On a Class of Nonlinear Schrödinger Equations in \mathbb{R}^{2} Involving Critical Growth

João Marcos do Ó ${ }^{1}$
Departamento de Matemática, Universidade Federal de Paraiba, 58059.900 João Pessoa, Pb, Brazil
and

Marco A. S. Souto ${ }^{2}$
Departamento de Matemática e Estatística, Universidade Federal de Paraiba, 58109.970 Campina Grande, Pb, Brazil

Received June 10, 1999; revised March 23, 2000

DEDICATED TO DJAIRO G. DE FIGUEIREDO

In this paper we deal with semilinear elliptic problem of the form

$$
\begin{array}{ll}
-\varepsilon^{2} \Delta u+V(z) u=f(u), & \text { in } \quad \mathbb{R}^{2} \\
u \in C^{2}\left(\mathbb{R}^{2}\right) \cap H^{1}\left(\mathbb{R}^{2}\right), u>0, & \text { in } \quad \mathbb{R}^{2},
\end{array}
$$

where ε is a small positive parameter, $V: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is a positive potential bounded away from zero, and $f(u)$ behaves like $\exp \left(\alpha s^{2}\right)$ when $s \rightarrow+\infty$. We prove the existence of solutions concentrating around a local minima not necessarily nondegenerate of $V(x)$, when ε tends to 0 . © 2001 Academic Press

Key Words: Schrödinger equation; elliptic equations; critical growth; mountainpass theorem; Trudinger-Moser inequality.

1. INTRODUCTION

This paper has been motivated by recent works concerning standing wave solutions of the nonlinear Schrödinger equation

$$
\begin{equation*}
i \hbar \frac{\partial \psi}{\partial t}=\frac{-\hbar^{2}}{2 m} \Delta \psi+V(z) \psi-\gamma|\psi|^{p-1} \psi, \quad \text { in } \quad \mathbb{R}^{N} \tag{1}
\end{equation*}
$$

${ }^{1}$ Corresponding author. E-mail: jmbo@mat.ufpb.br.
${ }^{2}$ The authors have been partially supported by CNPq/Brazil.
i.e., solutions of the form

$$
\psi(z, t)=\exp (-i E t / \hbar) v(z)
$$

where \hbar, m, γ are positive constants, $p>1, E \in \mathbb{R}, V \in C^{1}\left(\mathbb{R}^{N}, \mathbb{R}\right)$ and v is a real function. It is well known that ψ satisfies (1) if and only if the function $v(z)$ solves the elliptic equation

$$
-\frac{\hbar^{2}}{2 m} \Delta v+(V(z)-E) v=\gamma|v|^{p-1} v, \quad \text { in } \quad \mathbb{R}^{N} .
$$

In [10], Floer and Weinstein studied the case $N=1$ and $p=3$. They used a Lyapunov-Schmidt type reduction to prove the existence of standing wave solutions concentrating at each given nondegenerate critical point of the potential $V(z)$, when \hbar tends to 0 , under the assumption that V is bounded. This method and result was extended by Oh in [16] to prove a similar result to higher dimensional cases with $1<p<(N+2) /(N-2)$. The Lyapunov-Schmidt reduction method requires basically local conditions for the potential $V(z)$ and a nondegeneracy condition is essential. On the other hand, the calculus of variations based on variants of the mountainpass theorem has been used by Rabinowitz in [18] to prove the existence of a positive "least-energy" solution when \hbar is small, $1<p<(N+2) /(N-2)$, and $V(z)$ satisfies the following global condition:

$$
\begin{equation*}
\inf _{z \in \mathbb{R}^{N}} V(z)<\liminf _{|z| \rightarrow \infty} V(z) . \tag{2}
\end{equation*}
$$

Moreover, Wang, in [19], has obtained the concentration behavior around the global minimum of $V(z)$ for these solutions, when \hbar tends to 0 . In [7], Felmer and del Pino have used the variational method based on local moun-tain-pass to prove the existence of standing wave solutions concentrating around local minima not necessarily nondegenerate of $V(z)$, when \hbar tends to 0 . It is natural to ask if this result is true, under a similar local condition for the potential $V(z)$, when we consider nonlinearities in the critical growth range. In [3], a positive answer to this question was given in the case $N \geqslant 3$ and here we consider the two-dimensional case. To be more precise, we deal with a semilinear elliptic problem of the form

$$
\begin{array}{ll}
-\varepsilon^{2} \Delta u+V(z) u=f(u), & \text { in } \mathbb{R}^{2}, \\
u \in C^{2}\left(\mathbb{R}^{2}\right) \cap H^{1}\left(\mathbb{R}^{2}\right), & u>0, \text { in } \mathbb{R}^{2},
\end{array}
$$

where ε is a small positive parameter and the potential $V: \mathbb{R}^{2} \rightarrow \mathbb{R}$ satisfies the following conditions:
$\left(\mathrm{V}_{1}\right) \quad V$ is locally Hölder continuous in \mathbb{R}^{2} and there exists a positive constant V_{0} such that

$$
V(z) \geqslant V_{0}, \quad \forall z \in \mathbb{R}^{2}
$$

$\left(\mathrm{V}_{2}\right)$ there exists a bounded domain $\Omega \subset \mathbb{R}^{2}$ such that

$$
V_{1} \doteq \inf _{\Omega} V(z)<\min _{\partial \Omega} V(z)
$$

We also assume that the nonlinearity $f(s)$ satisfies the following conditions:
$\left(\mathrm{f}_{1}\right) \quad f \in C^{1}(\mathbb{R})$ and $f(s) \equiv 0$ for $s \leqslant 0 ;$
$\left(\mathrm{f}_{2}\right) \quad f(s)=o_{1}(s)$ near origin;
$\left(\mathrm{f}_{3}\right) \quad f$ has critical growth at $+\infty$; namely, there exists $\alpha_{0}>0$ such that

$$
\lim _{s \rightarrow+\infty} \frac{f(s)}{\exp \left(\alpha s^{2}\right)}=0, \forall \alpha>\alpha_{0} ; \quad \lim _{s \rightarrow+\infty} \frac{f(s)}{\exp \left(\alpha s^{2}\right)}=+\infty, \forall \alpha<\alpha_{0}
$$

$\left(\mathrm{f}_{4}\right)$ there is a constant $\mu>2$ such that, for all $s>0$,

$$
0 \leqslant \mu F(s)=\mu \int_{0}^{s} f(t) d t<s f(s)
$$

$\left(\mathrm{f}_{5}\right)$ the function $s \rightarrow f(s) / s$ is increasing;
$\left(\mathrm{f}_{6}\right)$ there is $p>2$ and $\delta>0$ such that for all $s>0$,

$$
f(s) \geqslant\left(\frac{p}{2}\left(S_{p}+\delta\right)^{p}\left(\frac{4 \pi}{\alpha_{0}}\right)^{1-p / 2}\right) s^{p-1},
$$

where

$$
\begin{equation*}
S_{p}=\inf _{u \in H^{1}\left(\mathbb{R}^{2}\right) \backslash\{0\}} \frac{\left(\int_{\mathbb{R}^{2}}\left(|\nabla u|^{2}+V_{1} u^{2}\right) d z\right)^{1 / 2}}{\left(\int_{\mathbb{R}^{2}}|u|^{p} d z\right)^{1 / p}} \tag{3}
\end{equation*}
$$

The main result of this paper is stated as follows.

Theorem 1. Suppose that the potential V satisfies $\left(\mathrm{V}_{1}\right)-\left(\mathrm{V}_{2}\right)$ and that the nonlinearity f satisfies $\left(\mathrm{f}_{1}\right)-\left(\mathrm{f}_{6}\right)$. Then there is $\varepsilon_{0}>0$ such that when $0<\varepsilon<\varepsilon_{0}$, problem $\left(P_{\varepsilon}\right)$ possesses a positive bound state solution $u_{\varepsilon}(z)$ with the following properties:
(i) u_{ε} has at most one local (hence global) maximum z_{ε} in \mathbb{R}^{2} and $z_{\varepsilon} \in \Omega ;$
(ii) $\lim _{\varepsilon \rightarrow 0^{+}} V\left(z_{\varepsilon}\right)=V_{1}=\inf _{\Omega} V$;
(iii) there are C and ζ positive constants such that for all $z \in \mathbb{R}^{2}$,

$$
u_{\varepsilon}(z) \leqslant C \exp \left(-\zeta\left|\frac{z-z_{\varepsilon}}{\varepsilon}\right|\right) .
$$

In order to treat variationally this class of problems, with f behaving like $\exp \left(\alpha s^{2}\right)$ when $s \rightarrow+\infty$, we use the so-called Trudinger-Moser inequality which says that if u is a $H^{1}\left(\mathbb{R}^{2}\right)$ function then for all $\alpha>0$ the integral $\int_{\mathbb{R}^{2}}\left[\exp \left(\alpha u^{2}\right)-1\right] d z$ is finite (see Lemma 2 in the next section). Indeed, this inequality motivates the notion of criticality given in $\left(f_{3}\right)$. There is an extensive bibliography on this subject. See, for example, [5, 6] for the semilinear elliptic equations and $[2,8,9]$ for quasilinear equations. We adapt some of their ideas to overcome the difficulties arising from the critical growth and unboundedness of the domain. Furthermore, as in [3] and [7], we make a suitable modification on the nonlinearity $f(s)$ outside the domain Ω such that the associated energy functional satisfies the PalaisSmale condition, and then using some elliptic estimates we can prove that, for sufficiently small ε, the associated minimax critical point is indeed a solution to the original equation. This elementary idea allows us to use the variational methods to deal with local conditions for the potential $V(z)$.

