameter λ(t− s), i.e.

P (Nt −Ns = k) =
e−λ(t−s)(λ(t− s))k

k!
.

3. Brownian Motion

3.1 Existence of a Brownian motion

A Brownian motion is a stochastic process named after the Scottish botanist Robert
Brown who observed that pollen grains suspended in liquid permormed an irregular
motion. To describe this motion mathematically it is natural to introduce a stochas-
tic process Bt(ω) and interpret it as the position of the pollen grain ω at time t.

We intend to specify a family {νt1,...,tk} of probability measures satusfying the
consitency conditions (1) and (2) of the Kolmogorov entension theorem. The latter
theorem will imply the existence of a stochstic processes with the finite-dimensional
distributions. {νt1,...,tk}.

Fix an x ∈ Rn, and for all y ∈ Rn and t > 0 define a function:

p(t, x, y) =
1

(2πt)−
n
2

exp
(
−|x− y|

2

2t

)
.

If t = 0 we set p(0, x, y) = δx(y). The generalized function δx(y) is defined on
continuous functions as follows:

∫
Rn f(x)δ(x) dx = f(0).

Let 0 6 t1 6 t2 6 · · · 6 tk. We define a measure νt1,...,tk on Rnk by

νt1,...,tk(F1 × · · · × Fk)

=

∫
F1

p(t1, x, x1) dx1

∫
F2

p(t2 − t1, x1, x2) dx2 . . .

∫
Fk

p(tk − tk−1, xk−1, xk) dxk.

If the sequence of {t1, t2, . . . , tk} is not arranged in the ascending order, then we find a
permutation σ that puts {t1, t2, . . . , tk} in the the ascending order, and define νt1,...,tk
by formula (1) of the Kolmogorov extension theorem. Therefore by construction, the
system of measures νt1,...,tk satisfies consistency condition (1) of the latter theorem.
Since

∫
Rn p(t, x, y) dy = 1, then condition (2) of the Kolmogorov extension theorem

holds as well. Now the Kolmogorov extension theorem implies the existence of a

14



probability space (Ω,F , P x) and a stochastic process Bt, t > 0, on it whose finite-
dimensional distributions are the measures νt1,...,tk . Specifically, if 0 6 t1 6 t2 6
· · · 6 tk, then

P (Bt1 ∈ F1, . . . , Btk ∈ Fk)

=

∫
F1

p(t1, x, x1) dx1

∫
F2

p(t2 − t1, x1, x2) dx2 . . .

∫
Fk

p(tk − tk−1, xk−1, xk) dxk. (6)

Note that P x(B0 = x) = 1. The process Bt constructed above is not unique. There
exists several quadruples (Bt,Ω,F , P x) such that relation (6) holds. However, it is
possible to choose a version of the process Bt with a.s. continuous paths. For this
purpose we have to verify Kolmogorov’s continuity theorem. We are going to use
the formula

Ex[|Bt −Bs|4] = n(n+ 2)|t− s|2 (7)

which follows from some properties of the process Bt that we will prove below. The
symbol Ex denotes the expectation with respect to P x. Kolmogorov’s continuity
theorem and (7) imply that there is a version of Bt with a.s. continuous paths.

Definition 3.1. A version of Bt with a.s. continuous paths is called a Brownian
motion starting at x.

We note once again that formula (7) is a consequence of the properties of a
Brownian motion proved in Section (3.2). Our arguments can be summarized in the
theorem below:

Theorem 3.2. A Brownian motion exists.

3.2 Some properties of a Brownian motion

Proposition 3.3. Bt is a Gaussian process, i.e. for all 0 6 t1,6 · · · 6 tk, the
Rnk-valued random variable Z = (Bt1 , . . . , Btk) has a multi-normal distribution.

Proof. To show that the random variable Z has a multi-normal distribution it suffices
to prove that there exists a vector M ∈ Rnk and a non-negative matrix C = {cjm} ∈
Rnk×nk auch that

Ex
[
exp
(
i

nk∑
j=1

ujZj

)]
= exp

(
−1

2

nk∑
j,m=1

ujcjmum + i
nk∑
j=1

ujMj

)
(8)

for all u = (u1, . . . , unk) ∈ Rnk. Ex denotes the expectation with respect to P x. As
we have shown in Example 3 of Section 1 (Formula (5)), the right hand side of (8)
is actually the Fourier transform of a density function pZ of nk variables defined
by (4). The Fourier tranform determines this function uniquely, and therefore the
distribution of the random variable Z is given by the density function (4) where the
number of variables is nk.
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Proposition 3.4. Bt possesses the following properties:

Ex[Bt] = x,

Ex[ |Bt − x|2] = nt,

Ex[ (Bt − x,Bs − x)Rn ] = nmin{s, t},
Ex[ |Bt −Bs|2] = n|t− s|.

Proof. It suffices to prove the above properties for the one-dimensional case. There-
fore, without loss of generality we assume that the process Bt is one-dimensional. In
the following computation we assume that s < t. We obtain:

Ex[Bt] =
1√
2πt

∫ ∞
−∞

y e−
(y−x)2

2t dy = x,

Ex[ (Bt − x)2] =
1√
2πt

∫ ∞
−∞

(y − x)2 e−
(y−x)2

2t dy = t,

Ex[ (Bt − x)(Bs − x)] =
1√
2πs

∫ ∞
−∞

(y1 − x) e−
(y1−x)

2

2s dy1

1√
2π(t− s)

∫ ∞
−∞

(y2 − x) e−
(y2−y1)

2

2(t−s) dy2

=
1√
2πs

∫ ∞
−∞

(y1 − x)2 e−
(y1−x)

2

2s dy1 = s,

Ex[ (Bt −Bs)
2] = Ex[(Bt − x)2] + Ex[ (Bs − x)2]− 2Ex[ (Bt − x)(Bs − x)] = t− s.

Definition 3.5. A stochastic process Xt is called stationary, if for every t > 0,
the process {Xt+h}h>0, has the same distrbution.

Proposition 3.6. Bt has stationary increments, i.e. for any fixed t, the pro-
cesses {Bt+h −Bt}h>0, have the same distibution as Bt − x.

Proof. Left as an exercise.

For the subsequent property of a Brownian motion we will need the theorem
below.

Theorem 3.7. Two random variables X and Y are independent if and only if for
any λ and µ

φ(X,Y )(λ, µ) = φX(λ)φY (µ)

where φX , φY and φ(X,Y ) are the characteristic functions of the random variables X,
Y , and (X, Y ), respectively.

Proof. Without proof.
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Proposition 3.8. Bt has independent increments, i.e. for all 0 6 t1 6 · · · 6 tk
the random variables

Bt1 − x,Bt2 −Bt1 , . . . , Btk −Btk−1
(9)

are independent.

Proof. Let 0 6 t1 < t2 < · · · < tn be a partition. For any real numbers λk, 1 6 k 6 n,
we have:

E exp
( n∑
k=1

λk(Btk −Btk−1
)
)

= E[E exp
( n∑
k=1

λk(Btk −Btk−1
)
)
|Ftn−1 ]

= E
[

exp
( n−1∑
k=1

λk(Btk −Btk−1
)
)
E
[

exp
(
λn(Btn −Btn−1)

)
|Ftn−1

]]
= E

[
exp

(
λn(Btn −Btn−1)

)]
E exp

( n−1∑
k=1

λk(Btk −Btk−1
)
)
.

Here we used the properties of the conditional expectation. Namely, that for k 6
n− 1, the random variables Btk −Btk−1

are Ftn−1-measurable, and that Btn −Btn−1

is independent of Ftn−1 . We repeat the above argument inductively to conclude

E exp
( n∑
k=1

λk(Btk −Btk−1
)
)

==
∞∏
k=1

E
[

exp
(
λk(Btk −Btk−1

)
)]
.

By Theorem 3.7, the random variables Btk −Btk−1
are independent.

Note that Propositions 3.3–3.8 were proved without any assumption on the con-
tinuity of paths of Bt. In Section 4.6 we left formula (7) without proof. Now we
prove this formula.

Proposition 3.9. Equality (7) holds.

Proof. Let t > s > 0, and let x = (x1, . . . , xn) ∈ Rn. Note that the processes
Bt−Bs and B̃t−s = Bs+(t−s)−Bs, starting at 0 at time s, have the same probability

distribution, i.e. B̃t−s, t > s, is a Brownian motion (Proposition 3.6). Hence,

Ex[|Bt −Bs|4] = E0[|B̃t−s|4] =
1

(2π(t− s))n2

∫
Rn
|x|4 e−

|x|2
2(t−s) dx

=
n∑
i=1

1

(2π(t− s)) 1
2

∫ ∞
−∞

x4
i e
− x2i

2(t−s) dxi

+
∑
i 6=j

1

(2π(t− s)) 1
2

∫ ∞
−∞

x2
i e
− x2i

2(t−s) dxi
1

(2π(t− s)) 1
2

∫ ∞
−∞

x2
j e
−

x2j
2(t−s) dxj

= 3n(t− s)2 + n(n− 1)(t− s)2 = n(n+ 2)(t− s)2.
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We just used the following facts: |x|4 = (x2
1 + · · · + x2

n)2 =
∑n

i=1 x
4
i +

∑
i 6=j x

2
ix

2
j ,

1

(2π(t−s))
1
2

∫∞
−∞ x

2
i e
− x2i

2(t−s) dxi = (t − s), as well as the computation of the integral

below:

1

(2π(t− s)) 1
2

∫ ∞
−∞

x4
i e
− x2i

2(t−s) dxi = − 1

(2π(t− s)) 1
2

(t− s)
∫ ∞
−∞

x3
i d
(
e−

x2i
2(t−s)

)
= − 1

(2π(t− s)) 1
2

(t− s) x3
i e
− x2i

2(t−s)

∣∣∣∣∞
−∞

+ 3(t− s) 1

(2π(t− s)) 1
2

∫ ∞
−∞

x2
i e
− x2i

2(t−s) dxi

= 3(t− s)2.

3.3 Local properties of a Brownian path

Here we list some properties of a Brownian path without proof. The proofs can be
found in the books of Karatzas and Shreve (1991), Revuz and Yor (2001).

Hölder continuity. For almost all ω ∈ Ω, the function t 7→ Bt is locally Hölder
continuous of order α for every α < 1

2
. In other words, for all T > 0, 0 < α < 1

2
, and

for almost all ω ∈ Ω there exists a constant CT,α(ω) such that for all s, t ∈ [0, T )

|Bt(ω)−Bs(ω)| 6 CT,α(ω) |t− s|α.

Modulus of continuity. For Brownian paths

limδ→0 sup
s,t<T :
|t−s|<δ

|Bt −Bs|√
2δ ln(1/δ)

= 1 a.s.

In general the modulus of continuity of a continuous function f on [0, T ] is a function
εf (δ) defined by the formula

εf (δ) = sup{|f(t)− f(s)| : t, s ∈ [0, T ), |t− s| < δ}

for sufficiently small δ. Thus, for almost every Brownian path B•(ω)

εB•(ω)(δ) 6
√

2δ ln(1/δ)

for all δ < δ0 where δ0 is sufficiently small.

Nowhere differentiability. Brownian paths are a.s. nowhere locally Hölder con-
tinuous of order α > 1

2
. In particular, Brownian paths are nowhere differentiable.
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Infinite variation. Brownian paths are of infinite variation on any interval [s, t]
a.s., i.e. a.s.

sup
n∑
i=1

|Bti −Bti−1
| =∞

where the supremum is taken over all subdivisions s 6 t1 6 · · · 6 tn 6 t of the
interval [s, t].

4. Markov Processes

Intuitevely speaking, the process Xt is Markov if, to make a prediction at time t on
what is going to happen in the future, it is useless to know the whole past up to
time t but only the present state Xt at time t.

4.1 Continuous-time Markov processes

Definition 4.1. Let B be the Borel σ-algebra of subsets of Rn. A function π :
Rn ×B→ [0, 1] is called a transition probability if

1. for every x ∈ Rn, the map A 7→ π(x,A) is a probability measure on Rn;

2. for every A ∈ B, the map x 7→ π(x,A) is B-measurable.

Definition 4.2. A transition function on (Rn,B) is a family Ps,t, 0 6 s < t, of
transition probabilities on (Rn,B) such that for every three numbers s < r < t,∫

Rn
Ps,r(x, dy)Pr,t(y, A) = Ps,t(x,A) (10)

for every x ∈ Rn and for every A ∈ B.

Relation (10) is called the Chapman-Kolmogorov equation. The transition func-
tion is said to be homogeneous if Ps,t depends on and s and t only through the
difference t−s, i.e. Ps,t = Ps−t, where Pt is the notation for P0,t. Equation (10) takes
the form:

Ps+t(x,A) =

∫
Ps(x, dy)Pt(y, A) (11)

for every s, t > 0.

Definition 4.3. Let (Ω,F , P ) be a probability space. A process Xt is a Markov
process with transition function Ps,t if for any Borel-measurable function f : Rn →
R,

E[f(Xt) |σ(Xu, u 6 s)] = (Ps,tf)(Xs) P − a.s.
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In the above definition, Ps,tf is a function Rn → R, such that for any x ∈ Rn it
is defined as follows:

(Ps,tf)(x) =

∫
Rn
f(y)Ps,t(x, dy). (12)

Definition 4.4. The process Xt is said to be homogeneous if its transition function
is homogeneous.

For a homogeneous Markov process

E[f(Xt) |σ(Xu, u 6 s)] = (Pt−sf)(Xs) P − a.s.

In the following, let ν = P ◦X−1
0 denote the initial distribution of the process Xt.

Theorem 4.5. A process Xt is a Markov process with transition function Ps,t and
initial measure µ if and only if for any sequence 0 = t0 < t1 < · · · tk and and for
any Borel-measurable functions fi : Rn → R, 0 6 i 6 k,

E
[ k∏
i=1

fi(Xti)
]

=

∫
Rn
ν(dx0)f0(x0)

∫
Rn
P0,t1(x0, dx1)f1(x1) . . .

∫
Rn
Ptk−1,tk(xk−1, dxk)fk(xk). (13)

Proof. We will only prove the “if” statement, i.e. we prove that if the process Xt is
Markov, then formula (13) holds. The converse statement, i.e. if formula (13) holds
then the process Xt is Markov, will be left without proof. We have:

E
[ k∏
i=0

fi(Xti)
]

= E
[ k−1∏
i=0

fi(Xti)E
[
fk(Xtk) |σ(Xs, s 6 tk−1)

]]
= E

[ k−1∏
i=0

fi(Xti) (Ptk−1,tkfk)(Xtk−1
)
]
. (14)

When passing from the first to the second expectation in (14) we used the fact
that F (Xti), 0 6 i 6 k − 1, are σ(Xs, s 6 tk−1)-measurable. The latter expectation
in (14) is of the product of k − 1 functions but has the same form as the first
expectation of the product of k functions. The (k − 1)th function in the latter
product is fk−1 Ptk−1,tkfk. We can proceed the same way to come to a product of
k − 2 functions, etc. After the last step we obtain:

E
[ k∏
i=0

fi(Xti)
]

= E
[
f(X0)P0,t1(f1Pt1,t2(f2Pt2,t3 . . . fk−1(Ptk−1tkfk) . . .))(X0)

]
. (15)

Using equality (12) as well as the fact that for any Borel-measurable function f :
Rn → R

E[f(X0)] =

∫
Rn
f(x) ν(dx),
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we conclude that the right-hand side of (15) equals to the right-hand side of (13).
The proof of the converse statement, i.e. if formula (13) holds then the process Xt is
Markov, will be left without proof. A proof can be found in the book by D. Revuz
and M. Yor “Continuous martingales and Brownian motion”, Chapter III.

Note that identity (13) shows that if we know the transition function of a Markov
process, we can construct its finite-dimensional distributions.

Theorem 4.6 (Existence of a Markov process). Given a transition function Ps,t
on (Rn,B) and a probability measure µ on (Rn,B), there exists a probability space
(Ω,F , Pµ) and a stochastic process Xt on it which is Markov with transition function
Ps,t and initial measure µ.

