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Departamento de Matemática–Universidad de Tarapacá

Casilla 7-D, Arica - Chile, slorca@uta.cl

Pedro Ubilla§

Universidad de Santiago de Chile

Casilla 307, Correo 2, Santiago - Chile, pubilla@usach.cl

DEDICATED TO DJAIRO G. DE FIGUEIREDO

ON OCCASION OF HIS 70TH BIRTHDAY

To appear in Journal of Differential Equations

Abstract
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1 Introduction

We deal with systems of second–order ordinary differential equations which have the
form

−u′′ = f(t, u, v, a, b) in (0, 1)
−v′′ = g(t, u, v, a, b) in (0, 1) ,

(Pa,b)

with boundary conditions
u(0) = u(1) = 0 ,
v(0) = v(1) = 0 .

(BC)

where the nonlinearities f and g are superlinear at the origin as well as at infinity,
and a, b are non–negative constants. We show that there exists a continuous curve
Γ which splits the positive quadrant of the (a, b)− plane into two disjoint sets S
and R such that the System (Pa,b), with boundary conditions (BC), has at least
two positive solutions in S, has at least one positive solution on the boundary of S,
and has no positive solutions in R . Our approach is based on fixed–point theorems
of cone expansion/compression type, the upper–lower solutions method, and degree
arguments.

In what follows, we will impose the following.

(H0) The functions f, g : [0, 1] × [0, +∞)4 → [0, +∞) are continuous and non–
decreasing in the last four variables. In other words,

f(t, u1, v1, a1, b1) ≤ f(t, u2, v2, a2, b2) and g(t, u1, v1, a1, b2) ≤ g(t, u2, v2, a2, b2)

whenever (u1, v1, a1, b1) ≤ (u2, v2, a2, b2), where the inequality is understood inside
every component.

(H1) There exists a subset Υ1 ⊂ (0, 1) of positive Lebesgue measure such that for
all fixed a, b > 0,

lim
|(u,v)|→0

`(t, u, v, a, b)

|(u, v)|
= +∞ uniformly for almost everywhere t ∈ Υ1, (1.1)

for either ` = f or ` = g. Here we use the notation |(x1, . . . , xm)| = |x1|+ . . .+ |xm| .

(H2) There exist subsets Υ2, Υ3 ⊂ (0, 1) of positive Lebesgue measure such that

lim
|(u,v)|→∞

f(t, u, v, 0, 0)

|(u, v)|
= +∞ uniformly for almost everywhere t ∈ Υ2 (1.2)

and

lim
|(u,v)|→∞

g(t, u, v, 0, 0)

|(u, v)|
= +∞ uniformly for almost everywhere t ∈ Υ3 . (1.3)
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It is not difficult to see that there exists τ ?(f) = τ ?(f, ξ, η, a, b) such that∫ 1

0

τf(τ, ξ, η, a, b) dτ =

∫ 1

τ?

f(τ, ξ, η, a, b)dτ .

Similarly, there exists τ ?(g) = τ ?(g, ξ, η, a, b) such that∫ 1

0

τg(τ, ξ, η, a, b) dτ =

∫ 1

τ?

g(τ, ξ, η, a, b)dτ .

The next assumptions are related to the numbers τ ?(f) and τ ?(g), both denoted τ ?

for simplicity.

(H3) There exist R0, a0, b0, s0 > 0 such that∫ τ?

0

τf(τ, R0, R0, a0, b0) dτ ≤ s0R0

and ∫ τ?

0

τg(τ, R0, R0, a0, b0) dτ ≤ (1− s0)R0 .

Also, we assume that there exists a subset Υ ⊂ (0, 1) such that f(t, 0, 0, a0, b0) > 0
and g(t, 0, 0, a0, b0) > 0 , for all t ∈ Υ.

When |(a, b)| is sufficiently large, the next hypothesis together with (H2) give a
non–existence result for the System (Pa,b) .

(H4) There exists a subset Υ4 ⊂ (0, 1) of positive Lebesgue measure such that

lim
|(a,b)|→+∞

h(t, u, v, a, b) = +∞ uniformly for t ∈ Υ4 and all u, v ≥ 0 ,

for either h = f or h = g .