This paper is composed of three sections; taking preliminaries in the following section, we shall prove the existence and concentration behavior in the last section.

2. AUXILIARY PROBLEM

We make a suitable modification on the nonlinearity $f(s)$ outside the domain Ω such that the associated energy functional satisfies the Palais-Smale condition and to which we can apply the mountain-pass theorem. Namely, we consider the following Carathéodory function

$$
g(z, s)=\chi_{\Omega}(z) f(s)+\left(1-\chi_{\Omega}(z)\right) \tilde{f}(s)
$$

where χ_{Ω} is the characteristic of Ω and

$$
\tilde{f}(s)= \begin{cases}f(s), & \text { if } \quad s \leqslant a, \\ \frac{V_{0}}{k} s, & \text { if } \quad s>a,\end{cases}
$$

with $k>\mu /(\mu-2)>1$ and $a>0$ such that $f(a)=a V_{0} / k$.
Using assumptions $\left(\mathrm{f}_{1}\right)-\left(\mathrm{f}_{5}\right)$ it is easy to check that $g(z, s)$ satisfies the following properties:
$\left(\mathrm{g}_{1}\right) g(z, s)$ is piecewise C^{1} in s for any fixed z and $g(z, s) \equiv 0$ for $s \leqslant 0$;
$\left(\mathrm{g}_{2}\right)$ for each $\delta>0$ and $\beta>\alpha_{0}$ there is a constant $c=c(\delta, \beta)>0$ such that

$$
g(z, s) \leqslant \delta s+c \exp \left(\beta s^{2}\right), \quad \forall s \geqslant 0
$$

$$
\begin{equation*}
0<\mu G(z, s) \leqslant g(z, s) s, \quad(z, s) \in[\Omega \times(0,+\infty)] \cup\left[\left(\mathbb{R}^{2}-\Omega\right) \times(0, a]\right] \tag{3}
\end{equation*}
$$

and

$$
0 \leqslant 2 G(z, s) \leqslant g(z, s) s \leqslant \frac{1}{k} V(z) s^{2}, \quad(z, s) \in\left(\mathbb{R}^{2}-\Omega\right) \times[0,+\infty),
$$

where $G(z, s)=\int_{0}^{s} g(z, t) d t$;
(g_{4}) the function $s \rightarrow g(z, s) / s$ is increasing,
Now, we consider an energy functional given by

$$
J(u)=\frac{1}{2} \int_{\mathbb{R}^{2}}\left[|\nabla u|^{2}+V(z) u^{2}\right] d z-\int_{\mathbb{R}^{2}} G(z, u) d z,
$$

defined on the Hilbert space

$$
H=\left\{u \in H^{1}\left(\mathbb{R}^{2}\right): \int_{\mathbb{R}^{2}} V(z) u^{2} d z<\infty\right\},
$$

endowed with the inner product given by $\langle u, v\rangle=\int_{\mathbb{R}^{2}}[\nabla u \nabla v+V(z) u v] d z$ and the induced norm $\|u\| \doteq \sqrt{\langle u, u\rangle} . J$ is well defined and it is a C^{1} functional with Fréchet derivative given by

These statements are standard (see [17]) and they follow from the conditions $\left(\mathrm{g}_{1}\right)-\left(\mathrm{g}_{2}\right)$ taking into account the following Trudinger-Moser inequality, which was proved in [9] (see also [5] for a slightly different version).

Lemma 2. If $u \in H^{1}\left(\mathbb{R}^{2}\right)$ and $\alpha>0$, then

$$
\int_{\mathbb{R}^{2}}\left[\exp \left(\alpha u^{2}\right)-1\right] d z<\infty .
$$

Moreover, if $\|\nabla u\|_{L^{2}} \leqslant 1,\|u\|_{L^{2}} \leqslant M$ and $\alpha<4 \pi$, then there exists a constant C, which depends only on α and M, such that

$$
\int_{\mathbb{R}^{2}}\left[\exp \left(\alpha u^{2}\right)-1\right] d z \leqslant C
$$

The next result concerns the mountain-pass geometry of J. Its proof is a consequence of our assumptions $\left(f_{2}\right),\left(f_{3}\right)$, and $\left(g_{3}\right)$ and can be found in $[5,9]$.

Lemma 3. The functional J satisfies the following conditions:
(i) there exist $\rho, \sigma>0$, such that $J(u) \geqslant \sigma$ if $\|u\|=\rho$,
(ii) for any nonnegative function $u \in C_{0}^{\infty}(\Omega) \backslash\{0\}$, we have $J(t u) \rightarrow$ $-\infty$ as $t \rightarrow+\infty$.

Lemma 4. J satisfies the Palais-Smale condition.
Proof. Let $\left(u_{n}\right) \subset H$ be a Palais-Smale sequence of the functional J. For n big enough, using $\left(g_{3}\right)$ we have

$$
\begin{aligned}
c \mu+1+\left\|u_{n}\right\| & \geqslant \mu J\left(u_{n}\right)-J^{\prime}\left(u_{n}\right) u_{n} \\
& =\left(\frac{\mu-2}{2}\right)\left\|u_{n}\right\|^{2}+\int_{\mathbb{R}^{2}}\left[u_{n} g\left(z, u_{n}\right)-\mu G\left(z, u_{n}\right)\right] d z \\
& \geqslant\left(\frac{\mu-2}{2}\right)\left\|u_{n}\right\|^{2}-\mu \int_{\mathbb{R}^{2}-\Omega} G\left(z, u_{n}\right) d z \\
& \geqslant\left(\frac{\mu-2}{2}\right)\left\|u_{n}\right\|^{2}-\frac{\mu}{2 k} \int_{\mathbb{R}^{2}-\Omega} V(z) u_{n}^{2} d z \\
& \geqslant\left[\frac{(\mu-2) k-\mu}{2 k}\right]\left\|u_{n}\right\|^{2}
\end{aligned}
$$

thus $\left\|u_{n}\right\|$ is bounded, since $(\mu-2) k>\mu$. Now we can take a subsequence, denote again by $\left(u_{n}\right)$, weakly convergent to some $u \in H$. We are going to prove that this convergence is actually strong. For that matter it suffices to show that, given $\delta>0$, there is an $R>0$ such that

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \int_{\{|z| \geqslant R\}}\left[\left|\nabla u_{n}\right|^{2}+V(z) u_{n}^{2}\right] d z<\delta . \tag{4}
\end{equation*}
$$

Consider the test function $\psi_{R}(z) u_{n}$, where $\psi_{R} \in C_{0}^{\infty}\left(\mathbb{R}^{2},[0,1]\right), \psi_{R}(z)=0$ if $|z| \leqslant R / 2, \psi_{R}(z)=1$ if $|z| \geqslant R$ and $\left|\nabla \psi_{R}(z)\right| \leqslant C / R$ for all $z \in \mathbb{R}^{2}$. Since $\left(u_{n}\right)$ is bounded, from (??) we obtain

$$
\begin{gathered}
\int_{\mathbb{R}^{2}}\left[\left|\nabla u_{n}\right|^{2}+V(z) u_{n}^{2}\right] \psi_{R} d z+\int_{\mathbb{R}^{2}} u_{n} \nabla u_{n} \nabla \psi_{R} d z \\
=\int_{\mathbb{R}^{2}} g\left(z, u_{n}\right) \psi_{R} u_{n} d z+o_{n}(1) .
\end{gathered}
$$

Thus, from property $\left(\mathrm{g}_{3}\right)$ for $R>0$ suitably large,

$$
\begin{aligned}
& \int_{\mathbb{R}^{2}}\left[\left|\nabla u_{n}\right|^{2}+V(z) u_{n}^{2}\right] \psi_{R} d z+\int_{\mathbb{R}^{2}} u_{n} \nabla u_{n} \nabla \psi_{R} d z \\
& \quad \leqslant \frac{1}{k} \int_{\mathbb{R}^{2}} V(z) u_{n}^{2} \psi_{R} d z+o_{n}(1),
\end{aligned}
$$

which implies that

$$
\int_{\{|z| \geqslant R\}}\left[\left|\nabla u_{n}\right|^{2}+V(z) u_{n}^{2}\right] d z \leqslant \frac{C}{R}\left\|u_{n}\right\|_{L^{2}} \cdot\left\|\nabla u_{n}\right\|_{L^{2}}+o_{n}(1)
$$

and (4) follows. Thus, the proof of Lemma 4 is complete.
In view of the previous lemmas, applying the mountain-pass theorem (see [17]) we obtain the main result of this section.