Proof. Let us define the finite-dimensional distributions. Fix a sequence 0 < t1 <
t2 < tk, and define:

νt1,...,tk(F1×· · ·×Fk) =

∫
F1

P0,t1(x, dx1)

∫
F2

Pt1,t2(x1, dx2) . . .

∫
Fk

Ptk−1,tk(xk−1, dxk).

ν0,t1,...,tk(F0 × F1 × · · · × Fk) =

∫
F0

µ(dx0)

∫
F1

P0,t1(x0, dx1)

∫
F2

Pt1,t2(x1, dx2)

. . .

∫
Fk

Ptk−1,tk(xk−1, dxk).

Let {t1, t2, . . . , tk} be an arbitrary sequence (not necessary ascending). Let σ be the
permutation of {1, . . . , k} such that tσ(1) < tσ(2) < · · · < tσ(k). Define

νt1,...,tk(F1 × · · · × Fk) = νtσ(1),...,tσ(k)(Fσ(1) × · · · × Fσ(k)).

The latter definition implies consistency condition 1 of the Kolmogorov extension
theorem. Further let σ̃ be the permutation of {1, . . . , k, k + 1, . . . , k +m} such that
tσ̃(1) < · · · tσ̃(k) < tσ̃(k+1) < · · · < tσ̃(k+m). Define Fi = Rn for k + 1 6 i 6 k +m. We
obtain:

νt1,...,tk,tk+1,...,tk+m(F1 × · · · × Fk × Rn × · · · × Rn︸ ︷︷ ︸
m

) = νt1,...,tk,tk+1,...,tk+m(F1 × · · · × Fk+m)

= νtσ̃(1),...,tσ̃(k),tσ̃(k+1),...,tσ̃(k+m)
(Fσ̃(1) × · · · × Fσ̃(k+m)) = νtσ(1),...,tσ(k)(Fσ(1) × · · · × Fσ(k))

(16)

= νt1,...,tk(F1 × · · · × Fk).
The third equality in (16) holds by the Chapman-Kolmogorov equations. Indeed,
some of the sets Fσ̃(i), 1 6 i 6 k + m, equal to Rn (namely, those that do not
coincide with one of the sets Fσ(i), 1 6 i 6 k), and therefore integration over these
sets can be excluded. Specifically, we exclude integration over those Fσ̃(i) which are
equal to Rn as follows: for any three numbers ti−1 < ti < ti+1, for any function
f : Rn → R, for any Borel subset F ⊂ Rn,∫

Rn
Pti−1,ti(xi−1, tdxi)

∫
F

Pti,ti+1
(xi, dxi+1)f(xi+1)

=

∫
F

f(xi+1)

∫
Rn
Pti−1,ti(xi−1, dxi)Pti,ti+1

(xi, dxi+1) =

∫
F

f(xi+1)Pti−1,ti+1
(xi−1, dxi+1)
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and therefore, time ti and the integration over Rn are excluded. This proves (16) and
consistency condition 2 of the Kolmogorov extension theorem. The latter theorem
implies the existence of a probability space and a stochastic processes Xt on it
whose finite-dimensional distributions are the measures νt1,...,tk . Let us prove that
Xt is a Markov process. We will apply Theorem 4.5. Indeed, let fi : Rn → R be
Borel-measurable functions. We obtain:

E
[ k∏
i=0

fi(Xti)
]

=

∫
Rnk

k∏
i=0

fi(xi) ν0,t1,...,tk(dx0dx1 · · · dxk)

=

∫
Rn
f0(x0)µ(dx0)

∫
Rn
f1(x1)P0,t1(x0, dx1) . . .

∫
Rn
fk(xk)Ptk−1,tk(xk−1, dxk).

By Theorem 4.5 the process Xt is Markov.

4.2 Markov property

Let (Rn,B), where B is the Borel σ-algebra of subsets of Rn, be a measurable space.
Further let Ω = (Rn)[0,∞) = {ϕ : [0,∞) → Rn}, let πt : Ω → Rn, πt(ϕ) = ϕ(t) be
the evaluation map, and let the σ-algebra of subsets of Ω be defined as follows:

F =
(
B
)[0,∞)

= σ{F ⊂ Ω : πt(F ) ∈ B ∀t ∈ [0,∞)}. Finally, let Xt be the
coordinate process, i.e. Xt(ω) = ω(t). The theorem below is similar to Theorem 4.6
but states the existence of a probability measure P and a Markov process on a
certain probability space which is (Ω,F , P ).

Theorem 4.7. Given a transition function Ps,t on (Rn,B), for any probability mea-
sure on (Rn,B), there exists a unique probability measure Pµ on (Ω,F) such that
the coordinate process Xt is Markov with transition function Ps,t and initial measure
µ.

Proof. Without proof. A proof can be found in the book by D. Revuz and M. Yor
“Continuous martingales and Brownian motion”, Chapter III.

Let (Ω,F) be a measurable space. Note that in Theorem 4.6 to an initial measure
µ we associated a probability measure Pµ. For the probability measure Pδx which
is associated to initial measure δx we will use the notation Px. Furthermore, the
symbols Eµ and Ex will be used for the expectations relative to the measures Pµ
and resp. Px.

Proposition 4.8. Let Z be an F-measurable random variable which is either positive
or bounded. Then,

Eµ[Z] =

∫
Rn
µ(dx)Ex[Z].

Proof. Without proof. A proof can be found in the book by D. Revuz and M. Yor
“Continuous martingales and Brownian motion”, Chapter III.
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Below, (Ω,F , Pµ) with the objects defined above is fixed as a probability space.
From now on, unless otherwise is stated, we will consider only homogeneous transi-
tion functions and associated homogeneous Markov processes. In this case we have:

Pµ(X0 ∈ A0, Xt1 ∈ A1, . . . , Xtn ∈ An)

=

∫
A0

µ(dx)

∫
A1

Pt1(x, dx1)

∫
A2

Pt2−t1(x1, dx2) . . .

∫
An

Ptn−tn−1(xn−1, dxn).

For every t > 0, we define the shift operator θt : Ω→ Ω as follows:

θt(ω) = ω(t+ · ), i.e.
(
θt(ω)

)
(s) = ω(t+ s) ∀s > 0.

Theorem 4.9 (Markov property). Let Z be an F-measurable random variable such
that it is either positive or bounded. Then

Eν [Z ◦ θt |σ(Xs, s 6 t)] = EXt [Z].

The expectation of the right-hand side of this formula is understood as Ex[Z]
with Xt substituted for x. In other words one can say that it is the composition of
two maps: ω 7→ Xt(ω) and x 7→ Ex[Z].

Idea of proof. By the definition of conditional probability, we have to show that for
any subset A ∈ σ(Xs, s 6 t),∫

A

(Z ◦ θt)(ω)Pµ(dω) =

∫
A

EXt [Z](ω)Pµ(dω).

A more general statement would be to prove

Eµ[(Z ◦ θt)Y ] = Eµ[EXt [Z]Y ]

for any σ(Xs, s 6 t)-measurable and positive random variable Y . Consider the case
when Y =

∏k
i=0 fi(Xti) and Z =

∏m
j=1 gj(Xτj), where fi and gj are positive Borel-

measurable functions and 0 = t0 < t1 < · · · < tk = t, 0 < τ1 < · · · < τm. Without
loss of generality we can assume that t0 = 0 and tk = t multiplying Y by functions
identically equal to 1 if necessary. We obtain:

Eµ
[
Y (Z ◦ θt)

]
= Eµ

[ k∏
i=0

fi(Xti)
m∏
j=0

gj(Xt+τj)
]

=

∫
Rn
µ(dx0)f0(x0)

∫
Rn
Pt1(x0, dx1)f1(x1) . . .

∫
Rn
Ptk−tk−1

(xk−1, dxk)fk(xk)×

×
∫
Rn
Ptk+1−t(xk, dxk+1)g0(xk+1) . . .

∫
Rn
Pτm−τm−1(xm−1, dxm)gm(xm)

=

∫
Rn
µ(dx0)f0(x0)

∫
Rn
Pt1(x0, dx1)f1(x1) . . .

. . .

∫
Rn
Pt−tk−1

(xk−1, dxk)fk(xk)Exk
[ m∏
j=1

g(Xτj)
]

= Eµ
[ k∏
i=0

fi(Xti)EXt
m∏
j=0

gj(Xτj)
]

= Eµ
[
Y EXt [Z]

]
.
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The general case that deals an arbitrary F -measurable random variable Z and a
σ(Xs, s 6 t)-measurable random variable Y we leave without proof. A proof can be
found in the book by D. Revuz and M. Yor “Continuous martingales and Brownian
motion”, Chapter III.

5. Martingales

5.1 Filtrations and Stopping times

Filtrations play a fundamental role in the theory of stochastic processes, namely, in
the definition of the basic objects of our consideration - martingales. In Section 2 we
introduced the concept of a filtration and defined processed adapted with respect to
filtration. Let us introduce further definitions. With every filtration Ft we associate
two other filtrations:

Ft− = σ
(⋃
s<t

Fs
)
, Ft+ =

⋂
ε>0

Ft+ε.

The filtration F∞ denotes

F∞ = σ
(⋃
t<∞

Ft
)

Note that

F∞ = σ
(⋃
t<∞

Ft−
)

= σ
(⋃
t<∞

Ft+
)
.

By convention, F0− = F0. We always have the inclusion Ft− ⊆ Ft ⊆ Ft+ .

Definition 5.1. If Ft = Ft+, the filtration Ft is called right-continuous.

Let Ft be a filtration.

Definition 5.2. A stopping time relative to the filtration Ft is a random variable
with values in [0,∞) such that for every t > 0

{ω : T (ω) 6 t} ∈ Ft.

Definition 5.3. Let T be a stopping time. The class of sets A ∈ F∞ such that

A ∩ {T 6 t} ∈ Ft for all t

is a σ-algebra which is denoted by FT .

Let us give examples of stopping times.

Proposition 5.4. Let A ⊂ Rn be an closed set, and let the process Xt have contin-
uous paths. Define

TA(ω) = inf{t > 0, Xt(ω) /∈ A}.

Then TA is a stopping time relative to the natural filtration F0
t = σ(Xs, s 6 t).
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Remark. The stopping time TA is called the exit time of the process Xt from the
set A.

Proof. We have to prove that for every t > 0, {TA 6 t} ∈ F0
t , or, which is the same,

that {TA > t} ∈ F0
t . But

{ω : TA(ω) > t} =
⋂

s∈Q, s6t

{ω : Xs(ω) ∈ A} ∈ F0
t .

Proposition 5.5. Let A ⊂ Rn be an open set, and let the process Xt have continuous
paths. Define

T̃A(ω) = inf{t > 0, Xt(ω) ∈ A}.

Then T̃A is a stopping time relative to the natural filtration F0
t = σ(Xs, s 6 t).

Remark. The stopping time T̃A is called the hitting time of A.

Definition 5.6. Let Xt be a process and T be a stopping time. The process XT
t =

Xt∧T is called the stopped process.

Remark. In the above definition t ∧ T denotes min{t, T}.

5.2 Definition and examples of martingales

Let (Ω,F ,Ft, P ) be a filtered probability space.

Definition 5.7. An Ft-adapted process Xt is called a martingale if E|Xt| < ∞
and

E
[
Xt | Fs

]
= Xs a.s. for all s 6 t.

Theorem 5.8. Let Bt be a one-dimensional Brownian motion. Then, the following
processes are martingales with respect to the natural filtration F0

t = σ(Bs, s 6 t).

1. Bt itself;

2. B2
t − t;

3. Mα
t = exp

(
αBt − α2

2
t
)

for all α ∈ R.

Proof. 1. Left as an exercise.
2. Note that E

∣∣B2
t − t

∣∣ 6 2t. Next,

E
[
B2
t | F0

s

]
= E

[(
Bs + (Bt −Bs)

)2 | F0
s

]
= B2

s + 2Bs E
[
Bt −Bs | F0

s

]
+ E

[
(Bt −Bs)

2 | F0
s

]
= B2

s + (t− s).
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We used the fact that Bt is an F0
t -martingale. The latter equality implies that a.s.

E
[
B2
t − t | F0

s

]
= B2

s − s.

3. Note that

E
[
exp(αBt)

]
=

1√
2πt

∫ ∞
−∞

eαx e−
x2

2t dx =
1√
2πt

∫ ∞
−∞

e−
(x−αt)2

2t e
α2t
2 dx = e

α2t
2 . (17)

We have:

E
[
exp(αBt) | F0

s

]
= exp(αBs)E

[
exp(α(Bt −Bs)) | F0

s

]
= exp(αBs)E

[
exp(α(Bt −Bs))

]
= exp(αBs) exp

(α2(t− s)
2

)
.

We used relation (17) and the fact that Bt − Bs does not depend on the σ-algebra
F0
s . The latter relation implies:

E
[
exp
(
αBt −

α2t

2

)
| F0

s

]
= exp

(
αBs −

α2s

2

)
.

5.3 Discrete-time martingales

In the definition of a martingale one can replace continuous time processes and fil-
trations with discrete time processes and filtrations. Namely, a discrete time process
Xn, n ∈ Z+ §(Z+ = N∪{0}), is called adapted with respect to a discrete-time filtra-
tion Fn, if for any n ∈ Z+, the random variable Xn is Fn-measurable. An adapted
discrete-time process Xn is called a martingale if E|Xn| < ∞ for any n ∈ Z+ and
E[Xn | Fn−1] = Xn−1.

Proposition 5.9. Let Xn, n ∈ Z+, be a martingale with respect to a discrete fil-
tration Fn, and let Hn, n ∈ Z+, be a positive bounded process such that Hn is
Fn−1-measurable for n > 1. Define the process Yn:

Y0 = X0, Yn = Yn−1 +Hn(Xn −Xn−1).

Then, the process Yn is a martingale. In particular, if T is an integer-valued stopping
time, then the stopped process XT

n is a martingale.

Proof. The first sentence (stating that Yn is a martingale) can be verified imme-
diately. Let us prove that the stopped process XT

n = Xn∧T is a martingale. Take
Hn = In6T . One can easily verify that if Yn is constructed with the help of Hn = In6T
is exactly the stopped process XT

n . Note that Hn = 1− I{T6n−1}, and therefore it is
Fn−1-measurable. This proves that XT

n is a martingale.

Definition 5.10. The process Yn defined in Proposition 5.9 will be denoted by (H ·
X)n.
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Theorem 5.11 (A discrete-time version of the optional stopping theorem). Let Xn

be a martingale and let S and T be two stopping times such that for every ω

S(ω) 6 T (ω) 6M <∞,

where M > 0 is a constant. Then

XS = E[XT | FS] a.s. (18)

Proof. Take Hn = I{n6T}− I{n6S}. If n > M , then

(H ·X)n −X0 = XT −XS. (19)

Indeed, let H ′n = I{n6T} and let H ′′n = I{n6S}. Then, if n > M , (H ′ ·X)n = XT and
(H ′′ ·X)n = XS. On the other hand, (H ·X)n −X0 = (H ′ ·X)n − (H ′′ ·X)n which
proves (19). Next, since (H ·X)n is a martingale, E[(H ·X)n] = E[X0]. Hence,

E[XT ] = E[XS]. (20)

Let us apply equality (20) to the pair of stopping times SB = S IB +M IBc and TB =
T IB +M IBc , where B ∈ FS. The fact that SB and TB are stopping times is to be
proved as an exercise. Note that XTB = XT IB +XM IBc and XSB = XS IB +XM IBc .
Equality (20) implies:

E[XT IB +XM IBc ] = E[XS IB +XM IBc ],

and therefore, for any FS-measurable set B,∫
B

XT (ω)P (dω) =

∫
B

XS(ω)P (dω)

which is equivalent to (18).