Remark 1 Observe the local character of the assumptions (H1), (H2), and (H4) in
the variable t . We further note that the sets Υ1, Υ2, Υ3, and Υ4 may, in general, be
different and that hypothesis (H3) is verified for instance when

lim
|z|→0

f(t, z)

|z|
= lim

|z|→0

g(t, z)

|z|
= 0 uniformly for almost everywhere t ∈ [0, 1] (1.4)

as well as when for some i, j ∈ {3, 4}, we have that

lim
zi→0+

f(t, z) = lim
zj→0+

g(t, z) = 0 uniformly for almost everywhere t ∈ [0, 1] (1.5)

where z = (z1, z2, z3, z4) .
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Our main result is Theorem 1.1, which will be proved in Section 3.

Theorem 1.1 Suppose that the pair of functions consisting of f(t, u, a, b) and
g(t, u, a, b) satisfies conditions (H0) through (H4). Then there exist a positive constant
a and a continuous function Γ : [0, a] → [0, +∞) such that for all a ∈ [0, a], the System
(Pa,b) with boundary conditions (BC) :

(i) has at least one positive solution if 0 ≤ b ≤ Γ(a);

(ii) has no solution if b > Γ(a);

(iii) has a second positive solution if 0 < b < Γ(a) .

Applications. As a main application of Theorem 1.1, and indeed as a principal
motivation for Theorem 1.1 itself, we can prove the existence and multiplicity of
positive radial solutions for the following class of semilinear elliptic system in annular
domains. In fact, let 0 < r1 < r2, and let A(r1, r2) = {x ∈ RN : r1 < |x| < r2}, with
N ≥ 3, be an annulus. Consider the system

−∆u = h(|x|, u, v) in A(r1, r2) ,
−∆v = k(|x|, u, v) in A(r1, r2) ,
(u, v) = (0, 0) on |x| = r1 ,
(u, v) = (a, b) on |x| = r2 ,

(Ea,b)

where a, b are non–negative parameters, and the nonlinearities h and k satisfy the
next four conditions.

(A0) The functions h, k : [0, 1] × [0, +∞)2 → [0, +∞) are continuous and non–
decreasing in the last two variables.

(A1) There exist a set Λ1 ⊂ (r1, r2) of positive Lebesgue measure, and a function
` such that either ` = h or ` = k and such that `(r, u, v) > 0, for almost everywhere
r ∈ Λ1 and all u, v > 0 .

(A2) There exist subsets Λ2, Λ3 ⊂ (r1, r2) of positive Lebesgue measure such that

lim
|(u,v)|→∞

h(r, u, v)

|(u, v)|
= +∞ uniformly for almost everywhere r ∈ Λ2 (1.6)

and

lim
|(u,v)|→∞

k(r, u, v)

|(u, v)|
= +∞ uniformly for almost everywhere r ∈ Λ3 . (1.7)

(A3) lim
|(u,v)|→0

h(r, u, v)

|(u, v)|
= lim

|(u,v)|→0

k(r, u, v)

|(u, v)|
= 0 uniformly for almost everywhere r ∈ (r1, r2).

(1.8)
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Note that performing the change of variable

t = Ar2−N + B , where A =
(r1r2)

N−2

rN2
2 − rN−2

1

and B =
rN−2
2

rN2
2 − rN−2

1

,

we see that the System (Ea,b) is equivalent to the system

−u′′ = f(t, u, v, a, b) in (0, 1) ,
−v′′ = g(t, u, v, a, b) in (0, 1) ,
u(0) = u(1) = v(0) = v(1) = 0 ,

where here the nonlinearities f and g are given by

f(t, u, v, a, b) = d(t)h(( A
B−t

)1/(N−2), u + ta, v + tb) ,

g(t, u, v, a, b) = d(t)k(( A
B−t

)1/(N−2), u + ta, v + tb) ,

d(t) = (1−N)2 A2/(N−2)

(B−t)2(N−1)/(N−2) ·

Now it is easy to see that f and g satisfy assumptions (H0) through (H4), and hence
the following is an immediate consequence of Theorem 1.1.

Theorem 1.2 Under the assumptions (A0) through (A3), there exists a continuous
function Γ : [0, a] → [0, +∞) such that for all a ∈ [0, a] , we have:

(i) If 0 ≤ b ≤ Γ(a), then the System (Ea,b) has at least one positive radial solution.

(ii) If the inequalities above are strict, or in other words if 0 < b < Γ(a), then the
System (Ea,b) has at least two positive radial solutions.

(iii) When b > Γ(a), the System (Ea,b) has no positive radial solutions.