Theorem 5. For all $\varepsilon>0$, the functional

$$
J_{\varepsilon}(u)=\frac{1}{2} \int_{\mathbb{R}^{2}}\left[\varepsilon^{2}|\nabla u|^{2}+V(z) u^{2}\right] d z-\int_{\mathbb{R}^{2}} G(z, u) d z
$$

possesses a nonnegative critical point $u_{\varepsilon} \in H \backslash\{0\}$ at the level

$$
\begin{equation*}
c_{\varepsilon}=\inf _{u \in H \backslash\{0\}} \max _{t \geqslant 0} J_{\varepsilon}(t u) . \tag{5}
\end{equation*}
$$

Remark 1. (i) This characterization of the mountain-pass level c_{ε} given in (5) has been established in [7] and [18] as a consequence of properties of $g(z, s)$.
(ii) Since $g(z, s)=0$ for $s \leqslant 0$ and $J_{\varepsilon}^{\prime}\left(u_{\varepsilon}\right) \phi=0$ for all $\phi \in H$, choosing the test function $\phi=u_{\varepsilon}^{-}=\max \left\{-u_{\varepsilon}, 0\right\} \in H$, we have that $\left\|u_{\varepsilon}^{-}\right\|=0$. Thus, we conclude that u_{ε} is a nonnegative function.

3. PROOF OF THEOREM 1

First, we scale the spatial variable by setting $z=\varepsilon x$ and let I_{ε} denote the energy functional

$$
I_{\varepsilon}(u)=\frac{1}{2} \int_{\mathbb{R}^{2}}\left[|\nabla u|^{2}+V(\varepsilon x) u^{2}\right] d x-\int_{\mathbb{R}^{2}} G(\varepsilon x, u) d x
$$

defined on the Hilbert space

$$
\begin{aligned}
H_{\varepsilon} & =\left\{u \in H^{1}\left(\mathbb{R}^{2}\right): \int_{\mathbb{R}^{2}} V(\varepsilon x) u^{2}<\infty\right\}, \\
\langle u, v\rangle & \doteq \int_{\mathbb{R}^{2}}[\nabla u \nabla v+V(\varepsilon x) u v] d x,
\end{aligned}
$$

associated to the problem

$$
\begin{equation*}
-\Delta u+V(\varepsilon x) u=g(\varepsilon x, u), \quad \mathbb{R}^{2} . \tag{6}
\end{equation*}
$$

Thus, from Theorem 5, $v_{\varepsilon}(x)=u_{\varepsilon}(z)$ is a critical point of I_{ε} at the level

$$
\begin{equation*}
b_{\varepsilon}=I_{\varepsilon}\left(v_{\varepsilon}\right)=\inf _{v \in H_{\varepsilon}\{\{0\}} \max _{t \geqslant 0} I_{\varepsilon}(t v) . \tag{7}
\end{equation*}
$$

We suppose, without loss of generality, that $\partial \Omega$ is smooth, $0 \in \Omega$, and $V(0)=V_{1}$.

In order to derive some estimates on the mountain-pass level b_{ε} we consider the following autonomous problem

$$
\begin{equation*}
-\Delta u+V_{1} u=f(u), \quad \mathbb{R}^{2} . \tag{8}
\end{equation*}
$$

The energy functional corresponding to Eq. (8) is

$$
I_{1}(u)=\frac{1}{2} \int_{\mathbb{R}^{2}}\left[|\nabla u|^{2}+V_{1} u^{2}\right] d x-\int_{\mathbb{R}^{2}} F(u) d x, \quad \forall u \in H^{1}\left(\mathbb{R}^{2}\right) .
$$

Now, we state the following basic result.
Theorem 6. Suppose that the nonlinearity f satisfies $\left(\mathrm{f}_{1}\right)-\left(\mathrm{f}_{6}\right)$. Then, problem (8) possesses a positive ground state solution ω at the level

$$
\begin{equation*}
c_{1}=I_{1}(\omega)=\inf _{v \in H^{1} \backslash\{0\}} \max _{t \geqslant 0} I_{1}(t v)<\frac{4 \pi}{\alpha_{0}} . \tag{9}
\end{equation*}
$$

Furthermore, ω is spherically symmetric about some point in \mathbb{R}^{2} and $\partial \omega / \partial r$ is negative for all $r>0$, where r is the radial coordinate about that point.

Proof. First we observe that the radial symmetry for any solution of problem (8) follows from a result due to Gidas et al. (see [11, Theorem 2]).

By the definition of S_{p} given in (3), there exists $u_{\delta} \in H^{1}\left(\mathbb{R}^{2}\right) \backslash\{0\}$ such that

$$
S_{p}+\frac{\delta}{2}>\frac{\left(\int_{\mathbb{R}^{2}}\left(\left|\nabla u_{\delta}\right|^{2}+V_{1} u_{\delta}^{2}\right) d x\right)^{1 / 2}}{\left(\int\left|u_{\delta}\right|^{p} d x\right)^{1 / p}}
$$

Let

$$
v_{\delta}=\left(\frac{4 \pi}{\alpha_{0}}\right)^{1 / 2} \frac{\left|u_{\delta}\right|}{\left(\int_{\mathbb{R}^{2}}\left(\left|\nabla u_{\delta}\right|^{2}+V_{1} u_{\delta}^{2}\right) d x\right)^{1 / 2}},
$$

We have

$$
\int_{\mathbb{R}^{2}}\left(\left|\nabla v_{\delta}\right|^{2}+V_{1} v_{\delta}^{2}\right) d x=\frac{4 \pi}{\alpha_{0}}
$$

and

$$
S_{p}+\frac{\delta}{2}>\frac{\left(\int_{\mathbb{R}^{2}}\left(\left|\nabla v_{\delta}\right|^{2}+V_{1} v_{\delta}^{2}\right) d x\right)^{1 / 2}}{\left(\int v_{\delta}^{p} d x\right)^{1 / p}}=\frac{\left(\frac{4 \pi}{\alpha_{0}}\right)^{1 / 2}}{\left(\int v_{\delta}^{p} d x\right)^{1 / p}}
$$

which implies that

$$
\int v_{\delta}^{p} d x>\frac{\left(\frac{4 \pi}{\alpha_{0}}\right)^{p / 2}}{\left(S_{p}+\frac{\delta}{2}\right)^{p}} .
$$

Hence, by $\left(f_{6}\right)$ we have

$$
\begin{aligned}
\int_{\mathbb{R}^{2}} F\left(v_{\delta}\right) d x & =\int_{\mathbb{R}^{2}} \int_{0}^{v_{\delta}} f(s) d s d x \\
& \geqslant\left(\frac{1}{2}\left(S_{p}+\delta\right)^{p}\left(\frac{4 \pi}{\alpha_{0}}\right)^{1-p / 2}\right) \int_{\mathbb{R}^{2}} v_{\delta}^{p} d x \\
& >\frac{1}{2}\left(\frac{4 \pi}{\alpha_{0}}\right)=\frac{1}{2} \int_{\mathbb{R}^{2}}\left(\left|\nabla v_{\delta}\right|^{2}+V_{1} v_{\delta}^{2}\right) d x .
\end{aligned}
$$

Therefore, we have proved that

$$
\begin{equation*}
\int_{\mathbb{R}^{2}} F\left(v_{\delta}\right) d x>\frac{1}{2} \int_{\mathbb{R}^{2}}\left(\left|\nabla v_{\delta}\right|^{2}+V_{1} v_{\delta}^{2}\right) d x \tag{10}
\end{equation*}
$$

In order to proceed further we introduce the following manifold:

$$
M=\left\{u \in H^{1}\left(\mathbb{R}^{2}\right) \backslash\{0\}: \int_{\mathbb{R}^{2}} F(u) d x=\frac{V_{1}}{2} \int_{\mathbb{R}^{2}} u^{2} d x\right\}
$$

and we consider the constrained problem

$$
\begin{equation*}
I_{1}^{0}=\inf \left\{\int_{\mathbb{R}^{2}}|\nabla u|^{2} d x: u \in M\right\} \tag{11}
\end{equation*}
$$

Claim 1. $\quad M \neq \varnothing$ and $0<I_{1}^{0} \leqslant \int_{\mathbb{R}^{2}}\left|\nabla v_{\delta}\right|^{2}<4 \pi / \alpha_{0}$.
Verification of Claim 1. From (10) and $\left(\mathrm{f}_{2}\right)$ it is easy to see that there exists $\bar{t} \in(0,1]$ such that $\bar{t} v_{\delta} \in M$. Thus, $I_{1}^{0} \leqslant \int_{\mathbb{R}^{2}}\left|\nabla v_{\delta}\right|^{2}$. Assume for the sake of contradiction that $I_{1}^{0}=0$; thus there exists a sequence $\left(u_{n}\right) \subset H^{1}\left(\mathbb{R}^{2}\right) \backslash\{0\}$ such that

$$
\int_{\mathbb{R}^{2}} F\left(u_{n}\right) d x=\frac{V_{1}}{2} \int_{\mathbb{R}^{2}} u_{n}^{2} d x \quad \text { and } \quad \lim _{n \rightarrow \infty} \int_{\mathbb{R}^{2}}\left|\nabla u_{n}\right|^{2} d x=0
$$

From our assumptions we have that

$$
F(s) \leqslant \frac{V_{1}}{4} s^{2}+c s\left[\exp \left(\beta s^{2}\right)-1\right], \quad \forall s \in \mathbb{R}
$$