5.4 The optional stopping theorem

Lemma 5.12. Let T be a stopping time. Define Tk = +∞ if T > k, and Tk = q2−k,
if (q − 1)2−k 6 T < q2−k, q < 2kk. Then, Tk is a sequence of stopping times such
that the stopping time T is the decreasing limit of Tk as k →∞.

Proof. As k increases by one, each interval [(q − 1)2−k, q2−k] gets divided into two
intervals of equal length. This shows that the limit {Tk} is decreasing to T as k →∞.
Now note that the set {T < τ} ∈ Fτ . Indeed,

{T < τ} =
∞⋃
n=1

{
T 6 τ − 1

n

}
But {T 6 τ − 1

n
} ∈ Fτ− 1

n
⊂ Fτ , and therefore {T < τ} ∈ Fτ . Note that every

Tk can be represented as Tk = ([T 2k] + 1) 2−k where [ · ] denotes the integer part.
Analogously, we define tk = ([t 2k] + 1) 2−k. Clearly, tk−1 6 t < tk. We have:

{2kTk < 2kt} = {2kTk 6 2ktk−1} = {2kT < 2ktk−1} = {T < tk−1} ⊂ Ftk−1
⊂ Ft

which shows that Tk is a stopping time.

27



Theorem 5.13 (Doob’s martingale convergence theorem). Let Xt be a right-
continuous Ft-martingale with the property that

sup
t>0
E[X−t ] <∞,

where X−t = max(−Xt, 0). Then, the pointwise limit

X∞(ω) = lim
t→∞

Xt(ω)

exists a.s., and

Xt = E[X∞ | Ft].

Proof. Without proof. A proof can be found in the book by Z. Brzezniak, T. Za-
stawniak “Basic stochastic processes: a course through exercises”, Chapter 4.

Theorem 5.14. Suppose Xn → X where Xn and X are random variables such that
a.s. |Xn| 6 Z for all n and E|Z| < ∞. Let Fn be a decreasing (increasing) family
of σ-algebras whose intersection is a σ-algebra F (resp. whose union generates F).
Then a.s.

lim
n→∞

E[Xn | Fn] = E[X | F ].

Proof. Without proof. A proof can be found in the book by D. Revuz and M. Yor
“Continuous martingales and Brownian motion”, Chapter II.

Definition 5.15. A martingale Xt, t > 0, is called uniformly integrable if for
any ε > 0 there exists a constant K > 0 such that

sup
t>0

∫
{ω:|Xt(ω)|>K}

|Xt(ω)|P (dω) < ε.

Theorem 5.16 (Optional stopping theorem). Let Xt, t > 0, be a continuous martin-
gale, and let S 6 T be stopping times such that the stopped process XT

t is uniformly
integrable. Then,

E[XT | FS] = XS. (21)

In particular, the stopped process XT
t = Xt∧T is a martingale with respect to Ft∧T .

Proof. Let Sn = ([S 2n] + 1) 2−n, Tn = ([T 2n] + 1) 2−n (as in Lemma 5.12). Fix an
n ∈ N and define a uniformly integrable martingale

Ym = XTn∧m2−n

with respect the filtration Gm = Fm2−n , since Xt2−n is an Gt = Ft2−n-martingale.
Note that S̃ = [S 2n] + 1 is a Gm-stopping time since

{S̃ 6 m} = {Sn 6 m2−n} ∈ Fm2−n = Gm.
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We apply Theorem 5.11 to the pair of stopping times S̃ and T̃ = [T 2n] + 1. We
obtain:

E[XTn | FSn ] = E[YT̃ | GS̃] = YS̃ = XSn . (22)

The first equality in (22) holds becauseXT = YT̃ and FSn = GS̃ which follows directly
from the definitions of the process Ym, the filtration Gm, and the stopping time S̃.
The second equality in (22) holds by Theorem 5.11. Finally, the third equality in
(22) follows again from the definition of the process Ym. Taking the limit of the both
parts of (22) as n→∞ and applying Theorem 5.14 we obtain:

E[XT | FS] = XS.

Finally we conclude that the stopped process XT
t is a martingale by applying identity

(21) to the stopping times T ∧ s and T ∧ t where s < t.

5.5 Local martingales

Definition 5.17. Let Xt be an adapted process with respect to the filtration Ft. The
process Xt is called a local martingale with respect to the filtration Ft if there
exists a sequence of stopping times

0 = T0 6 T1 6 · · ·Tn 6 · · ·

such that Tn →∞ as n→∞ and the process XTn
t is an Ft-martingale.

The sequence Tn is called a reducing system of stopping times. Every martingale
is a local martingale since every sequence of stopping time increasing to infinity is
reducing by Theorem 5.16.

Remark 1. Equivalently in the definition of a local martingale we could require
that XTn

t is a martingale with respect to Ft∧Tn instead of Ft.

Proof of the remark. Let XTn
t be an Ft martingale, then, by the Optional stopping

theorem, XTn
t is also an FTn∧t-martingale.

Let us prove that if XTn
t is an FTn∧t-martingale, then it is an Ft-martingale for

every n. For simplicity of notations, let Tn = S, i.e. XS
t is an FS∧t-martingale. Take

r < t, and let A ∈ Fr. We claim that A ∩ {S > r} ∈ FS∧r. Let us prove this claim.
Take a ξ ∈ R. We have to prove that

(A ∩ {S > r}) ∩ {S ∧ r < ξ} ∈ Fξ.

Suppose ξ 6 r. Then, {r < S} ∩ {S ∧ r < ξ} = ∅. Now let ξ > r. Then, {S ∧ r <
ξ} = Ω. Now since A ∈ Fr and {S > r} ∈ Fr, then

(A ∩ {S > r}) ∩ {S ∧ r < ξ} ∈ Fr ⊂ Fξ, (23)

which proves the claim.
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Next, since XS
t is an FS∧t-martingale, we obtain:∫

A∩{S>r}
XS
t P (dω) =

∫
A∩{S>r}

XS
r P (dω).

On the other hand, taking into account that on the set {S 6 r}, one has S 6 r < t,
we have:∫

A∩{S6r}
XS
t P (dω) =

∫
A∩{S6r}

XS∧tP (dω) =

∫
A∩{S6r}

IS>0XSP (dω)

=

∫
A∩{S6r}

XS∧rP (dω) =

∫
A∩{S6r}

XS
r P (dω) (24)

Adding (23) to (24), we obtain that∫
A

XS
t P (dω) =

∫
A

XS
r P (dω)

which proves that E[XS
t |Fr] = XS

r .

Theorem 5.18. Let Xt, t > 0, be a continuous local martingale. Then the sequence
of stopping times

Tn = inf{t > 0 : |Xt| > n}

is always reducing. In particular, we can find a sequence of stopping times that
reduces Xt to a bounded martingale.

Proof. Note that by Proposition 5.4 every Tn is a stopping time. Let 0 < s < t, and
let Sn be a reducing sequence of stopping times. We apply the optional stopping
theorem (Theorem 5.16) to each martingale XSn

t and conclude that for every m > 0
the process XSn

Tm∧t is a martingale. This implies:

E[Xt∧Tm∧Sn | Fs] = Xs∧Tm∧Sn .

By Theorem 5.14 we can pass to the limit as n→∞ in the both parts of the above
equality. We obtain that a.s.

E[Xt∧Tm | Fs] = Xs∧Tm .

Hence, XTm
t is an Ft-martingale. Note that |XTn

t | 6 n, and therefore, XTn
t is a

bounded martingale.

Remark. Instead of the sequence {Tn} we could consider any sequence of stop-

ping times T ′n 6 Tn such that limn→∞ T
′
n = ∞. Clearly, X

T ′n
t would be a bounded

maringale.

Definition 5.19. Let τ > 0 be a random time. A process Xt, t > 0, is called a local
martingale on [0, τ) if there is a sequence of stopping time Tn ↑ τ such that XTn

t is
a martingale.
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Theorem 5.20. Suppose Xt, t > 0, is a local martingale, and for every t > 0,

E
[

sup
06s6t

|Xs|
]
<∞. (25)

Then, Xt is a martingale.

Proof. Clearly, E|Xt| <∞. Now let {Tn} be a reducing sequence of stopping times
so that

E[XTn
t | Fs] = XTn

s a.s. (26)

Assumption (25) allows us to apply Theorem 5.14 since |XTn
t | 6 sup06s6t |Xs| and

the latter function is integrable. Taking the limit in (26) as n→∞, we obtain:

E[Xt | Fs] = Xs a.s.

This proves that Xt is a martingale.

Corollary 5.21. A bounded local martingale is a martingale.

5.6 The variance process

Let (Ω,F ,Ft, P ) be a filtered probability space.

Definition 5.22. An Ft-adapted process Xt is called a submartingale if E|Xt| <∞
and

E(Xt|Fs) > Xs a.s. for all s 6 t.

Theorem 5.23 (Doob–Meyer’s theorem). Let Xt be a continuous submartingale
such that for every constant a > 0, the family of rundom variables

{Xτ , τ is a stopping time with τ 6 a}

is uniformly integrable. Then there exists a unique decomposition

Xt = Mt + At

where Mt is a continuous martingale and At is a continuous non-decreasing Ft-
adapted process starting at zero and such that E(At) <∞.

Proof. Without proof.

Lemma 5.24. Let Xt be a continuous martingale. Then X2
t is a continuous sub-

martingale satisfying the assumptions of Theorem 5.23.
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Proof. Let τ be a stopping time with τ 6 a where a is a constant. By the Optional
stopping theorem, we obtain:

E[(Xa −Xτ )
2|Fτ ] = E[X2

a |Fτ ]− 2XτE[Xa|Fτ ] +X2
τ = E[X2

a |Fτ ]−X2
τ .

Since the left-hand side is positive, we obtain that

E[X2
a |Fτ ] > X2

τ . (27)

The above inequality, applied to two times s < t, implies, in particular, that X2
t

is a submartingale. Fix an arbitrary ε > 0, and choose a constant K > 0 so that
1
K
E|Xa|2 < ε. Applying Chebyshev’s inequality, we obtain:

P(|Xτ | > K) 6
1

K2
E|Xτ |2 6

1

K2
E|Xa|2.

We applied (27) after taking expectations of the both parts. Again, by Chebyshev’s
inequality,∫

Ω

I{|Xτ |>K} |Xτ (ω)|P(dω) 6
(∫

Ω

I{|Xτ |>K} P(dω)
) 1

2
(∫

Ω

|Xt(ω)|2P(dω)
) 1

2

6 P(|Xτ | > K)
1
2

(
E|Xa|2

) 1
2 6

1

K
E|Xa|2 < ε.

In general, if Xt is a martingale, X2
t fails to be a martingale.

Theorem 5.25. Let Xt be a square integrable continuous Ft-martingale. Then, there
exists a process 〈X〉t, t > 0, which is continuous, non-decreasing, and such that the
process X2

t − 〈X〉t is a continuous martingale. The proces 〈X〉t is a.s. unique.

Proof. By Lemma 5.24, X2
t is a submartingale sarisfying the assumptions of Doob-

Meyer’s theorem. Therefore, there exists a continuous martingale Mt and a non-
decreasing Ft continuous apadted process, denoted by 〈X〉t, starting at zero and
such that

X2
t = Mt + 〈X〉t.

This also implies that X2
t − 〈X〉t is a continuous martingale. By the uniqueness of

the Doob-Meyer’s decomposition, the process 〈X〉t is unique.

Definition 5.26. The process 〈X〉t defined in Theorem 5.25 is called the variance
process.

Theorem 5.27. Every continuous Ft-local martingale starting at zero which is of
bounded variation on every compact interval is constantly equal to zero.
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Proof. Let

Vt = sup
{ n∑
k=1

|Xtk −Xtk−1
| : 0 = t0 < t1 < · · · < tn = t

}
be the variation of Xt on [0, t]. Since Xt is continuous, and Vt is bounded on every
compact interval, Vt is continuous. Let Sk = inf{s : Vs > k}. Note that if t 6 S,
then |Xt| 6 k. By Theorem 5.18, Sk is a reducing sequence of stopping times, and
the process Yt = XSk

t is a bounded martingale with respect to Ft. Note that:

E[(Yt − Ys)2 | Fs] = E[Y 2
t | Fs]− 2Ys E[Yt | Fs] + Y 2

s = E[Y 2
t − Y 2

s | Fs]. (28)

Take a partition of {0 = t0 < t1 < · · · < tn = t} of the interval [0, t]. We have:

E[Y 2
t ] = E

[ n∑
i=1

Y 2
ti
− Y 2

ti−1

]
= E

[ n∑
i=1

(Yti − Yti−1
)2
]
6 E

[
sup
i>1
|Yti − Yti−1

|V (t ∧ S)
]

6 k E
[
sup
i>1
|Yti − Yti−1

|
]
.

Let the mesh δn = maxi>1 |ti − ti−1| tend to zero as n → ∞, and note that since

|Yti | = |XSk∧ti | 6 k for all 1 6 i 6 n, then supi>1

[
|Yti − Yti−1

|
]
6 2k. By Lebesgue’s

theorem we can pass to the limit under the expectation sign. This implies that

lim
n→∞

E sup
i>1

[
|Yti − Yti−1

|
]

= 0.

Therefore E[Y 2
t ] = 0, and hence, Yt = XSk∧t = 0 a.s. This proves that there exists

a set Ω′ ⊂ Ω of full P -measure such that XSk
t = 0 for all rational t > 0 and for all

ω ∈ Ω′. By continuity of paths, XSk
t = 0 for all t > 0 and for all ω ∈ Ω′. Finally we

can find another set Ω′′ ⊂ Ω′ of full P -measure such that Xt = 0 for all t > 0 and
for all ω ∈ Ω′′.

Lemma 5.28. Let Xt be a martingale and T be a stopping time. Then 〈XT 〉t =
〈X〉Tt .

Proof. By what was proved X2
t − 〈X〉t is a martingale. By the optional stopping

theorem (XT
t )2 − 〈X〉Tt is also a martingale. By uniqueness of the variance process

for a martingale, 〈XT 〉t = 〈X〉Tt .

Suppose Xt and Yt, t > 0, are martingales. Then, in general, XtYt fails to be a
martingale.

Theorem 5.29. Let Xt and Yt be martingales which are continuous and start at
zero. Then there exists a unique, continuous process 〈X, Y 〉t that has bounded vari-
ation on every compact interval and starts at zero, such that XtYt − 〈X, Y 〉t is a
martingale.
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Proof. Define

〈X, Y 〉t =
1

4

(
〈X + Y 〉t − 〈X − Y 〉t

)
.

Clearly, 〈X, Y 〉t is continuous, predictable, and of bounded variation. The latter
property holds since 〈X, Y 〉t is defined as a difference of two increasing processes.
Finally,

XtYt − 〈X, Y 〉t =
1

4

(
(Xt + Yt)

2 − 〈X + Y 〉t −
(
(Xt − Yt)2 − 〈X − Y 〉t

))
.

As a difference of two martingales, XtYt − 〈X, Y 〉t is a martingale. Let us prove
the uniqueness of 〈X, Y 〉t. Suppose there are two processes At and Bt satisfying
requirements of the theorem. Then

At −Bt = (XtYt − At)− (XtYt −Bt)

is a continuous martingale which has bounded variation on every compact interval.
By Theorem 5.27, At − Bt is constantly equal to zero. This implies the uniqueness
of the process 〈X, Y 〉t.

5.7 Semimartingales

Let (Ω,F ,Ft, P ) be a probability space.

Definition 5.30. A stochastic process Xt, t > 0, is called a semimartingale
if there is an Ft-local martingale Mt, t > 0, and a cádlág (the paths are right-
continuous with left limits) Ft-adapted process At, t > 0, of locally bounded variation
and starting at 0 such that Xt = Mt + At for all t > 0.

Theorem 5.31. If Xt is a continuous semimartingale, then the decomposition Xt =
Mt + At is unique.

Proof. Suppose X = M+A = M ′+A′. Then A−A′ = M ′−M is a continuous local
martingale locally of bounded variation and starting at zero. By Theorem 5.27, it is
constantly equal to zero.