We next give three typical examples of nonlinearities that satisfy the hypotheses
of Theorem 1.2.

Example 1.3 Let h, k : [r1, r2]× [0, +∞)2 → [0, +∞) be nonlinearities given by

h(r, u, v) = up + vq and k(r, u, v) = d1(r)(u
p + vq) + d2(r)u

pvq

where p , q > 1 and d1, d2 : [r1, r2] → R are non–trivial, non–negative continuous
functions such that d1(r) > 0 and d2(r) = 0 in some sub–interval J of [r1, r2] .
For instance, we may assume, Λ1 is any sub–interval with l = h, Λ2 is also any
sub–interval and Λ3 = J .

Example 1.4 Let h, k : [r1, r2]× [0, +∞)2 → [0, +∞) be nonlinearities given by

h(r, u, v) = up + vq and k(r, u, v) = (d1(r)(u
p + vq) + 1) arctan(d2(r)(u

p + vq))

where p , q > 1 and d1, d2 : [r1, r2] → R are non–negative continuous functions which
are positive in some subinterval J of [r1, r2] .
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Example 1.5 Let f0, g0 : [0, +∞)2 → [0, +∞) be continuous functions such that
f0(u, v) > 0, g0(u, v) > 0 for all u, v > 0, and such that

lim
|(u,v)|→0

f0(u, v)

|(u, v)|
= lim

|(u,v)|→0

g0(u, v)

|(u, v)|
= 0 ,

lim
|(u,v)|→+∞

f0(u, v)

|(u, v)|
= lim

|(u,v)|→+∞

g0(u, v)

|(u, v)|
= +∞ .

Take h, k : [r1, r2]× [0, +∞)2 → [0, +∞) defined by

h(r, u, v) = d1(r)f0(u, v) and k(u, v) = d2(r)g0(u, v) ,

where d1, d2 : [r1, r2] → R are non–trivial, non–negative continuous functions.

In recent years, the study of semilinear elliptic problems in annular domains has
received considerable attention. We first refer to the progress made on the study of
single equations involving non–homogeneous boundary conditions. These problems
have been studied by C. Bandle and L.A. Peletier, M.G. Lee and S.S. Lin, D.D. Hai,
among others. In [1], Bandle and Peletier consider the problem

−∆u = u(N+2)/(N−2) and u > 0 in A(r1, r2) ,
u = 0 for |x| = r2 and u = b for |x| = r1 ,

(1.9)

where N ≥ 3 . They show the existence of a positive constant b0 such that the
Problem (1.9) has one solution for b < b0 and no solutions for b > b0. In [9], this
result is extended to nonlinearities f which are convex and superlinear at zero and
infinity. Also, uniqueness and multiplicity questions are discussed. Hai [7] extends the
results of [1] and [9] to nonlinearities locally Lipschitz continuous and superlinear at
zero and infinity. More recently, Naito and Tanaka [10] have used Shooting Methods
together with Sturm’s comparison theorem to obtain nodal solutions.

In the context of elliptic systems in annular domains, we mention the works of
Dunninger and Wang on homogeneous Dirichlet boundary conditions, as well as that
of Lee on nonhomogeneous Dirichlet boundary conditions. (See [4], [5], as well as [8],
and the references therein.) This work is more related to results of [8]. In fact, in [8],
among other problems, the following elliptic system is considered.

−∆u = λk1(|x|)f(u, v) in A(r1, r2) ,
−∆v = µk2(|x|)g(u, v) in A(r1, r2) ,
(u, v) = (0, 0) on |x| = r1 ,

(u, v) = (a, b) on |x| = r2 ,

(1.10)

where a, b ∈ (0, +∞), (λ, µ) ∈ [0, +∞)2 \ {(0, 0)}. Further, the following conditions
are imposed:

(h) ki ∈ C([r1, r2], [0, +∞)) does not vanish identically on any subinterval of
[r1, r2];

(h′) ki ∈ C([r1, r2], (0, +∞)) so that ki > 0 on [r1, r2];
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(h0) f, g ∈ C([0, +∞)2, (0, +∞)) so that f(0, 0) > 0 and g(0, 0) > 0;

(h′0) f, g ∈ C([0, +∞)2, [0, +∞)) with f(0, 0) = 0 and g(0, 0) = 0;

(h1) f and g are non–decreasing on [0, +∞)2;

(h′1) f and g are increasing on [0, +∞)2;

(h2) lim(u,v)→∞
f(u,v)
u+v

= lim(u,v)→∞
g(u,v)
u+v

= ∞ .