Also, it holds that

$$
\begin{equation*}
\int_{\mathbb{R}^{2}}\left|u_{n}\right|\left[\exp \left(\beta u_{n}^{2}\right)-1\right] d x \leqslant c\left\|\nabla u_{n}\right\|_{L^{2}}\left\|u_{n}\right\|_{L^{2}}^{2} \tag{12}
\end{equation*}
$$

since from the Gagliardo-Nirenberg inequality (see [1])

$$
\int_{\mathbb{R}^{2}}\left|u_{n}\right|^{2 k+1} d x \leqslant C k^{k}\left\|\nabla u_{n}\right\|_{L^{2}}^{2 k-1}\left\|u_{n}\right\|_{L^{2}}^{2}
$$

which implies

$$
\begin{aligned}
\int_{\mathbb{R}^{2}}\left|u_{n}\right|\left[\exp \left(\beta u_{n}^{2}\right)-1\right] d x & =\sum_{k=1}^{\infty} \frac{\beta^{k}}{k!} \int_{\mathbb{R}^{2}}\left|u_{n}\right|^{2 k+1} d x \\
& \leqslant C\left\|\nabla u_{n}\right\|_{L^{2}}\left\|u_{n}\right\|_{L^{2}}^{2},
\end{aligned}
$$

because $\sum_{k=1}^{\infty} \frac{(\beta k)^{k}}{k!}\left\|\nabla u_{n}\right\|_{L^{2}}^{2 k-2}$ converges.
Now, using (12), one obtains

$$
\frac{V_{1}}{2} \int_{\mathbb{R}^{2}} u_{n}^{2} d x \leqslant \frac{V_{1}}{4} \int_{\mathbb{R}^{2}} u_{n}^{2} d x+c\left\|\nabla u_{n}\right\|_{L^{2}}\left\|u_{n}\right\|_{L^{2}}^{2} .
$$

Thus,

$$
\left\|\nabla u_{n}\right\|_{L^{2}} \geqslant \frac{V_{1}}{4 c}>0
$$

which is a contradiction and Claim 1 is proved.

Claim 2. $\quad I_{1}^{0}$ is achieved.

Verification of Claim 2. Let $\left(u_{n}\right) \subset H^{1}\left(\mathbb{R}^{2}\right) \backslash\{0\}$ be a minimizing sequence of I_{1}^{0}; thus

$$
\int_{\mathbb{R}^{2}} F\left(u_{n}\right) d x=\frac{V_{1}}{2} \int_{\mathbb{R}^{2}} u_{n}^{2} d x \quad \text { and } \quad \lim _{n \rightarrow \infty} \int_{\mathbb{R}^{2}}\left|\nabla u_{n}\right|^{2} d x=I_{1}^{0} .
$$

Furthermore, taking $\tilde{u}_{n}(x)=u_{n}\left(\sigma_{n} x\right)$ where $\sigma_{n}=\left\|u_{n}\right\|_{L^{2}}$, we have that

$$
\left\|\tilde{u}_{n}\right\|_{L^{2}}=1, \quad\left\|\nabla \tilde{u}_{n}\right\|_{L^{2}}=\left\|\nabla u_{n}\right\|_{L^{2}} \quad \text { and } \quad \int_{\mathbb{R}^{2}} F\left(\tilde{u}_{n}\right) d x=\frac{V_{1}}{2} .
$$

Thus, up to subsequence, we may assume that

$$
\tilde{u}_{n} \rightharpoonup \tilde{u} \text { in } H^{1}\left(\mathbb{R}^{2}\right), \quad \tilde{u}_{n}(x) \rightarrow \tilde{u}(x) \text { a.e. in } \mathbb{R}^{2}, \quad \text { and } \quad\left\|\nabla \tilde{u}_{n}\right\|_{L^{2}}^{2}<\frac{4 \pi}{\alpha_{0}} .
$$

In what follows, we make use of the limit

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{\mathbb{R}^{2}} F\left(\tilde{u}_{n}\right) d x=\int_{\mathbb{R}^{2}} F(\tilde{u}) d x \tag{13}
\end{equation*}
$$

which we prove later. From (13), one sees easily that \tilde{u} is nontrivial. Also, we have

$$
\frac{V_{1}}{2}\|\tilde{u}\|_{L^{2}}^{2} \leqslant \liminf _{n \rightarrow \infty} \frac{V_{1}}{2}\left\|\tilde{u}_{n}\right\|_{L^{2}}^{2}=\liminf _{n \rightarrow \infty} \int_{\mathbb{R}^{2}} F\left(\tilde{u}_{n}\right) d x=\int_{\mathbb{R}^{2}} F(\tilde{u}) d x .
$$

Indeed, we have that

$$
\frac{V_{1}}{2}\|\tilde{u}\|_{L^{2}}^{2}=\int_{\mathbb{R}^{2}} F(\tilde{u}) d x
$$

and therefore I_{1}^{0} is achieved by \tilde{u}. To prove this fact we argue by contradiction. Thus, assume that

$$
\frac{1}{2}\|\tilde{u}\|_{L^{2}}^{2}<\int_{\mathbb{R}^{2}} F(\tilde{u}) d x .
$$

Hence, there exists $t \in(0,1)$ that such that $t \tilde{u} \in M$. Hence,

$$
I_{1}^{0} \leqslant t^{2} \int_{\mathbb{R}^{2}}|\nabla \tilde{u}|^{2} d x<\int_{\mathbb{R}^{2}}|\nabla \tilde{u}|^{2} d x \leqslant \liminf _{n \rightarrow \infty} \int_{\mathbb{R}^{2}}\left|\nabla \tilde{u}_{n}\right|^{2} d x=I_{1}^{0}
$$

which is a contradiction.
Now we give the proof of limit in (13). We use the Schwarz symmetrization method. Notice that we may assume that $\tilde{u}_{n}(x) \geqslant 0$ for all $x \in \mathbb{R}^{2}$. Since $F(s)$ is an increasing function and $F(0)=0$ then

$$
\int_{\{|x| \geqslant R\}} F\left(\tilde{u}_{n}\right) d x=\int_{\{|x| \geqslant R\}} F\left(\tilde{u}_{n}^{*}\right) d x,
$$

where \tilde{u}_{n}^{*} denotes the Schwarz symmetrization of \tilde{u}_{n}.
By our assumptions $\left(\mathrm{f}_{2}\right)-\left(\mathrm{f}_{3}\right)$, given $\eta_{1}>0$, there exist $\rho_{1}, \rho_{2}>0$ such that

$$
\begin{equation*}
F(s) \leqslant \eta_{1} s^{2}, \quad \forall|s| \leqslant \rho_{1} . \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
F(s) \leqslant \eta_{1}\left[\exp \left(\beta s^{2}\right)-1\right], \quad \forall|s| \geqslant \rho_{2} \tag{15}
\end{equation*}
$$

where $\beta>\alpha_{0}$ is a number to be determined. Radial lemma (see [4, Lemma A.II]) leads to

$$
\begin{equation*}
\left|\tilde{u}_{n}^{*}(x)\right| \leqslant C \frac{\left\|\tilde{u}_{n}\right\|_{H^{1}}}{\sqrt{|x|}} \leqslant C \frac{1}{\sqrt{|x|}} . \tag{16}
\end{equation*}
$$

From (14) and (16) we see easily that for all $\eta>0$ there exists $R>0$ such that

$$
\begin{equation*}
\int_{\{|x| \geqslant R\}} F\left(\tilde{u}_{n}^{*}\right) d x<\eta . \tag{17}
\end{equation*}
$$

Let $A \subset\left\{x:|x|<R_{1}\right\}$ be a Lebesgue mensurable set; using (14) and (15) we have

$$
\int_{A} F\left(\tilde{u}_{n}\right) d x \leqslant \eta_{1} \int_{\mathbb{R}^{2}}\left|\tilde{u}_{n}\right|^{2} d x+\eta_{1} \int_{\mathbb{R}^{2}}\left[\exp \left(\beta \tilde{u}_{n}^{2}\right)-1\right] d x+|A| \sup _{\rho_{1} \leqslant|s| \leqslant \rho_{2}} F(s) .
$$

We use $|A|$ to denote the Lebesgue measure of a mensurable subset A. By Lemma 2, if we choose $\beta>\alpha_{0}$ sufficiently close to α_{0}, we see that $\int_{\mathbb{R}^{2}}\left[\exp \left(\beta \tilde{u}_{n}^{2}\right)-1\right] d x$ is bounded, independent of n, since $\left\|\nabla \tilde{u}_{n}\right\|_{L^{2}}^{2}<4 \pi / \alpha_{0}$. So, by this estimate we have

$$
\begin{equation*}
\int_{A} F\left(\tilde{u}_{n}\right) d x<\eta, \tag{18}
\end{equation*}
$$

if $|A|$ is suitably small. In view of (17) and (18), applying Vitali's theorem we obtain (13).

Since $I_{1}^{0}>0$ is achieved, according to the Lagrange multiplier method we have

$$
\int_{\mathbb{R}^{2}} \nabla \tilde{u} \nabla \phi d x=\lambda \int_{\mathbb{R}^{2}}\left[f(\tilde{u})-V_{1} \tilde{u}\right] \phi d x, \quad \forall \phi \in H^{1}\left(\mathbb{R}^{2}\right) .
$$

Choosing the test function $\phi=\tilde{u}$ we have that

$$
\lambda \int_{\mathbb{R}^{2}}\left[f(\tilde{u})-V_{1} \tilde{u}\right] \tilde{u} d x=\int_{\mathbb{R}^{2}}|\nabla \tilde{u}|^{2} d x>0 .
$$

Also, it holds that

$$
\int_{\mathbb{R}^{2}}\left[f(\tilde{u})-V_{1} \tilde{u}\right] \tilde{u} d x \geqslant(\mu-2) \int_{\mathbb{R}^{2}} F(\tilde{u}) d x .
$$

Thus, λ is a positive number. Choosing the test function $\phi=\max \{-\tilde{u}, 0\}$ we conclude that $\tilde{u} \geqslant 0$. By the standard regularity theory of the elliptic equations (see Proposition 8 below), we conclude that \tilde{u} is a classical solution and $\tilde{u}(x) \rightarrow 0$ as $|x| \rightarrow \infty$. Hence, applying the maximum principle $\tilde{u}>0$ in \mathbb{R}^{2}.