6. Stochastic Integral

Let (Ω,F , P ) be a probability space. Let Bt be an n-dimensional Brownian motion,
and let Ft = σ(Bs, s 6 t) be the natural filtration.

6.1 Construction of the stochastic integral and Itô’s isometry

The class of integrands

Definition 6.1. Let Φ = Φ(S, T ) be the class of functions

f(t, ω) : [0,∞)× Ω→ R

such that
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1. (t, ω) 7→ f(t, ω) is B×F-measurable, where B denotes the σ-algebra of Borel
subsets of [0,∞).

2. f(t, ·) is Ft-adapted.

3. E
[ T∫
S

f 2(t, ω) dt
]
<∞.

Now we are going to show how to define the stochastic integral

I[f ](ω) =

∫ T

S

f(t, ω) dBt(ω)

for functions f ∈ Φ, where Bt is a one-dimensional Brownian motion. The idea is
the following: first we define the stochastic integral for simple functions from Φ.
Then we show that every function f ∈ Φ can be represented as a limit of simple
functions φn in some sense. Then we define the stochastic integral

∫
fdBt as a limit∫

φndBt.

Definition of the Stochastic integral for simple functions

A function φ ∈ Φ is called simple if it has the form:

φ(t, ω) =
N−1∑
j=0

ej(ω) · I[tj ,tj+1) (29)

where S = t0 < t1 < · · · tN = T is a partition. Note that since φ ∈ Φ, it is Ft-
adapted. Therefore, ej is Ftj -measurable. For functions of form (29) we define the
stochastic integral by the formula:

I[φ] =

∫ T

S

φ(t, ω) dBt(ω) =
N−1∑
j=0

ej(ω)(Btj+1
−Btj)(ω) (30)

Itô’s isometry

Theorem 6.2 (Itô’s isometry for simple functions). If φ ∈ Φ is bounded and simple
then

E
[(∫ T

S

φ(t, ω)dBt(ω)
)2]

= E
[∫ T

S

φ2(t, ω) dt
]
. (31)

Proof. Define ∆Bj = Btj+1
−Btj . Then,

E[eiej∆Bi∆Bj] =

{
0, if i 6= j,

E[e2
j ] (tj+1 − tj), if i = j.

Indeed, if i < j then the random variables ei ej ∆Bi and ∆Bj are independent.
Indeed, ei(Bti+1

−Bti) is Fti+1
-measurable and therefore is Ftj -measurable (i+1 6 j),
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ej is Ftj -measurable. Therefore, the product ei ej ∆Bi is Ftj -measurable. On the
other hand, ∆Btj is independent of Ftj . Hence, ei ej ∆Bi and ∆Bj are independent
for i < j. This implies that

E[eiej∆Bi ∆Bj|Fti ] = eiej∆Bi E[∆Bj|Ftj ] = 0, and

E[e2
i∆B

2
i |Fti ] = e2

i E[(Bti+1
−Bti)

2] = e2
i (ti+1 − ti).

Hence,

E
[(∫ T

S

φ(t, ω)dBt(ω)
)2]

=
N−1∑
i,j=0

E[eiej ∆Bi∆Bj] =
N−1∑
j=1

E[e2
j ] (tj+1 − tj)

= E
[∫ T

S

φ2(t, ω) dt
]
.

Approximation of the integrands from Φ by simple functions

Lemma 6.3. Let g ∈ Φ be bounded and g(·, ω) be continuous for each ω. Then,
there exist simple functions φn ∈ Φ such that

lim
n→∞

E
[∫ T

S

(g − φn)2dt
]

= 0.

Proof. Define φn =
∑N−1

j=0 g(tj, ω) I[tj ,tj+1)(t). Since g ∈ Φ, g(tj, ·) is Ftj -measurable,
and therefore φn is Ft-adapted. Clearly, since every indicator function I[tj ,tj+1)(t) is
B-measurable, and every g(tj, ω) is Ftj -measurable (and therefore F -measurable),
φn is B×F -measurable. Hence φn ∈ Φ. Since g(·, ω) is continuous for every ω, then

lim
n→∞

∫ T

S

(g − φn)2dt = 0.

Since g is bounded, φn is bounded as well, and therefore, by Lebesgue’s theorem,

lim
n→∞

E
[∫ T

S

(g − φn)2dt
]

= 0.

Definition 6.4. Let Kn, n ∈ N, be a sequence of Lebesgue-integrable functions on
R possessing the properties:

1. Kn > 0;

2.
∫∞
−∞Kn(x)dx = 1;

3. limn→∞ supx 6=I |Kn(x)| = 0.
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The sequence of functions Kn is called an approximate identity.

Proposition 6.5. Let {Kn} be an approximate identity, and let f ∈ L1. Then
{f ∗Kn}, where (f ∗Kn)(t) =

∫∞
−∞Kn(s− t) f(s) ds, converges to f in the Lp-norm,

1 6 p <∞.

Proof. Without proof. A proof can be found in the book by Hoffman “Banach spaces
of analytic functions”, 1962, p. 22.

Lemma 6.6. Let h ∈ Φ be bounded. Then there exist bounded functions gn ∈ Φ

such that gn(·, ω) is continuous for every ω and n, and

lim
n→∞

E
[∫ T

S

(h− gn)2 dt
]

= 0.

Proof. Suppose M is a constant with the property |h(t, ω)| 6 M for all (t, ω). For
each n ∈ N, let ψn be a non-negative, continuous function on R such that

1. ψn(x) = 0 for x 6 − 1
n

and x > 0,

2. and
∫∞
−∞ ψn(x)dx = 1.

The sequence ψn is an approximate identity. Define

gn(t, ω) =

∫ t

0

ψn(s− t)h(s, ω) ds (32)

and note that the following properties of these functions. If s > t, then ψn(s−t) = 0,
and, therefore, the integration in (32) can be extended to [0,∞). Furthermore, if
t > 1

n
and s < 0, then s − t 6 − 1

n
, and hence, ψn(s − t) = 0. This implies that

for t > 1
n
, we can extend the integration in (32) to (−∞,∞). Thus, if t > 1

n
,

then gn(t, ω) = (h(·, ω) ∗ ψn)(t). As a convolution, gn is t-continuous for each ω
and n, and gn(t, ω) 6 M . Since h(s, ω) is B × F -measurable, so is the product
ψn(s− t)h(s, ω), and therefore the integral on the right-hand side of (32) is a limit
of B × F -measurable functions. Next, h(s, ω) is Fs-measurable, and therefore Ft-
measurable since s 6 t. Again, the integral on the right-hand side of (32) can
be represented as a limit of Ft-measurable functions and therefore gn(t, ω) is Ft-
measurable for all t > 0. Note that,

E
[∫ T

S

gn(s, ω)2 ds
]
<∞

since gn is bounded. Hence, gn ∈ Φ. By Proposition (6.5)∫ T

S

(gn(s, ω)− h(s, ω))2 ds 6 2

∫ T

S

(
gn(s, ω)− (h(·, ω) ∗ ψn)(s)

)2
ds

+ 2

∫ T

S

((h(·, ω) ∗ ψn)(t)− h(s, ω))2 ds→ 0 as n→∞.
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Since both functions gn and h are bounded, by Lebesgue’s theorem,

lim
n→∞

E
[∫ T

S

(gn(s, ω)− h(s, ω))2 = 0
]
.

Lemma 6.7. Let f ∈ Φ. Then there exists a sequence {hn} such that it is bounded
and

lim
n→∞

E
[∫ T

S

(f − hn)2 ds
]

= 0. (33)

Proof. Define

hn(t, ω) =


−n, if f(t, ω) < −n,
f(t, ω) if − n 6 f(t, ω) 6 n,

n, if f(t, ω) > n.

Note that |hn(t, ω)| 6 |f(t, ω)|. Hence E
[∫ T
S
hn(s, ω)2ds

]
< E

[∫ T
S
f(s, ω)2ds

]
<

∞. Clearly hn possesses also other properties of the class Φ by its construction.
Therefore, hn ∈ Φ. Next, hn → f for each ω ∈ Ω and each t ∈ [S, T ]. By Lebesgue’s
theorem, in (33) we can pass to the limit under the expectation and the integral
signs which will imply (33).

Summarizing Lemmas 6.3, 6.6, and 6.7, we obtain the following:

Lemma 6.8. Let f ∈ Φ, then there exists a system ψn of simple functions such
that

lim
n→∞

E
[∫ T

S

(f − ψn)2 ds
]

= 0.

Proof. Proof follows from Lemmas 6.3, 6.6, and 6.7.

Definition of the stochastic integral and Itô’s isometry

Theorem 6.9. Let f ∈ Φ, and let ψn ∈ Φ be a sequence of simple functions such
that

lim
n→∞

E
[∫ T

S

(f − ψn)2 dt
]

= 0. (34)

Then there exist a random variable I[f ](ω) such that

lim
n→∞

E
(
I[f ]− I[ψn]

)2

= 0

where I[ψn] is the stochastic integral of the simple function ψn defined by (30).
Moreover I[f ] does not depend on the choice of a sequence ψn converging to f in the
L2(Ω× [S, T ])-norm (as in (34)).
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Definition 6.10 (Stochastic integral). The random variable I[f ] defined in the theo-
rem above is called the stochastic integral of f with respect to a Brownian motion.
It is denoted by the symbol

I[f ] =

∫ T

S

f(t, ω) dBt(ω).

Proof of Theorem 6.9. By Theorem 6.2 (Itô’s isometry for simple functions) we ob-
tain:

E
[∫ T

S

(ψm − ψn)2 dt
]

= E
(
I[ψn]− I[ψm]

)2

. (35)

Since ψn converges to f in the L2(Ω × [S, T ])-norm, it is a Cauchy sequence with
respect to this norm. Therefore, the sequence I[ψn] on the right-hand side of (35)
is a Cauchy sequence in the L2(Ω)-norm. But the L2(Ω)-space is complete. Hence,
there exists a limit of I[ψn] in this space, i.e. there exists a random variable I[f ]
such that

lim
n→∞

E
(
I[f ]− I[ψn]

)2

= 0.

Suppose ψ′n is another sequence of simple functions that converges to f with respect
to the L2(Ω× [S, T ])-norm. Then, Itô’s isometry implies:

E
[∫ T

S

(ψ′n − ψn)2 dt
]

= E
(
I[ψn]− I[ψ′n]

)2

.

The left-hand side of this equality converges to zero since both sequences ψn and
ψ′n converge to f . Therefore the right-hand side converges to zero too. This proves
that

lim
n→∞

I[ψn] = lim
n→∞

I[ψ′n]

in the L2(Ω)-norm. Hence the stochastic integral I[f ] =
∫ T
S
f(t, ω)dBt(ω) does not

depend on the choice of the approximating system ψn.

Corollary 6.11 (Itô’s isometry). For any f ∈ Φ,[(∫ T

S

f(t, ω)dBt

)2]
= E

[∫ T

S

f(t, ω)2 dt
]

(36)

Proof. For any simple function ψn by Theorem 6.2 it holds that

E
[(∫ T

S

ψn(t, ω)dBt

)2]
= E

[∫ T

S

ψn(t, ω)2 dt
]

Passing to the limit as n → ∞ in the both parts of the above idenity we obtain
(36). Namely, the convergence of expectations holds by the simple norm inequality:∣∣‖f‖ − ‖g‖∣∣ 6 ‖f − g‖ which was applied to the L2-norms above.
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6.2 Properties of the stochastic integral

Theorem 6.12. Let f, g ∈ Φ(0, T ) and let 0 6 S < U < T . Then

(i)
T∫
S

f dBt =
U∫
S

f dBt +
T∫
U

f dBt a.s.

(ii)
T∫
S

(cf + g)dBt = c ·
T∫
S

f dBt +
T∫
S

g dBt a.s., where c is a constant

(iii) E
[ t∫
S

f dBs

]
= 0 for all S 6 t 6 T .

(iv)
∫ t
S
f dBs is Ft-measurable for all S 6 t 6 T .

Proof. Properties (i) and (ii) clearly hold for simple functions. If f ∈ Φ is arbitrary
we take a sequence of simple functions ψn converging to f as n→∞. Taking limits
from the both sides in (i) and (ii) in the L2(Ω)-norm we obtain (i) and (ii) for f .
Let us prove (iii). Again, (iii) clearly hold when f is a simple function of form (29),

i.e. when the stochastic integral
t∫
S

f dBs is given by (30). Indeed, for each summand

in (30) we obtain:

E
[
ej(ω)(Btj+1

−Btj)
]

= E[ej]E[Btj+1
−Btj ] = 0.

The equality holds since ej is Ftj -measurable and Btj+1
−Btj is independent of Ftj .

Next if ψn → f as n→∞ in the L2(Ω× [S, t])-norm, then

∣∣∣E [∫ t

S

f dBs

]
− E

[∫ t

S

ψn dBs

] ∣∣∣ 6 E ∣∣∣∫ t

S

f dBs −
∫ t

S

ψn dBs

∣∣∣
6
(
E
(∫ t

S

f dBs −
∫ t

S

ψn dBs

)2) 1
2 → 0 as n→∞.

To show (iv), note that if ψ ∈ Φ is simple, then∫ t

S

ψ(s, ω) dBs =
N−1∑
j=0

ej(ω) (Btj+1
−Btj),

where tjN = t, is an Ft-measurable function. If ψn → f as n → ∞ with respect

to the L2(Ω × [S, s])-norm, then
∫ t
S
ψn dBs →

∫ t
S
f dBs with respect to the L2(Ω)-

norm, and therefore the limit
∫ t
S
f dBs is Ft-measurable as a limit of Ft-measurable

functions.

Note that the stochastic integral
t∫

0

f dBs can be also regarded as a stochastic

process where t is the time. We are going to show its continuity in t and that it is
a martingale. We will need the following lemma.
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Lemma 6.13. Suppose for each n, Z
(n)
t , t > 0, is a martingale with respect to the

filtration Ft, and for each t > 0, Z
(n)
t → Zt as n→∞ with respect to the Lp-norm,

p > 1. Then Zt, t > 0, is a martingale.

Proof. It suffices to prove the statement for the case p = 1 since the L1-convergence
is the weakest. We obtain:

E
∣∣∣E[Z

(n)
t | Fs]− E[Zt | Fs]

∣∣∣ = E
∣∣∣E[Z

(n)
t − Zt | Fs]

∣∣∣ 6 E[E[|Z(n)
t − Zt| | Fs]

]
= E|Z(n)

t − Zt| → 0 as n→∞.

Since E[Z
(n)
t | Fs] = Z

(n)
s , we obtain from the above inequalities that

lim
n→∞

Z(n)
s = E[Zt | Fs]

On the other hand

lim
n→∞

Z(n)
s = Zs

by assumption. Therefore E[Zt | Fs] = Zs.

Theorem 6.14. The stochastic integral integral
t∫

0

f dBs is a martingale.

Proof. First we prove the statement when f is a simple function. Let us prove that
if s 6 t, then

E
[∫ t

s

ψ dBr | Fs
]

= 0.

Indeed, if ψ =
∑N−1

j=0 ej I[tj+1,tj), then
∫ t
s
ψ dBr =

∑N−1
j=p ej (Btj+1

−Btj) where tp = s.
Compute the conditional expectation with respect to Fs of each summand of the
stochastic integral. We obtain:

E[ej (Btj+1
−Btj) | Fs] = E

[
E [ej (Btj+1

−Btj) | Ftj | Fs]
]

= E
[
ej E[(Btj+1

−Btj) | Ftj ] | Fs
]

= 0.

Clealry, E[(Btj+1
−Btj) | Ftj ] = 0. Moreover, ej is Ftj -measurable, and therefore was

written outside the conditional expectation sign. By additivity, E
[∫ t
s
ψ dBr | Fs

]
= 0.