More precisely, under the conditions (h) , (h0) , (h1) , and (h2) , the existence of
a continuous curve Γ is established, which splits the region [0, +∞)2 \ {(0, 0)} into
two disjoint subsets O1 and O2 such that the System (1.10) with a = b = 0 , has
at least two (respectively at least one, no) positive radial solutions for (λ, µ) ∈ O1

(respectively Γ, O2). On the other hand, under the conditions (h′) , (h′0) , (h′1) ,
and (h2), the existence of both a continuous curve Γ , which splits the region
[0, +∞)2 \ {(0, 0)} into two disjoint subsets O1 and O2, and a subset O ⊆ O1

is established such that the System (1.10) has at least two (respectively at least one,
no) positive radial solutions for (λ, µ) ∈ O (respectively (O1 \ O) ∪ Γ , O2).

Note that the System (1.10) is equivalent to the system

−u′′ = λd1(t)f(u + ta, v + tb) in A(r1, r2) ,

−v′′ = µd2(t)g(u + ta, v + tb) in A(r1, r2) ,
u(0) = u(1) = v(0) = v(1) = 0 ,

where di(t) = d(t)ki((
A

B−t
)1/(N−2)), with i = 1, 2.

Take δ > 0, λ = a + δ and µ = b + δ, with a, b ∈ [0, +∞). Consider the
nonlinearities

f1(t, u, v, a, b) = (a + δ)d1(t)f(u + ta, v + tb)

g1(t, u, v, a, b) = (b + δ)d2(t)g(u + ta, v + tb) .

Taking δ > 0 sufficiently small, Theorem 1.2 allows us to improve the results of
[8], since the coefficients ki may vanish in parts of the interval (r1, r2) , and since
the hypotheses (h′0), (h

′
1) and (h2) imply the multiplicity results above for O = O1.

Observe that, in [8], the coefficients ki are considered positive in the interval (r1, r2)
because the System (1.10) is compared with another one with constant coeffifients
that is studied using Shooting Methods (see Lemma 4.4 and 4.5 in [8]).

This paper is organized as follows. Section 2 contains preliminary results. Section
3 is devoted to proving our main result, Theorem 1.1.

Notation Summary. Here is a brief summary of some notation:
B(p, R): the open ball with radius R centered at the point p.
C, C0, C1, C2, ... : positive (possibly different) constants.
i(F, Cr, C) = 1: the fixed–point index of F with respect to the cone C.
deg(F, A, y): mapping degree for the equation F (x) = y, for x ∈ A.
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2 Preliminary Results

It is not difficult to show that if the pair (u, v) is a solution of System (Pa,b), then for
all t ∈ [0, 1],

u(t) =

∫ 1

0

K(t, τ)f(τ, u(τ), v(τ), a, b) dτ,

v(t) =

∫ 1

0

K(t, τ)g(τ, u(τ), v(τ), a, b) dτ,

(Sa,b)

where K(t, τ) is the Green’s function

K(t, s) :=

{
t(1− s) if t ≤ s,
s(1− t) if t > s.

(2.11)

Let

A(u, v)(t) :=

∫ 1

0

K(t, τ)f(τ, u(τ), v(τ), a, b) dτ,

B(u, v)(t) :=

∫ 1

0

K(t, τ)g(τ, u(τ), v(τ), a, b) dτ,

F (u, v) := (A(u, v), B(u, v)).

Therefore, System (Sa,b) is equivalent to the fixed point equation

F (u, v) = (u, v)

in the usual Banach space X = C([0, 1]; R) × C([0, 1]; R) endowed with the norm
||(u, v)|| := ||u||∞ + ||v||∞, where ||w||∞ := supt∈[0,1] |w(t)|.

The proof of the existence of the first positive solution of (Pa,b) will be based on
the following fixed-point theorem of cone expansion/compression type. One may refer
to [2, 3, 6] for proofs and further discussion of the fixed point index.