Let $\omega(x)=\tilde{u}\left(\lambda^{-1 / 2} x\right)$; we get

$$
-\Delta \omega+V_{1} \omega=f(\omega), \quad \text { in } \quad \mathbb{R}^{2}
$$

By Pohozaevs identity (see [13]),

$$
\int_{\mathbb{R}^{2}} F(\omega) d x=\frac{V_{1}}{2} \int_{\mathbb{R}^{2}} \omega^{2} d x .
$$

Thus,

$$
I_{1}(\omega)=\frac{1}{2} \int_{\mathbb{R}^{2}}|\nabla \omega|^{2} d x=\frac{1}{2} \int_{\mathbb{R}^{2}}|\nabla \tilde{u}|^{2} d x<\frac{4 \pi}{\alpha_{0}} .
$$

Since $I_{1}^{\prime}(\omega) \omega=0$, we have that $\max _{t \geqslant 0} I_{1}(t \omega)=I_{1}(\omega)$. Therefore

$$
c_{1}=\inf _{v \in H^{1} \backslash\{0\}} \max _{t \geqslant 0} I_{1}(t v) \leqslant I_{1}(\omega)=\frac{1}{2} \int_{\mathbb{R}^{2}}|\nabla \omega|^{2} d x=\frac{1}{2} I_{1}^{0} .
$$

Indeed, we have that $c_{1}=I_{1}^{0} / 2$. Notice that, given $\eta>0$, there is $v \in H^{1}\left(\mathbb{R}^{2}\right) \backslash\{0\}$ such that

$$
c_{1} \leqslant J(v)=\max _{t \geqslant 0} J(t v) \leqslant c_{1}+\eta .
$$

Also, there exists $t_{0}>0$ such that $t_{0} v \in M$, that is,

$$
\int_{\mathbb{R}^{2}} F\left(t_{0} v\right) d x=\frac{V_{1}}{2} \int_{\mathbb{R}^{2}}\left(t_{0} v\right)^{2} d x
$$

So

$$
\frac{1}{2} I_{1}^{0} \leqslant \frac{1}{2} \int_{\mathbb{R}^{2}}\left|\nabla\left(t_{0} v\right)\right|^{2} d x=J\left(t_{0} v\right) \leqslant J(v) \leqslant c_{1}+\eta
$$

Thus, Theorem 6 is completely proved.
Lemma 7. $\lim \sup _{\varepsilon \rightarrow 0} b_{\varepsilon} \leqslant c_{1}$.
Proof. Let ω be a ground state solution of problem (8). Without loss of generality we may assume that ω maximizes at zero. Now consider the test function $\varpi_{\varepsilon}(x)=\phi(\varepsilon x) \omega(x)$, where $\phi \in C_{0}^{\infty}\left(\mathbb{R}^{2},[0,1]\right), \phi(x)=1$ if $x \in B_{\rho}(0)$ and $\phi(x)=0$ if $x \notin B_{2 \rho}(0)$. Here we are assuming that $B_{2 \rho}(0) \subset \subset \Omega$. It is easy to check that $\varpi_{\varepsilon} \rightarrow \omega$ in $H^{1}\left(\mathbb{R}^{2}\right), I_{1}\left(\varpi_{\varepsilon}\right) \rightarrow I_{1}(\omega)$, as $\varepsilon \rightarrow 0$, and the support of
ϖ_{ε} is contained in $\Omega_{\varepsilon}=\left\{x \in \mathbb{R}^{2}: \varepsilon x \in \Omega\right\}$. In particular, $\varpi_{\varepsilon} \in H_{\varepsilon}$. For each $\varepsilon>0$ consider $t_{\varepsilon} \in(0,+\infty)$ such that

$$
\max _{t \geqslant 0} I_{\varepsilon}\left(t \varpi_{\varepsilon}\right)=I_{\varepsilon}\left(t_{\varepsilon} \varpi_{\varepsilon}\right) .
$$

Thus,

$$
\begin{aligned}
b_{\varepsilon} & =\inf _{v \in H_{\varepsilon} \backslash\{0\}} \max _{t \geqslant 0} I_{\varepsilon}(t v) \\
& \leqslant \max _{t \geqslant 0} I_{\varepsilon}\left(t \varpi_{\varepsilon}\right)=I_{\varepsilon}\left(t_{\varepsilon} \varpi_{\varepsilon}\right) \\
& =\frac{t_{\varepsilon}^{2}}{2} \int_{\mathbb{R}^{2}}\left[\left|\nabla \varpi_{\varepsilon}\right|^{2}+V(\varepsilon x) \varpi_{\varepsilon}^{2}\right] d x-\int_{\mathbb{R}^{2}} F\left(t_{\varepsilon} \varpi_{\varepsilon}\right) d x .
\end{aligned}
$$

Claim. $\quad t_{\varepsilon} \rightarrow 1$ as $\varepsilon \rightarrow 0$.
Verification of claim. Since $I_{\varepsilon}^{\prime}\left(t_{\varepsilon} \varpi_{\varepsilon}\right)\left(t_{\varepsilon} \sigma_{\varepsilon}\right)=0$, using assumption (f_{6}) we have

$$
\begin{align*}
t_{\varepsilon}^{2} \int_{\mathbb{R}^{2}}\left[\left|\nabla \varpi_{\varepsilon}\right|^{2}+V(\varepsilon x) \varpi_{\varepsilon}^{2}\right] d x & =\int_{\mathbb{R}^{2}} f\left(t_{\varepsilon} \varpi_{\varepsilon}\right) t_{\varepsilon} \varpi_{\varepsilon} d x \\
& \geqslant C t_{\varepsilon}^{p} \int_{\mathbb{R}^{2}} \varpi_{\varepsilon}^{p} d x . \tag{19}
\end{align*}
$$

Since $\left\|\varpi_{\varepsilon}\right\|_{H_{\varepsilon}} \leqslant C$ and $\varpi_{\varepsilon} \rightarrow \omega>0$ in L^{p}, from (19) we derive easily that $\left(t_{\varepsilon}\right)$ is bounded. Thus, up to subsequence, we have $t_{\varepsilon} \rightarrow t_{1} \geqslant 0$. Indeed, $t_{1}>0$ because $t_{\varepsilon}^{2}\left\|\omega_{\varepsilon}\right\|_{H_{\varepsilon}} \geqslant 2 b_{\varepsilon} \geqslant 2 \bar{c}>0$ where \bar{c} is the mountain-pass level of the functional \bar{I} defined as

$$
\bar{I}(u) \doteq \frac{1}{2} \int_{\mathbb{R}^{2}}\left[|\nabla u|^{2}+V_{0}|u|^{2}\right] d x-\int_{\mathbb{R}^{2}} F(u) d x .
$$

Passing to the limit in (19), we get

$$
\begin{equation*}
\int_{\mathbb{R}^{2}}\left[|\nabla \omega|^{2}+V_{1} \omega^{2}\right] d x=t_{1}^{-2} \int_{\mathbb{R}^{2}} f\left(t_{1} \omega\right) t_{1} \omega d x . \tag{20}
\end{equation*}
$$

Now, subtracting (20) from

$$
\int_{\mathbb{R}^{2}}\left[|\nabla \omega|^{2}+V_{1} \omega^{2}\right] d x=\int_{\mathbb{R}^{2}} f(\omega) \omega d x,
$$

we achieve

$$
0=\int_{\mathbb{R}^{2}}\left[\frac{f\left(t_{1} \omega\right)}{\left(t_{1} \omega\right)}-\frac{f(\omega)}{\omega}\right] \omega^{2} d x,
$$

which implies that $t_{1}=1$, because of our assumption $\left(\mathrm{f}_{5}\right)$. Thus, the proof of the claim is complete.

Notice that we also have that

$$
I_{\varepsilon}\left(t_{\varepsilon} \varpi_{\varepsilon}\right)=I_{1}\left(t_{\varepsilon} \varpi_{\varepsilon}\right)+\frac{t_{\varepsilon}^{2}}{2} \int_{\mathbb{R}^{2}}\left[V(\varepsilon x)-V_{1}\right]\left|\varpi_{\varepsilon}\right|^{2} d x .
$$

Thus, taking the limit as $\varepsilon \rightarrow 0$ and using the fact that $V(\varepsilon x)$ is bounded on the support of ϖ_{ε} and the Lebesgue dominated convergence theorem, we conclude the proof of the lemma.