Now again applying the additivity property of the stochastic integral (property (i)),
we obtain:

E[

∫ t

0

ψ dBr | Fs
]

= E
[ ∫ s

0

ψ dBr | Fs
]

+ E
[ ∫ t

s

ψ dBr | Fs
]

= E
[ ∫ s

0

ψ dBr | Fs
]

=

∫ s

0

ψ dBr.

By what was proved E
[ ∫ t

s
ψ dBr | Fs

]
= 0. Moreover, Property (iv) of Theorem 6.12

implies that
∫ s

0
ψ dBr is an Fs-measurable random variable. Note that In converge

to I with respect to the L2-norm. Let us apply Lemma 6.13 which says that in this
case I(t, ·) is a martingale.
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Lemma 6.15. Let Mt be a continuous martingale, and let 0 < T < ∞. Then for
any ε > 0,

P
(

sup
[0,T ]

|Mt| > ε
)
6

1

εp
E
[
|MT |p

]
.

Proof. Without proof.

Theorem 6.16. Let f ∈ Φ(0, T ), then there exist a t-continuous version of the

stochastic integral
t∫

0

f dBs.

Remark. In other words, we have to prove that there exists a continuous process
Jt such that for every 0 6 t 6 T

Jt =

∫ t

0

f dBs a.s.

Proof. Let ψn be a sequence of simple functions converging to f , and let In(t, ω) =∫ t
0
ψn(s, ω) dBs, I(t, ω) =

∫ t
0
f(s, ω) dBs. Note that In(t, ω) =

∑N−2
j=0 ej(ω)(Btj+1

−
Btj)+(Bt−BtN−1

), and therefore it is a continuous martingale. Then In(t, ·)−Im(t, ·)
is also a continuous martingale. By Lemma 6.15,

P
[
sup
[0,T ]

|In(t, ω)−Im(t, ω)| > ε
]
6

1

ε2
E[(In−Im)2] =

1

ε2
E
[∫ T

0

(ψn−ψm)2ds
]
→ 0

as n,m→∞. Hence, we can choose a subsequence nk ↑ ∞ such that

P
[
sup
[0,T ]

|Ink(t, ω)− Ink+1
(t, ω)| > 2−k

]
< 2−k.

By Borelli-Cantelli lemma,

P
[
∀n > 0, ∃ k > n : sup

t∈[0,T ]

|Ink+1
− Ink | > 2−k

]
= 0,

since if Ek = {ω : supt∈[0,T ] |Ink+1
−Ink | > 2−k}, then P

(⋂∞
n=1

⋃∞
k=nEk

)
= 0. Hence,

P
[
∃n > 0, ∀ k > n : sup

t∈[0,T ]

|Ink+1
− Ink | 6 2−k

]
= 1.

This implies that for almost all ω ∈ Ω, Ink converges uniformly in t ∈ [0, T ]. Let Jt
be the limit of Ink . Clearly Jt is continuous in t a.s. Next, since Ink(t, ω) → I(t, ω)
as k → ∞ for all t in the L2(Ω)-norm, then I(t, ·) = Jt a.s. for all t ∈ [0, T ]. The
theorem is proved.

Everywhere below the stochastic integral
∫ t

0
f dBs means its continuous version.
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6.3 An extension of the stochastic intergral and multi-dimensional
stochastic intergrals

The stochastic integral can be defined for a larger class of integrands. For this,
we relax the measurability Condition 2 of Definition 6.1. Let us assume that there
exists a larger filtration Gt, i.e. such that F0

t ⊂ Gt, t > 0, such that the following
replacement for Condition 2 of Definition 6.1

2’. a) Bt is a martingale with respect to Gt;
b) f(t, ·) is Gt-adapted.

To emphasize the fact that Condition 2’ is used instead of Condition 2, we will use
the notation Φ(S, T,Gt) for the corresponding class of integrands.

We are going to apply this definition to define a multi-dimensional stochastic
integral. Let Bk

t be the k,th coordinate of an n-dimensional Brownian motion Bt,
and let

Fnt = σ(B1
s1
, . . . , Bn

sn ; s1, . . . , sn 6 t). (37)

Then every Brownian motion Bk
t is a martingale with respect to Fnt .

Let Φ′ = Φ(S, T,Fnt ).

Definition 6.17. Let Bt = (B1
t , . . . B

n
t ) be an n-dimensional Brownian motion, and

let v = vij(t, ω) be an n×m matrix such that vij ∈ Φ′ for all 1 6 i 6 m, 1 6 j 6 1.
Let us define the stochastic integral as follows:∫ T

S

v dBt =

∫ T

S

( v11 ··· v1n
...

...
vn1 ··· vmn

)( dB1
t

...
dBnt

)

where the right-hand side of this formula is an m-dimensional vector whose ith
component equals to

n∑
j=1

∫ T

S

vij dB
j
t .

7. Itô’s formula

7.1 The one-dimensional Itô formula

Definition 7.1 (1-dimensional Itô process.). Let Bt be a 1-dimensional Gt-Brownian
motion on (Ω,F , P ). A 1-dimensional Itô process is a stochastic process Xt on
(Ω,F , P ) of the form:

Xt = X0 +

∫ t

0

u(s, ω)ds+

∫ t

0

v(s, ω)dBs (38)

where v ∈ Φ(0, T,Gt) for all T > 0, and u ∈ L2([0,∞)× Ω) is Gt-adapted.

43



Note that, an Itô process Xt is a semimartingale. For the theorem below, we will
need the concept of the covariance process of two semimartingales.

Definition 7.2. Let Xt = At +Mt and Yt = Ct +Nt be two semimartingales where
Mt and Nt are their martingale parts. The covariance process 〈X, Y 〉t is defined as
follows:

〈X, Y 〉t = 〈M,N〉t.

Theorem 7.3. Let Xt be an Itô process given by (38), and let g(t, x) ∈ C2([0,∞)×
R), i.e. g is twice continuously differentiable on [0,∞)× R). Then

Yt = g(t,Xt)

is again an Itô process, and

Yt = g(0, X0) +

∫ t

0

∂g

∂t
(s,Xs) ds+

∫ t

0

∂g

∂x
(s,Xs) dXs +

1

2

∫ t

0

∂2g

∂x2
(s,Xs)d〈X〉s.

(39)

Remark. In (39), dXt = u(t, ω) dt + v(t, ω) dBt according to (38). Also, the last
integral is understood as a Riemann-Stieltjes integral with respect to the increasing
funcion 〈X〉s.

Lemma 7.4. Let Xt be an Itô process given by (38). Then

〈X〉t =
〈∫ •

0

v(s, ·) dBs

〉
t

=

∫ t

0

v2(s, ·) ds.

Proof. Left as an exercise.

Remark. Equivalently (39) can be written as follows:

g(t,Xt) = g(0, X0) +

∫ t

0

(∂g
∂s

(s,Xs) + u(s, ·) ∂g
∂x

(s,Xs) +
1

2
v(s, ·)2 ∂

2g

∂x2
(s,Xs)

)
ds

+

∫ t

0

v(s, ·) ∂g
∂x

dBs. (40)

Proof of Theorem 7.3. Let

τn =

{
0, if |X0| > n,

inf{t : max
(
|
∫ t

0
v dBs|,

∫ t
0
|u|ds,

∫ t
0
v2ds

)
> n}, if |X0| 6 n.

Clearly τn ↑ ∞ as n → ∞ a.s. Therefore, if we prove (40) for Xτn∧t on the set
{τn > 0}, then, letting n → ∞, we prove (40) for the general case. Hence, we can
assume that X0,

∫ t
0
v dBs,

∫ t
0
|v|ds, and

∫ t
0
v2ds are bounded in (t, ω), and that the

function g has a compact support, and therefore, bounded.
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Note that (40) is an Itô process in the sense of Definition 7.1. Let us assume first
that u and v and bounded simple functions. Using Taylor’s expansion we obtain:

g(t,Xt) = g(0, X0) +
∑
j

∆g(tj, Xtj) = g(0, X0) +
∑
j

∂g

∂t
∆tj +

∑
j

∂g

∂x
∆Xj

+
1

2

∑
j

∂2g

∂t2
(∆tj)

2 +
∑
j

∂2g

∂t∂x
(∆tj)(∆Xj) +

1

2

∑
j

∂2g

∂x2
(∆Xj)

2 +
∑
j

Rj

where ∂g
∂t

, ∂g
∂x

, ∂2g
∂t∂x

etc. are evaluated at the points (tj, Xtj), ∆tj = tj+1 − tj, ∆Xj =
Xtj+1

−Xtj , ∆g(tj, Xtj) = g(tj+1, Xtj+1
) − g(tj, Xtj), and Rj = o

(
|∆tj|2 + |∆Xtj |2

)
for all j. As ∆tj → 0,∑

j

∂g

∂t
∆tj =

∑
j

∂g

∂t
(tj, Xtj)∆tj →

∫ t

0

∂g

∂s
(s,Xs) ds

∑
j

∂g

∂x
∆Xj =

∑
j

∂g

∂x
(tj, Xtj)∆Xj →

∫ t

0

∂g

∂x
(s,Xs) dXs.

Since we assumed that u and v are simple functions, we obtain:∑
j

∂2g

∂x2
(∆Xj)

2 =
∑
j

∂2g

∂x2
u2
j (∆tj)

2 + 2
∑
j

∂2g

∂x2
ujvj (∆tj)(∆Bj)

+
∑
j

∂2g

∂x2
v2
j (∆Bj)

2. (41)

where uj = u(tj, ω) and vj = v(tj, ω). The first term in (41) is bounded, and tends
to zero pointwise as the mesh of the partition {0 = t0 < · · · < tn = t} tends to zero.
For the second term we have:

E
(∑

j

∂2g

∂x2
ujvj (∆tj)(Btj+1

−Btj)
)2

=
∑
j

E
(∂2g

∂x2
ujvj

)2

(∆tj)
3 → 0 as ∆tj → 0

by boundedness of u, v, and ∂2g
∂x2

, and by the fact that E[(Btj+1
− Btj)

2] = ∆tj. Let

us prove that the last term in (41) tends to ∂2g
∂x2
v2 with respect to the L2(Ω)-norm as

the mesh maxj |∆tj| tends to zero. Define a(t) = ∂2g
∂x2

(t,Xt) v
2(t, ω), and aj = a(tj).

We have:

E
(∑

j

aj(∆Bj)
2 −

∑
j

aj∆tj

)2

=
∑
i,j

E
[
aiaj

(
(∆Bi)

2 −∆ti
) (

(∆Bj)
2 −∆tj

)]
.

(42)

If i < j then ai aj
(
(∆Bi)

2−∆ti
)

and
(
(∆Bj)

2−∆tj
)

are independent, and therefore

E
[
aiaj

(
(∆Bi)

2−∆ti
) (

(∆Bj)
2−∆tj

)]
= E

[
aiaj((∆Bi)

2−∆ti)E[
(
(∆Bj)

2−∆tj
)
|Ftj ]]

= 0.
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Similarly for the case i > j. For the case i = j, we obtain:∑
j

E
[
a2
j

(
(∆Bj)

2 −∆tj)
2
]

= E[a2
j ]E
(
(∆Bj)

2 −∆tj
)2

since a2
j is Ftj -measurable and (∆Bj)

2 is independent of Ftj . Further, we have:

E
(
(∆Bj)

2 −∆tj
)2

= E
[
(∆Bj)

4 − 2(∆Bj)
2∆tj + (∆tj)

2
]

= 3(∆tj)
2 − 2(∆tj)

2 + (∆tj)
2 = 2(∆tj)

2.

Therefore, ∑
j

E
[
a2
j

(
(∆Bj)

2 −∆tj)
2
]

= 2
∑
j

E[a2
j ] (∆tj)

2

which tends to zero as the mesh max |∆tj| goes to zero. This implies, in turn, that
the right-hand side of (42) converges to zero as max |∆tj| → 0. But

∑
j

aj∆tj →
∫ t

0

a(s) ds, as max
j
|∆tj| → 0,

and therefore, ∑
j

aj(∆Bj)
2 →

∫ t

0

a(s) ds as max
j
|∆tj| → 0.

Clearly,
∑

j Rj → 0 as maxj |∆tj| → ∞. Indeed,

E
[∑

j

o
(
(∆tj)

2 + (∆Xj)
2
)2
]

= E
[∑

j

o(∆tj)
3
]
→ 0 as max

j
|∆tj| → ∞.

The latter equality holds since

E(∆Xj)
2 = v2

j E(∆Bj)
2 = v2

j ∆tj + u2
j∆t

2
j ,

and

E(∆Xj)
4 = u4

j∆t
4
j + 6u2

jv
2
j (∆tj)

2 E[(∆Bj)
2] + v4

jE(∆Bj)
4

= u4
j∆t

4
j + 6u2

jv
2
j (∆tj)

3 + 3v4
j (∆tj)

3.

This proves Itô’s formula for the case when u and v are bounded simple functions
To prove the general case let us note that we can always approximate u and v by
bounded simple functions with respect to the L2(Ω)-norm. Passing to the limit in
(40) w.r.t the L2(Ω)-norm we obtain (40) for those u and v for which the Riemann
and the stochastic integrals are well defined. This proves Itô’s formula.
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7.2 The multi-dimensional Itô formula

Let Bt = (B1
t , . . . , B

m
t ) be an m-dimensional Brownian motion, and let Fmt be the

filtration defined by (37).

Definition 7.5 (n-dimensional Itô process). A process Xt is called an n-dimensional
Itô process if it can be written in the form:

X1
t = X1

0 +
∫ t

0
u1(s, ω) ds+

∑m
j=1

∫ t
0
v1j(s, ω) dBj

s
...

Xn
t = Xn

0 +
∫ t

0
un(s, ω) ds+

∑m
j=1

∫ t
0
vnj(s, ω) dBj

s

(43)

where ui ∈ L2([0,∞) × Ω), 1 6 i 6 n, are Fmt -adapted, and vij ∈ Φ(0, T,Fmt ) for
all T > 0, 1 6 i 6 n, 1 6 j 6 m.

In matrix notation we can rewrite (43) as follows:

dXt = utdt+ vtdBt, (44)

where

Xt =

X
1
t

...
X2
t

 , ut =

u1(t, ·)
...

un(t, ·)

 , vt =

v11 · · · v1m
...

...
vn1 · · · vnm

 , dBt =

dB1
t

...
dBm

t

 .

Theorem 7.6 (Itô’s formula). Let Xt be an n-dimensional Itô’s process given by
(44), and let g(t, x) = (g1(t, x), · · · , gp(t, x)) ∈ C2([0,∞)×Rn,Rp). Then the process

Yt(ω) = g(t,Xt)

is again an Itô process, whose k′th component Y k
t is given by

Y k
t = gk(0, X0) +

∫ t

0

∂gk

∂s
(s,Xs) ds+

n∑
i=1

∫ t

0

∂gk

∂xi
(s,Xs) dX

i
s

+
1

2

n∑
i=1

n∑
j=1

∫ t

0

∂2gk

∂xi∂xj
(s,Xs) d〈X i, Xj〉s

or equivalently,

Y k
t = gk(0, X0) +

∫ t

0

∂gk

∂s
(s,Xs) ds+

n∑
i=1

∫ t

0

∂gk

∂xi
(s,Xs)ui(s, ·) ds

+
n∑
i=1

m∑
j=1

∫ t

0

∂gk

∂xi
(s,Xs) vij(s, ·) dBj

s+
1

2

n∑
i=1

n∑
j=1

m∑
p=1

∫ t

0

∂2gk

∂xi∂xj
(s,Xs) (vipvjp)(s, ·) ds.

Lemma 7.7. Let Bi
t and Bj

t be independent Brownian motions. Then

〈Bi, Bj〉t = 0.
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Proof. It suffices to prove that Bi
tB

j
t is an Ft-martingale (Ft = Fmt ). Indeed, taking

into account that both Bi
t and Bj

t are Ft-martingales, for s < t we obtain:

0 = E[(Bi
t−Bi

s)]E[(Bj
t−Bj

s)] = E[(Bi
t−Bi

s)(B
j
t−Bj

s)] = E[(Bi
t−Bi

s)(B
j
t−Bj

s) | Fs]
= E[Bi

tB
j
t | Fs]−Bi

sB
j
s .