Lemma 2.1 Let X be a Banach space with norm | · | , and let C ⊂ X be a cone
in X. For r > 0, define Cr = C ∩ B[0, r] where B[0, r] = {x ∈ X : |x| ≤ r} is
the closed ball of radius r centered at origin of X . Assume that F : Cr → C is a
compact map such that Fx 6= x , for all x ∈ ∂Cr = {x ∈ C : |x| = r}. Then:

1. If |x| ≤ |Fx| for all x ∈ ∂Cr, then i(F, Cr, C) = 0.

2. If |x| ≥ |Fx| for all x ∈ ∂Cr, then i(F, Cr, C) = 1.

Let us consider the cone C in X defined by

C = {(u, v) ∈ X : (u, v)(0) = (u, v)(1) = 0, and u, v are concave functions}.

Lemma 2.2 F : X → X is completely continuous and F (C) ⊂ C.
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Proof. We only give the main ideas of the proof. The Arzela-Ascoli theorem implies
that F : X → X is completely continuous. Is is easy to see that F1 and F2 (the
coordinates functions of F (u, v)) are twice differentiable on (0, 1) with F ′′

1 ≤ 0 and
F ′′

2 ≤ 0. This implies that F (C) ⊂ C.

Remark 2 For each subset Υi, i = 1, 2, 3, 4, there exist 1− εi > δi > 0 and subsets
of positive measure Υ̂i ⊂ Υi ∩ (δi, 1− εi) such that for all u, v ∈ C, we have

inf
t∈Υ̂i

(u(t) + v(t)) ≥ δi(1− εi)||(u, v)||. (2.12)

3 Proof of Theorem 1.1

3.1 The first positive solution for System (Pa0,b0
)

Using that f, g : [0, 1] × [0, +∞)4 → [0, +∞) are continuous and non–decreasing in
the second and third variables, and assumptions (H1) and (H3) we apply the Lemma
2.1 to prove the existence of a first positive solution for System (Pa0,b0), where (a0, b0)
is given in assumption (H3).

Lemma 3.1 Assume condition (H3), then for all (u, v) ∈ CR0,

||F (u, v)|| ≤ ||(u, v)||.

Proof. Given (u, v) ∈ CR0 ,

A(u, v)(t) =

∫ 1

0

K(t, τ)f(τ, u(τ), v(τ), a0, b0) dτ

≤
∫ 1

0

K(t, τ)f(τ, R0, R0, a0, b0) dτ

≤
∫ 1

0

K(τ ?, τ)f(τ, R0, R0, a0, b0) dτ

=

∫ τ?

0

τf(τ, R0, R0, a0, b0) dτ

≤ s0R0.

Similarly, we can prove that

B(u, v)(t) ≤ (1− s0)R0.

Hence, for all (u, v) ∈ CR0 ,

||F (u, v)|| = ||A(u, v)||∞ + ||B(u, v)||∞ ≤ R0 = ||(u, v)||.



10 do Ó, Lorca & Ubilla

Lemma 3.2 Assume the hypothesis (1.1). Then there exists R1 ∈ (0, R0) such that
for all (u, v) ∈ CR1,

||F (u, v)|| ≥ ||(u, v)||.

Proof. Using assumption (H1) with ` = f , and according Remark 2, given M > 0
there exists R1 = R1(M) ∈ (0, R0) such that for all (u, v) ∈ [0, R1]

2 and almost every
τ ∈ Υ̂1,

f(τ, u, v, a0, b0) ≥ M |(u, v)|.

Thus, for all (u, v) ∈ CR1 ,

||A(u, v)||∞ ≥
∫ 1

0

K(1/2, τ)f(τ, u(τ), v(τ), a0, b0) dτ

≥
∫

Υ̂1

K(1/2, τ)f(τ, u(τ), v(τ), a0, b0) dτ

≥ M

∫
Υ̂1

K(1/2, τ)[u(τ) + v(τ)] dτ

≥ δ1(1− ε1)M ||(u, v)||
∫

Υ̂1

K(1/2, τ) dτ,

where in the last inequality we have used (2.12). Finally, taking M > 0 sufficiently
large such that

δ1(1− ε1)M

∫
Υ̂1

K(1/2, τ) dτ > 1,

we get
||F (u, v)|| ≥ ||(u, v)||.

An analogous estimate holds if we use assumption (H1) with ` = g.

Now, in view of Lemmas 3.1 and 3.2, as a direct consequence of Lemma 2.1, we
have the following result.

Theorem 3.3 F has a fixed point (u, v) ∈ C such that R1 < ||(u, v)|| < R0.

Therefore, the pair (u, v) is a positive solution of System (Pa0,b0).

Using a combination of the maximum principle and hypothesis (H3) we obtain
that both u and v are positive functions.