Now we have $I_{\varepsilon}\left(v_{\varepsilon}\right) \leqslant c_{1}+o_{\varepsilon}(1)$, where $o_{\varepsilon}(1)$ goes to zero as $\varepsilon \rightarrow 0$.
Notice that

$$
\left\|v_{\varepsilon}\right\|_{H_{\varepsilon}}^{2}=\int_{\mathbb{R}^{2}} g\left(\varepsilon x, v_{\varepsilon}\right) v_{\varepsilon} d x
$$

and that there exists $\varepsilon_{0}>0$ such that

$$
\frac{\mu}{2}\left\|v_{\varepsilon}\right\|_{H_{\varepsilon}}^{2} \leqslant \int_{\mathbb{R}^{2}} \mu G\left(\varepsilon x, v_{\varepsilon}\right) d x+\mu c_{1}+1, \quad \forall \varepsilon \in\left(0, \varepsilon_{0}\right),
$$

which together with assumption $\left(\mathrm{g}_{3}\right)$ implies that

$$
\begin{aligned}
\left(\frac{\mu}{2}-1\right)\left\|v_{\varepsilon}\right\|_{H_{\varepsilon}}^{2} & \leqslant \int_{\mathbb{R}^{2}-\Omega_{\varepsilon}}\left[\mu G\left(\varepsilon x, v_{\varepsilon}\right)-g\left(\varepsilon x, v_{\varepsilon}\right) v_{\varepsilon}\right] d x+\mu c_{1}+1 \\
& \leqslant \int_{\mathbb{R}^{2}-\Omega_{\varepsilon}}(\mu-2) G\left(\varepsilon x, v_{\varepsilon}\right) d x+\mu c_{1}+1 \\
& \leqslant \int_{\mathbb{R}^{2}-\Omega_{\varepsilon}}\left(\frac{\mu-2}{2 k}\right) V(\varepsilon x) v_{\varepsilon}^{2} d x+\mu c_{1}+1 \\
& \leqslant\left(\frac{\mu-2}{2 k}\right)\left\|v_{\varepsilon}\right\|_{H_{\varepsilon}}^{2}+\mu c_{1}+1 .
\end{aligned}
$$

Thus, $\left\|v_{\varepsilon}\right\|_{H_{\varepsilon}} \leqslant C$, for all $\varepsilon \in\left(0, \varepsilon_{0}\right)$. Of course, we have also that $\left(v_{\varepsilon}\right)_{\left\{0<\varepsilon \leqslant \varepsilon_{0}\right\}}$ is bounded in $H^{1}\left(\mathbb{R}^{2}\right)$.

The next result is fundamental for our proof of Theorem 1 and concerns the regularity of the family $\left(v_{\varepsilon}\right)$.

Proposition 8. The functions v_{ε} belong to $L^{\infty}\left(\mathbb{R}^{2}\right)$. Moreover, $\left\|v_{\varepsilon}\right\|_{L^{\infty}} \leqslant$ C for all $0<\varepsilon \leqslant \varepsilon_{0}$ and the functions v_{ε} decay uniformly to zero as $|x| \rightarrow+\infty$.

Proof. We set $\sigma_{n}=s_{n}+2=2^{n+1}$ and consider the test function $\phi=$ $\psi^{2} v_{\varepsilon}\left[T_{k}\left(v_{\varepsilon}\right)\right]^{s_{n}}$, where $T_{k}\left(v_{\varepsilon}\right)=\min \left\{k, v_{\varepsilon}\right\}$ and $\psi \in C_{0}^{\infty}\left(\mathbb{R}^{2},[0,1]\right)$. Using that v_{ε} is a critical point of I_{ε} and our assumptions we find that
$\int_{\mathbb{R}^{2}}\left[\nabla v_{\varepsilon} \nabla \phi+V(\varepsilon x) v_{\varepsilon} \phi\right] d x \leqslant \int_{\mathbb{R}^{2}}\left[\frac{V_{0}}{2} v_{\varepsilon}+C\left(V_{0}, \beta\right) v_{\varepsilon}\left[\exp \left(\beta v_{\varepsilon}^{2}\right)-1\right]\right] \phi d x$, which implies that

$$
\begin{equation*}
\int_{\mathbb{R}^{2}}\left[\nabla v_{\varepsilon} \nabla \phi+\frac{V(\varepsilon x)}{2} v_{\varepsilon} \phi\right] d x \leqslant C \int_{\mathbb{R}^{2}} v_{\varepsilon}\left[\exp \left(\beta v_{\varepsilon}^{2}\right)-1\right] \phi d x . \tag{21}
\end{equation*}
$$

From (21), it is easy to achieve

$$
\begin{aligned}
& \int_{\mathbb{R}^{2}}\left|\nabla v_{\varepsilon}\right|^{2} \psi^{2}\left[T_{k}\left(v_{\varepsilon}\right)\right]^{s_{n}} d x+s_{n} \int_{\mathbb{R}^{2}} \psi^{2} v_{\varepsilon}\left[T_{k}\left(v_{\varepsilon}\right)\right]^{s_{n}-1} \nabla v_{\varepsilon} \nabla\left[T_{k}\left(v_{\varepsilon}\right)\right] d x \\
& \quad+2 \int_{\mathbb{R}^{2}} v_{\varepsilon} \psi\left[T_{k}\left(v_{\varepsilon}\right)\right]^{s_{n}} \nabla v_{\varepsilon} \nabla \psi d x+\int_{\mathbb{R}^{2}} \frac{V(\varepsilon x)}{2} \psi^{2} v_{\varepsilon}^{2}\left[T_{k}\left(v_{\varepsilon}\right)\right]^{s_{n}} d x \\
& \leqslant
\end{aligned}
$$

Thus,

$$
\begin{aligned}
& \int_{\mathbb{R}^{2}}\left|\nabla v_{\varepsilon}\right|^{2} \psi^{2}\left[T_{k}\left(v_{\varepsilon}\right)\right]^{s_{n}} d x+s_{n} \int_{\mathbb{R}^{2}} \psi^{2}\left[T_{k}\left(v_{\varepsilon}\right)\right]_{n}^{s_{n}}\left|\nabla\left[T_{k}\left(v_{\varepsilon}\right)\right]\right|^{2} d x \\
&+2 \int_{\mathbb{R}^{2}} v_{\varepsilon} \psi\left[T_{k}\left(v_{\varepsilon}\right)\right]^{s_{n}} \nabla v_{\varepsilon} \nabla \psi d x+\int_{\mathbb{R}^{2}} \frac{V(\varepsilon x)}{2} \psi^{2} v_{\varepsilon}^{2}\left[T_{k}\left(v_{\varepsilon}\right)\right]^{s_{n}} d x \\
& \leqslant C \int_{\mathbb{R}^{2}} \psi^{2} v_{\varepsilon}^{2}\left[T_{k}\left(v_{\varepsilon}\right)\right]^{s_{n}}\left[\exp \left(\beta v_{\varepsilon}^{2}\right)-1\right] d x .
\end{aligned}
$$

By Young's inequality, it follows that

$$
\begin{aligned}
& \int_{\mathbb{R}^{2}} v_{\varepsilon} \psi\left[T_{k}\left(v_{\varepsilon}\right)\right]^{s_{n}} \nabla v_{\varepsilon} \nabla \psi d x \\
& \quad \leqslant \frac{\delta_{2}}{2} \int_{\mathbb{R}^{2}} \psi^{2}\left[T_{k}\left(v_{\varepsilon}\right)\right]^{s_{n}}\left|\nabla v_{\varepsilon}\right|^{2} d x+\frac{1}{2 \delta^{2}} \int_{\mathbb{R}^{2}} v_{\varepsilon}^{2}\left[T_{k}\left(v_{\varepsilon}\right)\right]^{s_{n}}|\nabla \psi|^{2} d x .
\end{aligned}
$$

Now, using the Gagliardo-Nirenberg inequality (see [13, Proposition 8.12]),

$$
\|u\|_{L^{4}}^{2} \leqslant C\|u\|_{L^{2}}\|\nabla u\|_{L^{2}} \leqslant \frac{C}{2}\left(\|u\|_{L^{2}}^{2}+\|\nabla u\|_{L^{2}}^{2}\right),
$$

we obtain

$$
\begin{aligned}
\| \psi v_{\varepsilon}[& \left.T_{k}\left(v_{\varepsilon}\right)\right]^{s_{n} / 2} \|_{L^{4}}^{2} \\
\leqslant & \frac{C}{2}\left\{\left\|\psi v_{\varepsilon}\left[T_{k}\left(v_{\varepsilon}\right)\right]^{s_{n} / 2}\right\|_{L^{2}}^{2}+\left\|\nabla\left\{\psi v_{\varepsilon}\left[T_{k}\left(v_{\varepsilon}\right)\right]^{s_{n} / 2}\right\}\right\|_{L^{2}}^{2}\right\} \\
\leqslant & \frac{C}{2}\left\{\int_{\mathbb{R}^{2}} \psi^{2} v_{\varepsilon}^{2}\left[T_{k}\left(v_{\varepsilon}\right)\right]^{s_{n}} d x+4 \int_{\mathbb{R}^{2}}\left|\nabla v_{\varepsilon}\right|^{2} \psi^{2}\left[T_{k}\left(v_{\varepsilon}\right)\right]^{s_{n}} d x\right. \\
& +4 \int_{\mathbb{R}^{2}}|\nabla \psi|^{2} v_{\varepsilon}^{2}\left[T_{k}\left(v_{\varepsilon}\right)\right]^{s_{n}} d x \\
& \left.+2 s_{n} \int_{\mathbb{R}^{2}} \psi^{2} v_{\varepsilon}^{2}\left[T_{k}\left(v_{\varepsilon}\right)\right]^{s_{n}-2}\left|\nabla\left[T_{k}\left(v_{\varepsilon}\right)\right]\right|^{2} d x\right\} .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
\| \psi v_{\varepsilon}[& \left.T_{k}\left(v_{\varepsilon}\right)\right]_{n}^{s_{n} / 2} \|_{L^{4}}^{2} \\
\leqslant & \frac{C}{2}\left\{\int_{\mathbb{R}^{2}} \psi^{2} v_{\varepsilon}^{2}\left[T_{k}\left(v_{\varepsilon}\right)\right]^{s_{n}} d x+4 \int_{\mathbb{R}^{2}}\left|\nabla v_{\varepsilon}\right|^{2} \psi^{2}\left[T_{k}\left(v_{\varepsilon}\right)\right]^{s_{n}} d x\right. \\
& +4 \int_{\mathbb{R}^{2}}|\nabla \psi|^{2} v_{\varepsilon}^{2}\left[T_{k}\left(v_{\varepsilon}\right)\right]^{s_{n}} d x \\
& \left.+2 s_{n} \int_{\mathbb{R}^{2}} \psi^{2}\left[T_{k}\left(v_{\varepsilon}\right)\right]^{s_{n}}\left|\nabla\left[T_{k}\left(v_{\varepsilon}\right)\right]\right|^{2} d x\right\} .
\end{aligned}
$$