Lemma 7.8. Let X i
t and Xj

t be two 1-dimensional Itô’s processes with the martin-
gale parts

∫ t
0
vi(s, ·) dBi

s and resp.
∫ t

0
vj(s, ·) dBj

s. Then

〈X i, Xj〉t =
〈∫ •

0

vi(s, ·) dBi
s ,

∫ •
0

vj(s, ·) dBj
s

〉
t

=

∫ t

0

(vivj)(s, ·) d〈Bi, Bj〉s

=

∫ t

0

(vivj)(s, ·) δij ds

where δij = 0 if i 6= j and δii = 1.

Proof. Left as an exercise.

The proof of Theorem 7.6 is similar to the proof of Theorem 7.3, and therefore
is omitted.

7.3 The Itô representation theorem

Let Bt = (B1
t , . . . , B

n
t ) be an n-dimensional Brownian motion and let Ft = Fnt be

the filtration defined by (37).

Lemma 7.9. The linear span of random variables of the type

exp
{∫ T

0

h(t)dBt −
1

2

∫ T

0

h2(t) dt
}

(45)

where h ∈ L2([0, T ]) is deterministic, is dense in L2(FT ,Ω).

Proof. Without proof.

Theorem 7.10 (Itô’s representation theorem). Let Bt = (B1
t , . . . , B

n
t ) be an n-

dimensional Brownian motion, and let the filtration Fnt be defined by (37). Let F ∈
L2(FnT ,Ω). Then there exists a unique stochastic process f(t, ω) ∈ Φ(0, T,Fnt ) such
that

F (ω) = E[F ] +

∫ T

0

f(t, ω) dBt. (46)

Proof. For simplicity we consider the case n = 1. The proof in the general case is
similar. First we assume that F has the form (45), i.e.

F (ω) = exp
(∫ T

0

h(t)dBt −
1

2

∫ T

0

h2(t)dt
)

(47)
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for some h(t) ∈ L2[0, T ]. Define

Yt = exp
(∫ t

0

h(s)dBs −
1

2

∫ t

0

h2(s)ds
)
, 0 6 t 6 T. (48)

By Itô’s formula applied to Yt = exp(Xt) where Xt =
∫ T

0
h(t)dBt − 1

2

∫ T
0
h2(t)dt.

Note that d
dx

exp(Xt) = d2

dx2
exp(Xt) = exp(Xt) = Yt. Also, note that by Lemma

7.8,

〈X〉t =
〈∫ •

0

h(s)dBs

〉
t

=

∫ t

0

h2(s) ds.

We obtain:

Yt = Y0 +

∫ t

0

Ys
(
h(s) dBs −

1

2
h2(s) ds

)
+

1

2

∫ t

0

Ys h
2(s) ds = 1 +

∫ t

0

Ys h(s) dBs.

This implies that E[F ] = 1, and that formula (46) holds for the dase when F is given
by (47). By linearity, (46) holds for linear combinations of funcions of form (45).

Now let F ∈ L2(FT ,Ω) be arbitrary. We approximate F by linear combinations
Fn of functions of form (45). For every n we have:

Fn(ω) = E[Fn] +

∫ T

0

fn(s, ω) dBs(ω)

where fn ∈ Φ(0, T ). By Itô’s isometry and by the fact that E
[∫ T

0
(fn−fm) dBs

]
= 0,

we obtain:

E[(Fn − Fm)2] = E
[(
E[Fn − Fm] +

∫ T

0

(fn − fm) dBs

)2
]

=
(
E[Fn − Fm]

)2
+ 2E[Fn − Fm]E

[ ∫ T

0

(fn − fm) dBs

]
+ E

(∫ T

0

(fn − fm) dBs

)2

=
(
E[Fn − Fm]

)2
+

∫ T

0

E[(fn − fm)2] dt.

Therefore∫ T

0

E[(fn − fm)2] dt = E[(Fn − Fm)2]−
(
E[Fn − Fm]

)2 → 0, as n,m→∞.

Hence fn is a Cauchy sequence in L2(Ω × [0, T ]), and hence converges to some
f ∈ L2(Ω × [0, T ]). This implies that f ∈ Φ(0, T ). Indeed, there is a subsequence
of {fn} that converges to f for almost all (ω, t) ∈ Ω × [0, T ]. Therefore, f is Ft-
measurable for almost all t ∈ [0, T ]. By modifying f on a t-set of measure zero
we obtain that f(t, ω) is Ft- adapted. Similar, the map (t, ω) 7→ f(t, ω) is B × F -

measurable. Clearly E
∫ T

0
f 2(t, ·)dt <∞. We obtain:

F = lim
n→∞

Fn = lim
n→∞

(
E[Fn] +

∫ T

0

fn dBt

)
= E[F ] +

∫ T

0

f dBt
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where the limit is taken in L2(FT ,Ω). Also, we used Itô’s isometry to show the
convergence of stochastic integrals.

The uniqueness follows from Itô’s isometry. Suppose there exists two different
functions f1, f2 ∈ Φ(0, T ) such that

F (ω) = E[F ] +

∫ T

0

f1(t, ω) dBt = E[F ] +

∫ T

0

f2(t, ω) dBt.

Then ∫ T

0

(f1 − f2) dBt = 0,

and therefore

E
∫ T

0

(f1 − f2)2dt = E
(∫ T

0

(f1 − f2) dBt

)2

= 0.

This implies that f1(t, ω) = f2(t, ω) for almost all (t, ω) ∈ [0, T ]× Ω.

7.4 The martingale representation theorem

Theorem 7.11. Let Bt = (B1
t , . . . , B

n
t ) be an n-dimensional Brownian motion, and

let Mt be an Fnt -martingale, where the filtration Fnt is defined by (37), such that
Mt ∈ L2(Ω) for all t > 0. Then there exists a unique stochastic process g(s, ω) such
that g(s, · ) ∈ Φ′(0, t) for all t > 0 with respect to Fns , and

Mt = E[M0] +

∫ t

0

g(s, ω) dBs a.s., for all t > 0.

Proof. Again, we prove the theorem for the case when n = 1 for simplicity. By Itô’s
representation theorem (Theorem 7.11), which we apply to T = t and F = Mt, we
obtain that for every t > 0, there exists a unique f t(s, ω) ∈ L2(Ω,Ft such that

Mt = E[Mt] +

∫ t

0

f t(s, ω) dBs = E[M0] +

∫ t

0

f t(s, ω) dBs, (49)

since for the martingale Mt it holds that E[Mt] = E[M0]. Note that in the above
formula, the integrand of the stochastic integral depends on t. Let us prove that
f t(s, ω) is actually does not depend on t. Assume 0 6 t1 < t2. Then,

Mt1 = E[Mt2 | Ft1 ] = E[M0] + E
[∫ t2

0

f t2(s, ω) dBs | Ft1
]

= E[M0] +

∫ t1

0

f t2(s, ω) dBs.

On the other hand, by (49),

Mt1 = E[M0] +

∫ t1

0

f t1(s, ω) dBs.
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By the uniqueness result of Itô’s representation theorem (Theorem ??), for almost
all s ∈ [0, t1],

f t1(s, ω) = f t2(s, ω) a.s..

Let us define f(s, ω) for almost all s ∈ [0,∞) by setting

f(s, ω) = fN(s, ω) a.s. for almost all s ∈ [0, N ]

We obtain that for almost all t > 0,

Mt = E[M0] +

∫ t

0

f t(s, ω) dBs = E[M0] +

∫ t

0

f(s, ω) dBs.

By t-continuity of the stochastic integral, the latter equality holds for all t > 0
a.s.

8. Stochastic Differential Equations

Stochastic differential equations can be defined in several contexts that vary their
generality. Informally, a stochastic differential equation (SDE) can be written in the
form:

dXt = b(t,Xt) dt+ σ(t,Xt) dBt.

Below we define weak and strong solutions of the above SDE and prove the existence
and uniqueness theorem.

8.1 Formal definitions

Let T > 0, and let the functions b : [0, T ] × Rn → Rn and σ : [0, T ] × Rn → Rn×m
be measurable. Further let Z be a random variable, and let FZt be the filtration
generated by Z and Bs, s 6 t.

Definition 8.1. A process Xt is called a strong solution to the SDE

dXt = b(t,Xt) dt+ σ(t,Xt) dBt (50)

on [0, T ] with the initial condition X0 = Z if Xt is FZt -adapted and

Xt = Z +

∫ t

0

b(s,Xs) ds+

∫ t

0

σ(s,Xs) dBs.

Definition 8.2. A pair of processes (X̃t, B̃t) is called a weak solution to SDE
(50) on [0, T ] with the initial condition X0 = Z if there exists a filtered probability
space (Ω,Ht,H, P ) such that B̃t is an Ht-Brownian motion and X̃t is Ht-adapted
and

X̃t = Z +

∫ t

0

b(s, X̃s) ds+

∫ t

0

σ(s, X̃s) dB̃s.

Remark. We say that B̃t is an Ht-Brownian motion if B̃t is a Brownian motion
and an Ht-martingale, i.e. E[B̃t+h |Ht] = B̃t for all t, h > 0.
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8.2 An existence and uniqueness theorem

Theorem 8.3 (Existence and uniqueness). Let, as before, T > 0 and let the func-
tions b : [0, T ]×Rn → Rn and σ : [0, T ]×Rn → Rn×m be measurable and satisfying
conditions (i) and (ii) below:

(i) |b(t, x)|+ |σ(t, x)| 6 C (1 + |x|), x ∈ Rn, t ∈ [0, T ], for some constant C > 0;

(ii) |b(t, x)− b(t, y)|+ |σ(t, x)− σ(t, y)| 6 D|x− y|, x, y ∈ Rn, t ∈ [0, T ], for some
constant D > 0.

Let Z be a random variable which is independent of the σ-algebra Fm∞ and such that

E|Z|2 <∞.

Then SDE (50) has a unique strong t-continuous solution Xt on [0, T ] with the
initial condition X0 = Z and with the property that Xt is adapted with respect to the
filtration FZt and

E
[∫ T

0

|Xt|2dt
]
<∞. (51)

Lemma 8.4 (Gronwall’s lemma). Let α, β, and u be real-valued functions defined
on the interval [a, b]. Assume that β and u are continuous, β is non-negative, and
α is integrable on [a, b]. Then if u satisfies the inequality

u(t) 6 α(t) +

∫ t

a

β(s)u(s) ds,

then

u(t) 6 α(t) +

∫ t

a

α(s)β(s)
[
exp

∫ t

s

β(r) dr
]
ds.

If α(t) is a constant, say equal to α, then

u(t) 6 α exp

∫ t

a

β(s) ds.

If β(t) is a constant, say equal to β, then

u(t) 6 α eβ (t−a).

Proof. Left as an exercise.

Proposition 8.5 (Itô’s isometry for a multi-dimensional stochastic integral). Let
Bt = (B1

t , . . . , B
m
t ) be an m-dimensional Brownian motion, and let the function

v : [S, T ]× Ω → Rn×m be such that vij ∈ Φ(S, T,Fmt ), 1 6 i 6 n, 1 6 j 6 m, with
respect to the filtration Fmt . Then,

E
∣∣∣∫ T

S

v(t, ω) dBt

∣∣∣2 = E
∫ T

S

|v(t, ω)|2 dt.
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Proof. Left as an exercise.

Proof of Theorem 8.3. Uniqueness. The uniqueness follows from Itô’s isometry and
Lipschitz property (ii). Indeed, let Xt and X̂t be two solutions with initial values Z
and resp. Ẑ, i.e. X0 = Z, X̂0 = Ẑ. In the proof of uniqueness we are only interested in
case Z = Ẑ. The following more general estimate which also holds when Z 6= Ẑ will
be useful later. Define a(s, ω) = b(s,Xs)−b(s, X̂s) and γ(s, ω) = σ(s,Xs)−σ(s, X̂s).
Then,

E[|Xt − X̂t|2] = E
[(
Z − Ẑ +

∫ t

0

a(s, · ) ds+

∫ t

0

γ(s, · ) dBs

)2]
6 3E[|Z − Ẑ|2] + 3E

[(∫ t

0

a(s, · ) ds
)2]

+ 3E
[(∫ t

0

γ(s, · ) dBs

)2]
6 3E[|Z − Ẑ|2] + 3tE

[∫ t

0

a2(s, · ) ds
]

+ 3E
[∫ t

0

γ2(s, · ) ds
]

(52)

6 3E[|Z − Ẑ|2] + 3(1 + t)D2

∫ t

0

E|Xs − X̂s|2 ds. (53)

Denote v(t) = E|Xt − X̂t|2, t ∈ [0, T ]. Let F = 3E[|Z − Ẑ|2] and A = 3(1 + T )D2.
In this notations the above inequality can be written as follows:

v(t) 6 F + A

∫ t

0

v(s) ds.

By Gronwall’s lemma,

v(t) 6 F exp(A t).

Now we assume that Z = Ẑ, and therefore F = 0. Hence v(t) = 0 for all t > 0.
This implies that for all t > 0, Xt = X̂t a.s. This means that for every t > 0, there
exists a set Ωt of full P -measure (P (Ωt) = 1) such that Xt = X̂t everywhere on Ωt.
Now since the set of rational numbers is countable we conclude that there exists a
set Ω′ of full P -measure such that Xt = X̂t for all t ∈ Q ∩ [0, T ] everywhere on Ω′.
By continuity of the map t 7→ |Xt − X̂t|,

Xt = X̂t for all t ∈ [0, T ]

everywhere on Ω′. This proves the uniqueness.
Existence. Define Y

(0)
t = X0, and Y

(k)
t inductively as follows:

Y
(k+1)
t = X0 +

∫ t

0

b(s, Y (k)
s ) ds+

∫ t

0

σ(s, Y (k)
s ) dBs. (54)

Hence,

Y
(k+1)
t − Y (k)

t =

∫ t

0

(
b(s, Y (k)

s )− b(s, Y (k−1)
s )

)
ds+

∫ t

0

(
σ(s, Y (k)

s )− σ(s, Y (k−1)
s )

)
dBs.
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Performing a similar computation as in (53) but with Y
(k+1)
t and Y

(k)
t instead of Xt

and resp. X̂t on the left-hand side, and with Y
(k)
t and Y

(k−1)
t instead of Xt and resp.

X̂t on the right-hand side we obtain:

E|Y (k+1)
t − Y (k)

t |2 6 2E
(∫ t

0

(
b(s, Y (k)

s )− b(s, Y (k−1)
s )

)
ds
)2

+ 2E
(∫ t

0

(
σ(x, Y (k)

s )− σ(x, Y (k−1)
s )

)
dBs

)2

6 2(1 + T )D2

∫ t

0

E|Y (k)
s − Y (k−1)

s |2 ds

(55)

for k > 1 and t 6 T . Now recalling that Y (0) = X0, and taking into account condition
(i) of the theorem saying that the functions b and σ have no more than the linear
growth we obtain:

E|Y (1)
t − Y (0)

t |2 = E
(∫ t

0

b(s,X0) ds+

∫ t

0

σ(s,X0) dBs

)2

6 2E
(∫ t

0

b(s,X0) ds
)2

+ 2E
(∫ t

0

σ(s,X0) dBs

)2

6 4C2 t2
(
1 + E|X2

0 |
)

+ 4C2 t
(
1 + E|X2

0 |
)
6 A1t

where A1 = 4C2
(
1 + E|X2

0 |
)
(1 + T ). By induction on k and inequality (55) we

obtain that there exists a constant A2 depending on C, D, T , and E|X0|2 such that

E|Y (k+1)
t − Y (k)

t |2 6
Ak+1

2 tk+1

(k + 1)!
k > 0, t ∈ [0, T ].