3.2 A priori estimate

Next, as a consequence of assumption (H2) we have the following a priori estimate
for positive solutions of System (Pa,b).

Lemma 3.4 There exists C0 > 0 independent of a and b such that ||(u, v)|| ≤ C0 ,
for all positive solution (u, v) of System (Pa,b ) with boundary condition (BC).
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Proof. Assume by contradiction that there exists a sequence of solution (un, vn) ∈ X
of System (Pa,b) such that ||(un, vn)|| → ∞. Without loss of generality we may assume
that ||un||∞ → ∞. From assumption (H2) we can take a sequence of real numbers
αn ↗ +∞ such that for almost every τ ∈ Υ2 and a, b ≥ 0,

f(τ, un(τ), vn(τ), a, b)

un(τ) + vn(τ)
≥ αn. (3.13)

Thus, using the fact that un is concave together with Remark 2,

||un||∞ ≥ un(t) =

∫ 1

0

K(t, τ)f(τ, un(τ), vn(τ), a, b) dτ

≥
∫

Υ̂2

K(t, τ)
f(τ, un(τ), vn(τ), a, b)

un(τ) + vn(τ)
un(τ) dτ

≥ δ2(1− ε2)||un||∞
∫

Υ̂2

K(t, τ)
f(τ, un(τ), vn(τ), a, b)

un(τ) + vn(τ)
dτ,

which together with (3.13), implies that

1

αn

≥ δ2(1− ε2)

∫
Υ̂2

K(t, τ) dτ

which is a contradiction.

3.3 Lower and upper solutions

Now, we will establish the classical lower and upper solutions method for our class of
problems. To do this, consider the system

−u′′ = f0(t, u, v) in (0, 1)
−v′′ = g0(t, u, v) in (0, 1)
u(0) = u(1) = v(0) = v(1) = 0

(S)

Where f0 and g0 are nonnegative continuous functions which are nondecreasing in
the variables u and v.

As usual, we say that (u, v) is a lower solution for System (S) when (u, v) verify
the following inequations

−u′′ ≤ f0(t, u, v) in (0, 1)
−v′′ ≤ g0(t, u, v) in (0, 1)

(u, v) ≤ 0 on {0, 1}
(T )

Similarly we define the upper solution of System (S) putting “greater or equal” instead
of “lest or equal”.
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Lemma 3.5 Let (u, v) and (ū, v̄) be a lower and upper solution respectively of System
(S) such that

(0, 0) ≤ (u, v) ≤ (ū, v̄).

Then System (S) has a nonnegative solution (u, v) verifying

(u, v) ≤ (u, v) ≤ (ū, v̄).

Proof. Let

M(u, v)(t) :=

∫ 1

0

K(t, τ)f0(τ, u(τ), v(τ)) dτ,

N(u, v)(t) :=

∫ 1

0

K(t, τ)g0(τ, u(τ), v(τ)) dτ,

G(u, v) := (M(u, v), N(u, v)).

Therefore, System (S) is equivalent to the fixed point equation

G(u, v) = (u, v)

in the Banach space X = C([0, 1], R)×C([0, 1], R) endowed with the norm ||(u, v)|| :=
||u||∞ + ||v||∞.

Now, we need to introduce the following auxiliary operator G̃ defined as follows

G̃(u, v) := (M̃(u, v), Ñ(u, v)),

where

M̃(u, v)(t) :=

∫ 1

0

K(t, τ)f0(τ, ξ(t, u), ζ(τ, v)) dτ,

Ñ(u, v)(t) :=

∫ 1

0

K(t, τ)g0(τ, ξ(t, u), ζ(τ, v)) dτ

and

ξ(t, u) := max{u(t), min{u, u(t)}} and ζ(t, v) := max{v(t), min{v, v(t)}}

It is easy to see that the operator G̃ has the following properties:

(a) G̃ is a bounded and completely continuous operator;

(b) if the pair (u, v) ∈ X is a fixed point of G̃, then (u, v) is a fixed point of G with
(u, v) ≤ (u, v) ≤ (u, v);

(c) if (u, v) = λG̃(u, v) with 0 ≤ λ ≤ 1 then ||(u, v)||1 ≤ C3, where C3 does not
depend on λ, and (u, v) ∈ X.

Thus using the topological degree of Leray-Schauder we obtain a fixed point of the
operator G. Then the lemma is proved.
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Lemma 3.6 Assume that (Pa2,b2) has a nonnegative solution and

(0, 0) ≤ (a1, b1) ≤ (a2, b2),

then (Pa1,b1) has a nonnegative solution.