These estimates imply that

$$
\begin{align*}
\left\|\psi v_{\varepsilon}\left[T_{k}\left(v_{\varepsilon}\right)\right]^{s_{n} / 2}\right\|_{L^{4}}^{2} \leqslant & C\left\{\int_{\mathbb{R}^{2}}|\nabla \psi|^{2} v_{\varepsilon}^{2}\left[T_{k}\left(v_{\varepsilon}\right)\right]^{s_{n}} d x\right. \\
& \left.+\int_{\mathbb{R}^{2}} \psi^{2} v_{\varepsilon}^{2}\left[T_{k}\left(v_{\varepsilon}\right)\right]^{s_{n}}\left[\exp \left(\beta v_{\varepsilon}^{2}\right)-1\right] d x\right\} . \tag{22}
\end{align*}
$$

Notice that, by the radial lemma, we can choose ρ suitably large such that

$$
\left\{\int_{|x| \geqslant \rho / 2}\left[\exp \left(\beta v_{\varepsilon}^{2}\right)-1\right]^{2} d x\right\}^{1 / 2} \leqslant 1 / 2 C
$$

Consider $\psi \in C_{0}^{\infty}\left(\mathbb{R}^{2},[0,1]\right)$ such that $\psi \equiv 1$ if $|x| \geqslant \rho \geqslant 4, \psi \equiv 0$ if $|x| \leqslant$ $\rho-2$ and $|\nabla \psi| \leqslant 1$ and hence, by Hölders inequality,

$$
\begin{equation*}
\int_{\mathbb{R}^{2}} \psi^{2} v_{\varepsilon}^{2}\left[T_{k}\left(v_{\varepsilon}\right)\right]^{s_{n}}\left[\exp \left(\beta v_{\varepsilon}^{2}\right)-1\right] d x \leqslant \frac{1}{2 C}\left\|\psi v_{\varepsilon}\left[T_{k}\left(v_{\varepsilon}\right)\right]^{s_{n} / 2}\right\|_{L^{4}}^{2} . \tag{23}
\end{equation*}
$$

From (22) and (23) we find

$$
\begin{aligned}
\left\|v_{\varepsilon}\left[T_{k}\left(v_{\varepsilon}\right)\right]^{s_{n} / 2}\right\|_{L^{4}(|x| \geqslant \rho)}^{2} & \leqslant\left\|\psi v_{\varepsilon}\left[T_{k}\left(v_{\varepsilon}\right)\right]^{s_{n} / 2}\right\|_{L^{4}}^{2} \\
& \leqslant C \int_{\mathbb{R}^{2}}|\nabla \psi|^{2} v_{\varepsilon}^{2}\left[T_{k}\left(v_{\varepsilon}\right)\right]^{s_{n}} d x \\
& \leqslant C \int_{|x| \geqslant \rho / 2} v_{\varepsilon}^{s_{n}+2} d x .
\end{aligned}
$$

Thus, letting $k \rightarrow+\infty$, by the dominated convergence theorem,

$$
\begin{equation*}
\left\|v_{\varepsilon}\right\|_{L^{\sigma_{n+1}(|x| \geqslant \rho)}} \leqslant C^{1 / \sigma_{n}}\left\|v_{\varepsilon}\right\|_{L^{\sigma_{n}(|x| \geqslant \rho / 2)}} . \tag{24}
\end{equation*}
$$

We can use the same argument taking $\psi \in C_{0}^{\infty}\left(B_{2 \rho^{\prime}}\left(x_{0}\right),[0,1]\right)$ such that $\psi \equiv 1$ if $\left|x_{0}-x\right| \leqslant \rho^{\prime}$ and $|\nabla \psi| \leqslant 2 / \rho^{\prime}$ to prove that

$$
\begin{equation*}
\left\|v_{\varepsilon}\right\|_{L^{\sigma_{n+1}\left(B_{p^{\prime}}\left(x_{0}\right)\right)}} \leqslant C^{1 / \sigma_{n}}\left\|v_{\varepsilon}\right\|_{\left.L^{\sigma_{n\left(B_{2}\right.}}\left(\boldsymbol{B}_{0}\right)\right)} . \tag{25}
\end{equation*}
$$

Therefore, from (24) and (25), by a standard covering argument, we can show that

$$
\left\|v_{\varepsilon}\right\|_{L^{\sigma_{n+1}}} \leqslant C^{1 / \sigma_{n}}\left\|v_{\varepsilon}\right\|_{L^{\sigma_{n}}} .
$$

Iteration yields

$$
\left\|v_{\varepsilon}\right\|_{L^{\sigma_{n+1}}} \leqslant C^{\Sigma 1 / \sigma_{n}} \gamma^{\Sigma n-1 / \sigma_{n}}\left\|v_{\varepsilon}\right\|_{L^{\sigma_{1}},}, \quad \forall \varepsilon \in\left(0, \varepsilon_{0}\right)
$$

where C is independent of n, since both series are convergent. Finally, letting $n \rightarrow \infty$ and observing that $\|u\|_{\infty} \leqslant \lim _{n \rightarrow \infty}\|u\|_{L^{\sigma_{n}}}$, we deduce easily that $v_{\varepsilon} \in L^{\infty}\left(\mathbb{R}^{2}\right)$ and in addition that

$$
\begin{equation*}
\left\|v_{\varepsilon}\right\|_{\infty} \leqslant C, \quad \text { for all } \quad 0<\varepsilon<\varepsilon_{0} \tag{26}
\end{equation*}
$$

From (21) and (26), it is easy to see that for all nonnegative $\phi \in C_{0}^{\infty}\left(\mathbb{R}^{2}\right)$,

$$
\int_{\mathbb{R}^{2}} \nabla v_{\varepsilon} \nabla \phi d x \leqslant C \int_{\mathbb{R}^{2}} v_{\varepsilon} \phi d x .
$$

Also, it is known that $H^{1}\left(\mathbb{R}^{2}\right) \hookrightarrow L^{s}\left(\mathbb{R}^{2}\right)$ for all $s \geqslant 2$. By standard regularity result [12, Theorem 8.17], for any ball $B_{r}(x)$ of radius r centered at any $x \in \mathbb{R}^{2}$,

$$
\sup _{y \in B_{r}(x)} v_{\varepsilon}(y) \leqslant C\left\{\left\|v_{\varepsilon}\right\|_{L^{2}\left(B_{2 r}(x)\right)}+\left\|v_{\varepsilon}\right\|_{L^{4}\left(B_{2 r} r(x)\right)}\right\}, \quad \forall \varepsilon \in\left(0, \varepsilon_{0}\right) .
$$

Thus, the uniform vanishing of the family $\left(v_{\varepsilon}\right)_{\left\{0<\varepsilon \leqslant \varepsilon_{0}\right\}}$ is implied.
Lemma 9. If the family $\left(y_{\varepsilon}\right)_{\left\{0<\varepsilon \leqslant \varepsilon_{0}\right\}} \subset \mathbb{R}^{2}$ is such that $\varepsilon y_{\varepsilon} \in \Omega$ and $v_{\varepsilon}\left(y_{\varepsilon}\right) \geqslant \eta_{0}>0$, for all $\varepsilon \in\left(0, \varepsilon_{0}\right)$. Then

$$
\lim _{\varepsilon \rightarrow 0} V\left(\varepsilon y_{\varepsilon}\right)=V_{1} .
$$

Furthermore, $\omega_{\varepsilon}(x) \doteq v_{\varepsilon}\left(x+y_{\varepsilon}\right)$ converges uniformly over compacts to the ω solution of problem (8).