By Chebyshev’s and Doob’s maximal inequalities,

P
[

sup
06t6T

|Y (k+1)
t − Y (k)

t | > 2−k
]
6 4kE

[
sup

06t6T
|Y (k+1)
t − Y k

t |2
]

6 4k+1 E |Y (k+1)
T − Y (k)

T |
2 6

(4A2)k+1 T k+1

(k + 1)!
.

The latter inequality implies that the series

∞∑
k=0

P
[

sup
06t6T

|Y (k+1)
t − Y (k)

t | > 2−k
]

converges. Recall the Borel-Cantelli lemma that says that if Ek are events such that

∞∑
k=0

P (Ek) <∞,

then

P
( ∞⋂
n=0

∞⋃
k=n

Ek

)
= 0,
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or, equivalently,

P
( ∞⋃
n=0

∞⋂
k=n

Ec
k

)
= 1,

where Ec
k = Ω�Ek. In our context the latter means that

P
(
∃n 6 0, ∀ k > n, sup

06t6T
|Y (k+1)
t − Y (k)

t | 6 2−k
)

= 1.

This implies that the sequence

Y
(n)
t = Y

(0)
t +

n−1∑
k=0

(Y
(k+1)
t − Y (k)

t )

converges uniformly in t ∈ [0, T ] a.s. Let Xt be the uniform limit of this sequence,
i.e.

Xt = lim
n→∞

Y
(n)
t

which exists almost surely. Then a.s. Xt is continuous in t as a uniform limit of the
t-continuous processes Y

(n)
t . Moreover, note that Xt is FZt -measurable for all t since

for all n, Y
(n)
t is FZt -measurable for all t Since Y

(n)
t converges to Xt uniformly in

t ∈ [0, T ] a.s., then it also converges to Xt with respect to the L2(Ω × [0, T ])-norm
and with respect to the L2(Ω)-norm for each t ∈ [0, T ]. In particular, this implies
(51).

It remains to show that Xt verifies SDE (50). For all n we have:

Y
(n+1)
t = X0 +

∫ t

0

b(s, Y (n)
s ) ds+

∫ t

0

σ(x, Y (n)
s ) dBs. (56)

Note that limn→∞ E|Y (n+1)
t −Xt|2 = 0. On the other hand, by Condition (ii) of the

theorem

E
∣∣∣∫ t

0

(b(s, Y (n)
s )− b(s,Xs) ds

∣∣∣2 6 tE
∫ t

0

|b(s, Y (n)
s )− b(s,Xs)|2 ds

6 D2 tE
∫ t

0

|Y (n)
s −Xs|2 → 0 asn→∞. (57)

Next by Itô’s isometry and again Condition (ii) of the theorem, we obtain:

E
∣∣∣∫ t

0

(σ(s, Y (n)
s )− σ(s,Xs)) dBs

∣∣∣2 = E
∫ t

0

|σ(s, Y (n)
s )− σ(s,Xs)

2|2 ds

6 D2 E
∫ t

0

|Y (n)
s −Xs|2 → 0 asn→∞. (58)

Now (56), (57), and (58) imply that Xt is a (strong) solution to SDE (50).

55



Definition 8.6. We say that a solution (Xt, Bt) to SDE (50) is weakly unique if
for any other weak solution (X̃t, B̃t) to (50) it holds that (Xt, Bt) and (X̃t, B̃t) are
identical in law.

Theorem 8.7 (Weak uniqueness). Let σ and b satisfy assumptions of Theorem 8.3.
Then a weak or strong solution to SDE (50) is weakly unique.

Remark. Clearly, every strong solution to (50) is also a weak solution. When we
say a strong solution Xt is “weakly unique” we mean that the solution (Xt, Bt) is
weakly unique.

Sketch of proof. We prove the theorem for the case when σ(t, x) and b(t, x) are
bounded and continuous for all (t, x) ∈ [0, T ] × Rn. Let (Xt, Bt) and (X̃t, B̃t) be
two weak solutions on probability spaces (Ω, P,Ht,H) and (Ω̃, P̃ , H̃t, H̃), respec-
tively. Further let Yt and Ỹt be strong solutions on (Ω, P,Ht,H) and (Ω̃, P̃ , H̃t, H̃)
constructed with the help of Bt and resp. B̃t. By the uniqueness of a strong so-
lution, Xt = Yt and X̃t = Ỹt for all t, a.s. Therefore it suffices to prove that Yt
and Ỹt are identical in law. We prove that by induction using iteration procedure
(55). Note that the processes (Y

(k)
t , Bt) and (Ỹ

(k)
t , B̃t) are identical in law for all k.

Indeed, (Y
(0)
t , Bt) and (Ỹ

(0)
t , B̃t) are identical in low because Y

(0)
t = Ỹ

(0)
t = Z, and

on the other hand, Bt and B̃t are identical in law. Suppose we know that Y
(k−1)
t

and Ỹ
(k−1)
t are identical in law. Also, Y

(k−1)
t and Ỹ

(k−1)
t are t-continuous. Then

σ(t, Y
(k−1)
t ), b(t, Y

(k−1)
t ), σ(t, Ỹ

(k−1)
t ), and b(t, Ỹ

(k−1)
t ) are continuous in t. Therefore

the integrals
∫ t

0
σ(s, Y

(k−1)
s ) dBs and

∫ t
0
σ(s, Ỹ

(k−1)
s ) dB̃s can be approximated by the

sums
∑N−1

i=0 σ(ti, Y
(k−1)
ti )(Bti+1

−Bti) resp.
∑N−1

i=0 σ(ti, Ỹ
(k−1)
ti )(B̃ti+1

− B̃ti) which are
clearly identically in law. Therefore their L2-limits, i.e. the above stochastic inte-
grals are identical in law as well. Analogously, the integrals

∫ t
0
b(s, Y

(k−1)
s ) ds and∫ t

0
b(s, Y

(k−1)
s ) ds are identical in law. The above arguments and formula (55) imply

that Y
(k)
t and Ỹ

(k)
t are identical by law and t-continuous. By induction, (Y

(k)
t , Bt)

and (Ỹ
(k)
t , B̃t) are identical in law for all k. Therefore their L2 limits (Yt, Bt) and

(Ỹt, B̃t) are also identical in law. The weak uniqueness is proved.

8.3 The Tanaka equation

There are stochastic differential equations which do not have strong solutions but
have a unique weak solution. The example below discusses such an SDE. Consider
the one-dimensional stochastic differential equation:

dXt = sign(Xt) dBt, X0 = 0 (59)

where

sign(x) =

{
+1 x > 0,

−1, x < 0.

Note that here σ(x, t) = sign(x) does not satisfy the Lipschitz condition (Condition
(ii) of Theorem 8.3), so Theorem 8.3 cannot be applied here.
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Proposition 8.8. SDE (59) has no strong solution.

Lemma 8.9 (Tanaka’s formula). Let Bt be a 1-dimensional Brownian motion.
Then,

|Bt| = |B0|+
∫ t

0

sign(Bs) dBs + Lt(ω), (60)

where

Lt = lim
ε→0

1

2ε
λ{s ∈ [0, t] : Bs ∈ (−ε, ε)}

and λ is the Lebesgue measure.

Remark. Lt is called the local time for a Brownian motion at 0. Formula (60) is
known as Tanaka’s formula for a Brownian motion.

Proof of Lemma 8.9. Without proof.

Lemma 8.10 (How to recognize a Brownian motion). Let Bt be an m-dimensional
Bronian motion, and v : [0,∞) × Ω → Rn×m satisfy the assumptions (see Section
6.3) under which the stochastic integral is well defined. Further let

Yt =

∫ t

0

v(s, ω) dBs.

Then Yt be a Brownian motion if and only if

v(t, ω)vT (t, ω) = In

for almost all (t, ω). In in the above formula is the n× n identity matrix.

Proof. Without proof.

Proof of Proposition 8.8. Let B̂t be a Brownian motion and let F̂t be its natural
filtration (i.e. σ(B̂s, s 6 t)). Define the process

Yt =

∫ t

0

sign(B̂s) dB̂s.

By Tanaka’s formula (Lemma 8.9),

Yt = |B̂t| − |B̂0| − L̂t,

where L̂t is the local time for B̂t at 0. Let Gt = σ(|B̂s|, s 6 t). Clearly Gt ⊂ F̂t,
where the inclusion is strict. Hence, the σ-algebra Nt = σ(Ys, s 6 t) ⊂ F̂t where the
inclusion is strict as well.

Now suppose Xt is a strong solution to (59). Then, since
(
sign(Xr)

)2
= 1, by

Lemma 8.10, Xt is a Brownian motion starting at 0. Multiplying both parts of (59)
by sign(Xt) we obtain:

dBt = sign(Xt) dXt.
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Let us apply the above argument to B̂t = Xt (since we proved that Xt is a Brownian
motion) and Yt =

∫ t
0

sign(Xr) dXr = Bt. We obtain that the natural filtration Ft of
Bt is strictly contained in Mt = σ(Xs, s 6 t). This contradicts to the fact that Xt

is a strong solution since a strong solution is Ft-adapted. Thus, a stong solution to
(59) does not exist.

Let us find a weak solution to (59).

Lemma 8.11. SDE (59) has a weak solution.

Proof. Choose Xt to be any Brownian motion B̂t. Let us define

B̃t =

∫ t

0

sign(B̂s) dB̂s =

∫ t

0

sign(Xs) dXs.

Again, by Lemma 8.10, B̃t is a Brownian motion. Finally the SDE

dB̃t = sign(Xt)dXt

is equivalent to

dXt = sign(Xt) dB̃t

which can be obtained by means of multiplication of the both parts by sign(Xt).
Therefore, (Xt, B̃t) is a weak solution.

Let us prove the weak uniqueness. Let (X̄t, B̄t) be another weak solution. Another
application of Lemma 8.10 shows that X̄t is a Brownian motion. Hence, all weak
solutions are identical in law.

9. Application to Mathematical finance

9.1 Pricing and hedging financial options

A call option on stock is a contract that gives its holder the right to buy this stock
in the future at the price K written in the contract, called the exercise price or the
strike price.
Example. On April we are offered the opportunity to buy shares of a company A.
Currently the shares are valued at e1 each. Suppose that except of buying shares,
we can also buy an ‘option’. Specifically, for a cost of e0.20 we can buy a ticket
that gives us the right to buy one share of company A for e1.20 on August 1st,
irrespective of the actual market value of this share. Suppose we buy 1000 of these
tickets. August 1st arrives, and the shares are now worth e1.80 each. We then
exercise our option to buy 1000 shares at e1.20 each and sell them immediately at
their market value to make a profit of e600 (e400 if you include the cost of the
options). Alternatively, suppose that the shares drop to e0.70 each. In this case, we
choose not to exercise the option to purchase the shares and throw all my tickets
away. We make then an overall profit of e0 (or a loss of e200, if I include the cost
of the tickets).
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This is an example of a European call option. Specifically, A European call option
allows the holder to exercise the contract (that is, to buy this stock at K) at a
particular date T , called the maturity or the expiration date.

Now we introduce some general options and notations. Our market (a simplified
model) consists of stock of a single type and a riskless investment such as a bank
account. We model the value in time of a single unit of stock as a stochastic process
S = (St, t > 0) on some probability space (Ω,F ,Ft, P ). We will also require St to
be Ft-adapted. The cash at the bank account grows deterministically in accordance
with the interest formula

At = A0 e
rt, t > 0.

where r > 0 is the constant interest rate.
We are concerned with the European call option. One buys this option at time

0 to buy stock at the expriration time T at the exrecise price K. The value of the
option at time T is the random variable

Z = max{ST − k, 0} = (ST − k)+.

Another key concept is the notion of arbitrage. Here is an example of the arbitrage
opportunity. Suppose a stock sells in Frankfurt for e100 and in New York for $100,
and that the 1e= 1.34$. Then one can buy for $100 the stock in New York to
sell immediately in Frankfurt for e100 having a $34 profit. Thus, in this case, the
disparity in pricing stocks in Germany and the USA has led to the availability of
‘free money’.

Now suppose that a sum of money P is invested at a constant interest rate r. At
time t it becomes P ert. Conversely, if we want to obtain a given sum of money Q at
time t then we must invest Qert at time 0. The process of obtaining Qert from Q is
called discounting. In particular, if St, t > 0 is is the stock price process, we define
the discounted process S̃t = e−rtSt, t > 0.

Definition 9.1. Two probability measures P and Q are called equivalent if they
have same null sets, i.e. for any set A with P (A) = 0, Q(A) = 0 and vice versa.

In discrete time, we have the following result:

Theorem 9.2 (Fundamental theorem of asset pricing). If the market is free of
arbitrage opportunities, then there exists a probability measure Q, which is equivalent
to P , with respect to which the discounted process S̃t is a martingale.

Under additional technical assumptions, the result holds in the continuous time
setting.

9.1.1 Portfolios

The concept of a portfolio. An investor holds his investments as a combination of
risky stocks and cash in the bank. Let αt and βt, t > 0, denote the amount of each of
these, respectively, that the investor holds at time t. The pair of adapted processes
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(αt, βt) is called a portfolio or trading strategy. The total value of all our investments
at time t is

Vt = αtSt + βtAt.

One of the aims of the Black–Scholes approach to option pricing is to be able to
hedge the risk involved in selling options, i.e. to be able to construct a portfolio
whose value VT at the expiration time T equals to the value

Z = (ST − k)+ = max{(ST − k), 0}

of the option. A portfolio is said to be replicating if

VT = Z.

A portfolio is said to be self-financing if any change in wealth Vt is due only to
changes in the values of stocks and bank accounts and not to any injections of
capital from outside. Assuming that the stock price process St is a semimartingale,
we give the following precise definition.

Definition 9.3. A portfolio (αt, βt) is called self-financing if

Vt = α0S0 + β0A0 +

∫ t

0

αsdSs +

∫ t

0

βsdAs =

Taking into consideration the formula for the bank account growth, we obtain:

dVt = αtdSt + rβtAtdt.

A contingent claim with maturity date T , is a non-negative FT -measurable random
variable. European options are examples of contingent claims. Another example of
a contingent claim is the American call option, where stocks may be purchased at
any time within the interval [0, T ], not only at the endpoint. A market is said to be
complete if every contingent claim can be replicated by a self-financing portfolio.

9.2 The Black-Scholes model

The Black-Scholes Model is one of the most important concepts in modern financial
theory. It was developed in 1973 by Fisher Black and Myron Scholes and is still
widely used today. The stock price process St is assumed to satisfy the following
SDE:

dSt = µSt dt+ σStdBt, (61)

where Bt is a standard Brownian motion, µ > 0 and σ > 0 are constants where the
latter is called volatility of the stock. The cash at the bank account is assumed to
grow in accordance to

At = ert, t > 0.
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Theorem 9.4. SDE (61) has a unique solution with the initial condition S0. The
solution is given by

St = S0 exp{σBt + (µt− 1

2
σ2t)} (62)

Proof. We have to apply Itô’s formula to u(t, Bt) where

u(t, x) = exp
(
σ x− σ2 t

2
+ µt

)
.

The uniqueness of solution follows from Theorem 8.3.

We would like to prove the existence and uniqueness of a measure Q which is
equivalent to P and possesses the property that the discounted process S̃t = A−1

t St
is a Q-martingale. We will call such a measure the equivalent martingale measure.
Define the measure Q by its density with respect to P :

Λ(ω) =
dQ

dP
= ebBT−

b2

2
T (63)

with b = µ−r
σ

.

Theorem 9.5 (Girsanov’s theorem). Let (Ω,F , P ) be a probability space, and let Ft
be the natural filtration of the Brownian motion Bt. Then, for each t, the measure
Q, defined by (63) and restricted to Ft, is equivalent to the measure P restricted to
Ft. Moreover, the process

Wt = Bt + b t

is a Brownian motion under Q.

Proof. Without proof.

Theorem 9.6. The equivalent martingale measure Q is unique. The SDE for St
under Q becomes

dSt = r St dt+ σStdWt, (64)

where Wt is Q-Brownian motion.