Proof. Let the pair (u2, v2) be a nonnegative solution of System (Pa2,b2). Since the
functions f, g are increasing functions in the last two variables, we have that (u2, v2)
is a super-solution and (0, 0) is a sub-solution for for System (Pa1,b1). Thus using the
lemma above we have complete the proof of Lemma 3.6.

3.4 Nonexistence

Next we establish the following nonexistence result

Lemma 3.7 Suppose the hypotheses (H2) and (H4). Then there exist C > 0 such
that for all (a, b) with |(a, b)| > C the System (Pa,b) has no solutions.

Proof. Assume by contradiction that there exists a sequence (an, bn) with |(an, bn)| →
+∞ such that for each n, System (Pan,bn) possesses a positive solution (un, vn) ∈ C.

By assumption (H4), given M > 0, there exists C > 0 such that for all (a, b) with
|(a, b)| ≥ C, without lost of generality and according to Remark 2, we have

f(t, u, v, a, b) ≥ M for all t ∈ Υ̂4 and u, v ≥ 0. (3.14)

Thus,

un(t) =

∫ 1

0

K(t, τ)f(τ, un(τ), vn(τ), an, bn) dτ

≥
∫

Υ̂4

K(t, τ)f(τ, un(τ), vn(τ), an, bn) dτ,
(3.15)

which together with (3.14) implies that for n sufficiently large we obtain

un(t) ≥ M

∫
Υ̂4

K(t, τ) dτ.

Hence

||un||∞ ≥ M sup
t∈Υ4

∫
Υ̂4

K(t, τ) dτ.

Since we can choose M in (3.14) arbitrarily large, we conclude that (un) is an
unbounded sequence in X.

On the other hand, by using assumption (H2), we have that given M > 0 there
exits R > 0 such that for all u ≥ R ,

f(t, u, v, a, b) ≥ Mu, for all t ∈ Υ̂2 and a, b ≥ 0. (3.16)
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Using again the estimates (2.12) and (3.15), for n sufficiently large, we get

un(t) ≥ M

∫
Υ̂2

K(t, τ)un(τ) dτ ≥ M(1− ε2)δ2||un||∞
∫

Υ̂2

K(t, τ) dτ.

Hence

1 ≥ M(1− ε2)δ2 sup
t∈Υ2

∫
Υ̂2

K(t, τ) dτ,

which it is a contradiction with the fact that M can be chosen arbitrary large. The
proof of Lemma 3.7 is now complete.

Let us define

a := sup{a > 0 : (Pa,b) has a positive solution for some b > 0}
From Lemma 3.7 it follows immediately that

0 < a < ∞.

It is easy to see, using the sub- and super solutions methods that for all a ∈ (0, a)
there exists b > 0 such that System (Pa,b) has a solution. Furthermore, using Lemma
3.7 and the Arzelá-Ascoli Theorem, we can prove that exists b > 0 such that (Pa,b)
has a positive solution.

Now, we introduce the following function

Γ(a) := sup{b > 0 : (Pa,b) has a positive solution}.
As a consequence of Lemma 3.6, we see that Γ : (0, a) → R is a continuous and non
increasing function.

We would like to observe that until now, we have proved that System (Pa,b) has
at least one solution when 0 ≤ b ≤ Γ(a) and has no solutions when b > Γ(a).

3.5 The second positive solution

In this section we shall use the degree theory to prove the existence of a second
positive solution for System (Pa,b) in the region of the plane

S := {(a, b) ∈ R2 : 0 < a < a and 0 < b < Γ(a)}. (3.17)

Let (a, b) ∈ S and let (u1, v1) ∈ X be a positive solution of System (Pa,b)
and (u, v) ∈ X be a positive solution of System (P(a,Γ(a))). Using that f, g are
monotone increasing functions in the variables u, v, a, b and using the maximum-
principle argument we may suppose

(0, 0) ≤ (u1(t), v1(t)) ≤ (u(t), v(t)),
(0, 0) < (u′1(0), v

′
1(0)) < (u′(0), v′(0)),

(0, 0) > (u′1(1), v
′
1(1)) > (u′(1), v′(1)).



Elliptic systems 15

Now we consider the Banach space

X1 = {(u, v) ∈ C1([0, 1], R)× C1([0, 1], R) : (u, v)(0) = (u, v)(1) = (0, 0)}

endowed with the norm

||(u, v)||1 := ||u||∞ + ||v||∞ + ||u′||∞ + ||v′||∞.

Let ρ1 > 0 such that ||(u1, v1)||1 < ρ1. We also consider the open subset A of X1

contained (u1, v1) given by

A := {(u, v) ∈ X1 satisfying conditions (i)-(iv) below }

(i) (0, 0) < (u(t), v(t)) < (u(t), v(t)) for all t ∈ (0, 1);

(ii) (0, 0) < (u′(0), v′(0)) < (u′(0), v′(0));

(iii) (0, 0) > (u′(1), v′(1)) > (u′(1), v′(1));

(vi) ||(u, v)||1 < ρ1.

Let G : X1 → X1 such that G = F |X1 . The existence of our second positive
solution of System (Pa,b) will be a consequence of the following basic result.

Lemma 3.8 Let (a, b) ∈ S. Then using the notation above, we have:

(i) deg(Id− G(a,b),A, 0) = 1

(ii) There exists ρ2 > ρ1 such that deg(Id− G(a,b), B(0, ρ2), 0) = 0 .

Proof. Let us consider the auxiliary operator G(a,b) : X1 → X1 given by

G(a,b)(u, v) := (A(u, v), B(u, v))

where

A(u, v)(t) :=

∫ 1

0

K(t, τ)f(τ, u(τ), v(τ), a, b) dτ,

B(u, v)(t) :=

∫ 1

0

K(t, τ)g(τ, u(τ), v(τ), a, b) dτ

and

f(t, u, v, a, b) :=

{
f(t, ξ0(t, u), ζ0(t, v), a, b) if 0 ≤ u and 0 ≤ v,
0 if u < 0 or v < 0,

g(t, u, v, a, b) :=

{
g(t, ξ0(t, u), ζ0(t, v), a, b) if 0 ≤ u and 0 ≤ v,
0 if u < 0 or v < 0,

with
ξ0(t, u) := min{u, u(t)} and ζ0(t, v) := min{v, v(t)}

As in the proof of Lemma 3.5 it is easy to see that the operator G(a,b) satisfies the
following properties:
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(a) G(a,b) is a completely continuous operator;

(b) if the pair (u, v) ∈ X1 is a fixed point of G(a,b), then (u, v) is a fixed point of
G(a,b) with (0, 0) ≤ (u, v) ≤ (u, v);

(c) if (u, v) = λG(a,b)(u, v) with 0 ≤ λ ≤ 1 then ||(u, v)||1 ≤ C3, where C3 does not
depends of λ and (u, v) ∈ X1.

Using the a priori estimate propriety established in assertion (c), we have that
there exists ρ2 > ρ1 such that

deg(Id− G(a,b), B((u1, v1), ρ2), 0) = 1. (3.18)

By the Maximum Principle, the operator G(a,b) has no fixed point in B((u1, v1), ρ2)\A.
Now, if G(a,b) has a fixed point on ∂A, then we have a second positive solution of
System (Pa,b). Otherwise, we have that the topological degree of Leray-Schauder is
defined for the equation (Id − G(a,b))(Z) = 0, Z ∈ A. Then by using (3.18) and the
excision property of mapping degree we have

deg(Id− G(a,b),A, 0) = 1.

Since G(a,b)(u, v) = G(a,b)(u, v), (u, v) ∈ ∂A, the part (i) of Lemma 3.8 is now
complete.

Next, according to (H2) the Lemma 3.4 allow us to obtain a priori estimate ρ2 for
solutions of the equation

(u, v) = G(a,b)(u, v), (u, v) ∈ X1, (3.19)

which does not depends of the parameters a and b. Let (a, b) such that |(a, b)| is
sufficiently large such that System (P(a,b)) has no positive solutions (see Lemma 3.4).
Thus

deg(Id− G(a,b), B(0, ρ2), 0) = 0.

Hence, by the homotopy invariance property of the mapping degree we have

deg(Id− G(a,b), B(0, ρ2), 0)) = 0.

The proof of Lemma 3.8 is now complete.

Finally, the Lemma 3.8 and the excision property of the topological degree imply

deg(Id− G(a,b), B((u1, u2), ρ2) \ A, 0) = −1,

hence we have a second solution of System (Pa,b) and the proof of Theorem 1.1 is
complete.
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