Proof. By Girsanov’s theorem Wt = Bt + µ−r
σ

is a Brownian motion under Q. We
have:

dS̃t = d(e−rtSt) = e−rt(µStdt+ σStdBt)− r e−rtSt = e−rtSt
(
(µ− r)dt+ σdBt

)
= σS̃tdWt.

The process S̃t satisfying this SDE has the form

S̃t = eσWt−σ
2

2
t (65)

and it is a Q-martingale. On the other hand,

S̃t = S0 exp{σBt + (µ− r) t− σ2

2
t}. (66)

Therefore, the process S̃t is a P -martingale if and only if µ = r which implies that
P = Q. Therefore, the measure Q is unique. Now, the SDE dS̃t = σS̃tdWt becomes
(64) if we substitute S̃t = e−rtSt. The theorem is proved.
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9.2.1 The Black-Scholes portfolio

Now our goal is to construct the Black-Scholes portfolio. The Black-Scholes strategy
is to construct a portfolio Vt which is both self-financing and replicating, and which
effectively fixes the value of the option at each time t. Let EQ be the expectation
with respect to the measure Q. Define the Q-martingale Zt, 0 6 t 6 T , by

Zt = A−1
t EQ[Z|Ft]. (67)

Then Zt is an L2-martingale, since, by Jensen’s inequality, we have:

EQ
[
EQ[Z|Ft]2

]
6 EQ

[
EQ[Z2|Ft]

]
= EQ[Z2] <∞.

We can apply the martingale representation theorem in the probability space
(Ω,F , Q) to conclude that there exists a square-integrable process δt, 0 6 t 6 T ,
such that

dZt = δt dWt = γt dS̃t, (68)

where γt = δt
σS̃t

, since dS̃t = σS̃t dWt. Define the portfolio (αt, βt) by the formulas:

αt = γt, βt = Zt − γtS̃t, (69)

for all t ∈ [0, T ]. We call this the Black-Scholes portfolio. Its value is

Vt = αtSt + βtAt = γtSt + (Zt − γtS̃t)At

for each t ∈ [0, T ].

Theorem 9.7. The Black-Scholes portfolio is self-financing and replicating.

Proof. Since S̃t = A−1
t St, then

Vt = AtγtS̃t + (Zt − γtS̃t)At = ZtAt. (70)

To see that this portfolio is replicating, we observe that

VT = ATZT = ATA
−1
T EQ[Z|FT ] = Z

since Z is FT -measurable. To see that the portfolio is self-financing, we apply formula
(68) and Itô’s formula:

dVt = d(ZtAt) = ZtdAt + AtdZt = AtγtdS̃t + ZtdAt.

By (69), Zt = βt + γtS̃t. Therefore,

dVt =γtAtdS̃t + (βt + γtS̃t)dAt

=βtdAt + γt(AtdS̃t + S̃tdAt) = βtdAt + γtd(S̃tAt)

=βtdAt + αtdSt

since αt = γt by the definition. The theorem is proved.
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9.2.2 The Black–Scholes pricing formula

We can now derive the celebrated Black-Scholes pricing formula for a European
option. Note that formula (70) and the definition of the martingale Zt (see (67))
allows us to obtain the value of the portfolio at any time t ∈ [0, T ]:

Vt = AtZt = AtA
−1
T EQ[Z|Ft] = e−r(T−t)EQ[Z|Ft]. (71)

In particular,

V0 = e−rTEQ[Z] = e−rTEQ[(ST − k)+]. (72)

Note that, by (65), at time T

S̃T = S0 e
σWT−σ

2

2
T .

Hence,

ST = A−1S̃T = S0 e
WT+(r−σ

2

2
T ).

Since WT ∼ N(0, T ), then, by the scaling property of a Brownian motion,

σWT −
σ2T

2
∼ Wσ2T −

σ2T

2
∼ N(−σ

2T

2
, σ2T ).

This and (72) imply that

V0 = e−rTEQ[(seU+rt − k)+],

where s = S0 and U is a random variable with the distribution N(−σ2T
2
, σ2T )

Computing the expectation, we obtain:

V0 =
e−rT

σ
√

2πT

∫ ∞
−∞

(s ex+rT − k)+ e−
x+σ

2T
2

2σ2T dx

=
1

σ
√

2πT

∫
sex+rT−k>0

(s ex − k e−rT )e−
x+σ

2T
2

2σ2T dx

=
1

σ
√

2πT

∫ ∞
−(log( s

k
)+rT )

(s ex − k e−rT )e−
x+σ

2T
2

2σ2T dx (73)

=
s

σ
√

2πT

∫ ∞
−(log( s

k
)+rT+σ2T

2
)

e−
y2

2σ2T dy − ke−rT

σ
√

2πT

∫ ∞
−(log( s

k
)+rT−σ2T

2
)

e−
y2

2σ2T dy.

(74)

Passing from line (73) to line (74), in the first summand we rearranged the product
of two exponential functions into one, and made the substitution y = x− σ2T

2
, and

in the second summand we made the substitution y = x+ σ2T
2

. Finally, taking into
account that for any a > 0,

1

σ
√

2πT

∫ ∞
−a

e−
y2

2σ2T dy.
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where Φ is the distribution function of a standard normal random variable, we obtain
the Black-Scholes pricing formula for European calls:

V0 = sΦ
( log( s

k
) + rT + σ2T

2

σ
√
T

)
− k e−rT Φ

( log( s
k
) + rT − σ2T

2

σ
√
T

)
. (75)

The Black-Scholes pricing formula allows one to make a profit by buying or selling
options. Suppose that the option sells for a price P > V0. Then one can sell options
and invest the value V0 in α0 units of stock and in β0 units of the bank account,
where (αt, βt) is the Black-Scholes portfolio. Using the fact that the Black-Scholes
portfolio is replicating, we know that at time T the value of the option will be VT .
Therefore, one makes a profit of P − V0. Suppose now that P < V0. Then one sells
α0 units of stock, borrows β0 units of the bank account, and spends the amount P
to buy options. At times T he gets the value of the option Z by means of buying
stocks and selling them immediately. Since the portfolio is replicating, Z = VT . He
returns then the borrowed value βT of units of the bank accounts and buys αT units
of stock. In this case, one makes a profit of V0 − P .

9.2.3 The Black-Scholes PDE

Formula (71) implies that

Vt = er(T−t)EQ[(STk)+|Ft]

where Ft is the natural filtration of Wt. By (62) Ft coincides with the filtration
Gt = σ(Ss, 0 6 s 6 t). Remind that for a Markov process Xt with the transition
function Ps,t by the definition and Theorems 4.5 and 4.6 we have:

(Ps,tf)(Xs) = EQ[f(Xt)|σ(Xu, u 6 s)] and

Ex[f(Xt)] = (Ps,tf)(x) =

∫
Rn
Ps,t(x, dy) f(y).

where Ex is the expectation with respect to the measure Pδx defined in Theorem
4.6. These formulas imply:

EQ[f(Xt)|σ(Xu, u 6 s)] = EXs [f(Xt)].

Applying to our case, we obtain:

Vt = e−r(T−t)EQ[(ST − k)+|Gt] = e−r(T−t)ESt [(ST − k)+].

Define

C(x, t) = e−r(T−t) ESt [(ST − k)+]. (76)

Note that Vt = C(St, t). Therefore, we have:

dC(St, t) = αtdSt + βtdAt = αtdSt + rβtAt dt (77)
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where At = ert. On the other hand, assuming that C(x, t) belongs to the class C2,
we can apply Itô’s formula. Taking into account that, by (61), d〈S〉t = σ2S2

t , we
obtain:

dC(St, t) =
∂C(St, t)

∂t
dt+

∂C(St, t)

∂x
dSt +

1

2

∂2C(St, t)

∂x2
σ2 S2

t dt.

Comparing with (77), we obtain:(
αt −

∂C(St, t)

∂x

)
dSt =

(
rβtAt −

∂C(St, t)

∂t
− 1

2

∂2C(St, t)

∂x2
σ2S2

t

)
dt.

Note that if αt− ∂C(St,t)
∂x

6= 0, then the left-hand side has a positive quadratic variation
while the right-hand side has zero quadratic variation. This implies that

αt =
∂C(St, t)

∂x
.

Consequently,

βtAt = r−1
(∂C(St, t)

∂t
+

1

2

∂2C(St, t)

∂x2
σ2S2

t

)
.

Finally, we obtain:

C(St, t) = Vt = αtSt + βtAt =
∂C(St, t)

∂t
St + r−1

(∂C(St, t)

∂t
+

1

2

∂2C(St, t)

∂x2
σ2S2

t

)
.

In the above equation, we replace St with x to obtain the Black-Scholes PDE.

Theorem 9.8 (The Black-Sholes PDE). The function C(x, t) satisfies the Black-
Scholes PDE:

−rC(x, t) +
∂C(x, t)

∂t
+ rx

∂C(x, t)

∂x
+
σ2x2

2

∂2C(x, t)

∂x2
= 0 (78)

with the final condition C(x, T ) = (x−K)+. The function C(x, t) solving the above
SDE can be explicitely given by the formula:

C(x, t) = xΦ
( log(x

k
) + (r + σ2

2
)(T − t)

σ
√

(T − t)

)
− k e−r(T−t) Φ

( log(x
k
) + (r − σ2

2
)(T − t)

σ
√

(T − t)

)
,

(79)

where Φ is a function of standard normal distrbution.

Proof. Note that we can apply the argument that we used to obtain the Black-
Scholes pricing formula (75) to C(x, t) given by (76) with

ST = x eσ(WT−Wt)+(r−σ
2

2
)(T−t)

since we replaced St = S0 e
σWt+(r−σ

2

2
)t by x. We obtain then (79).
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9.3 Bonds and interest rates

To avoid arbitrage between bonds and savings account, a certain relation must hold
between bonds and the spot rate:

P (t, T ) = e−
∫ T
t r(s)ds.

Let (Ω, P,F) be a proability space with the filtration Ft, 0 6 t 6 T ∗, and that the
process t 7→ P (t, T ) is Ft-adapted.

We make the assumption of the existence of the equivallent martingale measure,
i.e. that there exists a probability measure Q which is equivalent to P and such that
simultaneously for all T < T ∗, the process t 7→ P (t,T )

At
, 0 6 t 6 T , is a martingale.

The martingale property and the fact that P (T, T ) = 1 imply that

EQ
( 1

AT
| Ft) = EQ

(P (T, T )

AT
| Ft) =

P (t, T )

At
. (80)

From this we obtain:

P (t, T ) = EQ
( At
AT
| Ft
)

= EQ
(
e−

∫ T
t rsds | Ft

)
(81)

9.3.1 SDE for the bond price

Let (Ω, P,F) be a probability space with the filtration Ft. Further let Bt be a
Brownnian motion under P . We assume that the spot rate process rt generates the
filtration Ft, and that for all T < T ∗, the process t 7→ T is Ft-adapted. By (80),

A−1
t P (t, T ) = EQ

(
e−

∫ T
0 rsds | Ft

)
.

By the martingale representation theorem, there exists a process ht so that

A−1
t P (t, T ) =

∫ t

0

htdWt

where Wt is a Q-Brownian motion. Now let σ(t, T ) = htAtP (t, T )−1. Then

d(P (t, T )A−1
t ) = σ(t, T )P (t, T )A−1

t dWt.

Note that since At = e
∫ t
0 rsds, then dAt = Atrtdt, and, therefore d(A−1

t ) = −A−1
t rtdt.

This implies that

A−1
t dP (t, T ) = P (t, T )A−1

t rtdt+ σ(t, T )P (t, T )A−1
t dWt.

Canceling the factor A−1
t in the both sides of the above SDE, we obtain the SDE

for the bond price P (t, T ) with respect to the equivalent martingale measure Q:

dP (t, T ) = P (t, T )rtdt+ σ(t, T )P (t, T )dWt. (82)

To find the SDE for P (t, T ) with respect to the original measure P , we will need
the following version of Girsanov’s theorem:
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Theorem 9.9. Let P be the Wiener measure, Bt be a P -Brownian motion. Further
let Q be equivalent to P . Then there exists a predictable process qt, such that

dP

dQ
= e

∫ T
0 qtdBt− 1

2

∫ T
0 q2t dt.

Moreover,

Bt = Wt +

∫ t

0

qs ds (83)

where Wt is a Q-Brownian motion.

Girsanov’s theorem implies, therefore, the existence of a predictable process qs
such that relation (83) holds. After substituting dWt = dBt = qt dt into (82) we
obtain the SDE for the bond price P (t, T ) under P :

dP (t, T ) = P (t, T )(rt − σ(t, T )qt) dt+ σ(t, T )P (t, T )dBt.

The process −qt is known as the market price of risk.

9.3.2 Model for a spot rate

Let (Ω, P,F) be a probability space. The spot rate rt is assumed to satisfy the SDE:

drt = m(rt)dt+ σ(rt) dBt (84)

where Bt is a P -Brownian motion, m and σ are functions of a real variable. The bond
price satisfies (81). Remark that SDE (84) is under measure P , but the expectation
in (81) is under measure Q. Let us find the SDE for rt under Q. By Girsanov’s
theorem, we have:

dWt = dBt − qtdt.

From this, we obtain the SDE for rt under Q.

drt = (m(rt) + σ(rt)qt) dt+ σ(rt) dWt. (85)

Using the same argument that we used to derive the Black-Scholes PDE and taking
into account that the filtration Ft is generated by rt, we obtain that

EQ
(
e−

∫ T
t rs ds | Ft

)
= Ert

(
e−

∫ T
t rs ds

)
.

Define

C(x, t) = Ex
(
e−

∫ T
t rs ds

)
.

This function satisfies a certain PDE which can be obtained by applying Itô’s formula
to C(rt, t), substituting the right-hand side of (85) for drt and obtaining a coefficient
at dt. On the other hand we know that C(rt, t) = P (t, T ), and therefore, by (82),
the dt-part of dC(rt, t) = dP (t, T ) equals to P (t, T )rtdt = C(rt, t)rtdt. Finally we
substitute rt = x to obtain:

1

2
σ2(x)

∂2C

∂x2
(x, t) + (m(x) + σ(x)qt)

∂C

∂x
(x, t) +

∂C

∂t
(x, t)− xC(x, t) = 0.

Since S(rT , T ) = P (T, T ) = 1, the boundary condition will be C(x, T ) = 1.
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9.3.3 Merton’s model and Vasicek’s model

Among well known models for the spot rate are

• Merton’s model

drt = µ dt+ σ dBt.

• Vasicek’s model

drt = b(a− rt) dt+ σ dBt.

The solution for Merton’s model is

rt = r0 + µ t+ σ Bt.

The solution for Vasicek’s model is

rt = a− e−bt(a− r0) + σ

∫ t

0

e−b(t−s)dBs.

9.3.4 Heath-Jarrow-Morton (HJM) model

The model is based on modelling of forward rates. By definition, the forward rate
f(t, T ), t 6 T 6 T ∗, is defined by the relation:

P (t, T ) = e−
∫ T
t f(t,s)ds.

This implies

f(t, T ) = −∂ logP (t, T )

∂T
.

One can say that the forward rate f(t, T ) is the rate at time T as seen from time
t. The spot rate and the forward rate are related by rt = f(t, t). Consequently, the
savings account At grows as

At = e
∫ t
0 f(s,s)ds.

According to the HJM model, for a fixed time T , f(t, T ) is the solution of the SDE:

df(t, T ) = µ(t, T )dt+ ξ(t, T )dBt,

where Bt is a Brownian motion, µ(t, T ) and ξ(t, T ) are adapted and continuous. For
this assumption to be compatible with the assumption of the existence of martingale
measures we need the following relation to hold:

dP (t, T )

P (t, T )
= (rt − α(t, T )θt)dt+ α(t, T )dBt.

where α(t, T ) = −
∫ T
t
ξ(t, s)ds and µ(t, T ) = ξ(t, T )

( ∫ T
t
ξ(t, s)ds − θt

)
. The latter

equation is known as the no-arbitrage condition of the HJM model.
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