Proof. Let us take a sequence $\varepsilon_{n} \searrow 0$ and $y_{n} \in \mathbb{R}^{2}$ such that $\varepsilon_{n} y_{n} \in \Omega$ and $v_{\varepsilon_{n}}\left(y_{n}\right)=u_{\varepsilon_{n}}\left(\varepsilon_{n} y_{n}\right) \geqslant \eta_{0}>0$. Since $\varepsilon_{n} y_{n} \in \bar{\Omega}$, up to subsequence, we have $\varepsilon_{n} y_{n} \rightarrow x_{0} \in \bar{\Omega}$. Set $v_{n}=v_{\varepsilon_{n}}$ and $\omega_{n}(x)=v_{n}\left(x+y_{n}\right)$. Thus, for all $\phi \in C_{0}^{\infty}\left(\mathbb{R}^{2}\right)$,

$$
\begin{equation*}
\int_{\mathbb{R}^{2}}\left[\nabla \omega_{n} \nabla \phi+V\left(\varepsilon_{n} x+\varepsilon_{n} y_{n}\right) \omega_{n} \phi\right] d x=\int_{\mathbb{R}^{2}} g\left(\varepsilon_{n} x+\varepsilon_{n} y_{n}, \omega_{n}\right) \phi d x . \tag{27}
\end{equation*}
$$

Since $\left\|\omega_{n}\right\|_{H^{1}}=\left\|v_{n}\right\|_{H^{1}}$ is bounded, up to subsequence, we may assume that there is $\omega \in H^{1}\left(\mathbb{R}^{2}\right)$ such that

$$
\omega_{n} \rightharpoonup \omega \text { in } H^{1}\left(\mathbb{R}^{2}\right) \text { and } \omega_{n}(x) \rightarrow \omega(x) \quad \text { a.e. in } \quad \mathbb{R}^{2} .
$$

We set

$$
\tilde{g}(x, \omega)=\chi(x) f(\omega)+(1-\chi(x)) \tilde{f}(\omega)
$$

and

$$
\chi(x)=\lim _{n \rightarrow \infty} \chi_{\Omega}\left(\varepsilon_{n} x+\varepsilon_{n} y_{n}\right) \quad \text { a.e. in } \quad \mathbb{R}^{2} .
$$

Using similar arguments as for Lemma 2.1 in [6], we can prove that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{\mathbb{R}^{2}} g\left(\varepsilon_{n} x+\varepsilon_{n} y_{n}, \omega_{n}\right) \phi d x=\int_{\mathbb{R}^{2}} \tilde{g}(x, \omega) \phi d x, \quad \forall \phi \in C_{0}^{\infty}\left(\mathbb{R}^{2}\right) . \tag{28}
\end{equation*}
$$

Now taking the limit in (27) we achieve that ω satisfies

$$
\int_{\mathbb{R}^{2}}\left[\nabla \omega \nabla \phi+V\left(x_{0}\right) \omega \phi\right] d x=\int_{\mathbb{R}^{2}} g(x, \omega) \phi d x, \quad \forall \phi \in C_{0}^{\infty}\left(\mathbb{R}^{2}\right) .
$$

Thus, ω is a critical point of the energy functional

$$
\tilde{I}(\omega)=\frac{1}{2} \int_{\mathbb{R}^{N}}\left[|\nabla \omega|^{2}+V\left(x_{0}\right) \omega^{2}\right] d x-\int_{\mathbb{R}^{N}} \tilde{G}(x, \omega) d x,
$$

where \tilde{G} is the primite of \tilde{g}. Notice that in the case that $x_{0} \in \Omega$ we have $\varepsilon_{n} x+\varepsilon_{n} y_{n} \in \Omega$ for n sufficiently large. Hence, $\chi(x)=1$ for all $x \in \mathbb{R}^{N}$, and so ω is a critical point of the energy functional

$$
I_{x_{0}}(\omega)=\frac{1}{2} \int_{\mathbb{R}^{N}}\left[|\nabla \omega|^{2}+V\left(x_{0}\right) \omega^{2}\right] d x-\int_{\mathbb{R}^{N}} F(\omega) d x .
$$

On the other hand, if $x_{0} \in \partial \Omega$, without loss of generality we may suppose that the outer normal vector v in x_{0} is $(1,0)$. Let $P=\left\{x \in \mathbb{R}^{N}: x_{1}<0\right\}$. Notice that $\chi \equiv 1$ on P, since for each $x \in P$, we have that $\varepsilon_{n} x+\varepsilon_{n} y_{n} \in \Omega$, for n sufficiently large, because $\varepsilon_{n} y_{n} \in \Omega$. Thus, in both cases $\tilde{g}(x, s)=f(s)$, for all $x \in P$. This implies that the mountain-pass level \tilde{c} associated to the functional \tilde{I} is identical to the mountain-pass level $c_{x_{0}}$ associated to the functional $I_{x_{0}}$. Indeed, from $\widetilde{G}(x, s) \leqslant F(s)$, we have $I_{x_{0}}(u) \leqslant \widetilde{I}(u)$, for all $u \in H^{1}\left(\mathbb{R}^{2}\right)$ and then $c_{x_{0}} \leqslant \tilde{c}$. On the other hand, $I_{x_{0}}(u)=\tilde{I}(u)$ for all u with support contained in P.

Also, the dependence of the mountain-pass level c_{1} (as defined in (9)) on the constant potential V_{1} is continuous and increasing (for details see [18]). Hence, using Fatou's lemma and Lemma 7, we get

$$
\begin{aligned}
2 c_{1} & \leqslant 2 \tilde{I}(\omega)=\int_{\mathbb{R}^{2}}[\tilde{\omega} g(x, \omega)-2 \tilde{G}(x, \omega)] d x \\
& \leqslant \liminf _{n \rightarrow \infty}\left\{\int_{\mathbb{R}^{2}}\left[\omega_{n} g\left(\varepsilon_{n} x+\varepsilon_{n} y_{n}, \omega_{n}\right)-2 G\left(\varepsilon_{n} x+\varepsilon_{n} y_{n}, \omega_{n}\right)\right] d x\right\} \\
& =\liminf _{n \rightarrow \infty}\left\{\int_{\mathbb{R}^{2}}\left[v_{n} g\left(\varepsilon_{n} x, v_{n}\right)-2 G\left(\varepsilon_{n} x, v_{n}\right)\right] d x\right\} \\
& =\liminf _{n \rightarrow \infty}\left\{2 I_{\varepsilon_{n}}\left(v_{\varepsilon_{n}}\right)-I_{\varepsilon_{n}}^{\prime}\left(v_{\varepsilon_{n}}\right) v_{\varepsilon_{n}}\right\} \leqslant 2 c_{1} .
\end{aligned}
$$

Thus, $\lim _{\varepsilon \rightarrow 0} b_{\varepsilon}=c_{1}$. Furthermore, if $V\left(x_{0}\right)>V_{1}$ we have $c_{1}<\tilde{c} \leqslant \tilde{I}(\omega)=$ c_{0}, which is a contradiction; then $V\left(x_{0}\right)=V_{1}$.

We conclude also from what we have proved that $\omega_{\varepsilon} \rightharpoonup \omega$ in $H^{1}\left(\mathbb{R}^{2}\right)$, where ω is a solution of problem (8). From this fact, together with elliptic estimates (see Proposition 8), we conclude the second part of this lemma.

From Proposition 8, we conclude that there exists a $\rho>0$ such that $\omega_{\varepsilon}(x) \leqslant a$ for all $|x| \geqslant \rho$. Also, we can choose $\varepsilon_{0}>0$ suitably small such that $B_{\rho}(0) \subset \Omega_{\varepsilon_{0}}$. Therefore, for all $\varepsilon \in\left(0, \varepsilon_{0}\right)$,

$$
-\Delta \omega_{\varepsilon}+V\left(\varepsilon x+\varepsilon y_{\varepsilon}\right) \omega_{\varepsilon}=f\left(\omega_{\varepsilon}\right), \quad \text { in } \quad \mathbb{R}^{2}
$$

Thus, there is $\varepsilon_{0}>0$ such that when $0<\varepsilon<\varepsilon_{0}$, problem $\left(P_{\varepsilon}\right)$ possesses a positive bound state solution.

Taking translations, if necessary, we may assume that ω_{ε} achieved its global maximum at the origin of \mathbb{R}^{2}. Now, by the fact that ω_{ε} converges uniformly over compacts to ω together with Lemma 4.2 in [15], we conclude that ω_{ε} possesses no critical point other than the origin for all $\varepsilon \in\left(0, \varepsilon_{0}\right)$.

We note that the maximum value of $u_{\varepsilon}(\varepsilon x)=v_{\varepsilon}(x)$ is achieved at a point $z_{\varepsilon}=\varepsilon x_{\varepsilon} \in \Omega$ and it is away from zero. Thus, the second item in Theorem 1 is a consequence of Lemma 9.

Finally, we are going to prove the exponential decay of the solutions. Since the functions ω_{ε} decay uniformly to zero as $|x| \rightarrow+\infty$, we can choose $R_{0}>0$ such that for all $\varepsilon \in\left(0, \varepsilon_{0}\right)$,

$$
\begin{equation*}
f\left(w_{\varepsilon}(x)\right) \leqslant \frac{V_{1}}{2} w_{\varepsilon}(x), \quad \forall|x| \geqslant R_{0} . \tag{29}
\end{equation*}
$$

Set $\phi(x)=M \exp (-\zeta|x|)$ where ζ and M are such that $2 \zeta^{2}<V_{1}$ and $M \exp \left(-\zeta R_{0}\right) \geqslant \omega_{\varepsilon}(x)$, for all $|x|=R_{0}$. It is easy to see that

$$
\begin{equation*}
\Delta \phi \leqslant \zeta^{2} \phi, \quad \forall x \neq 0 \tag{30}
\end{equation*}
$$

Also, from (29) and (30) we see that the function $\phi_{\varepsilon}=\phi-\omega_{\varepsilon}$ satisfies

$$
\begin{array}{rll}
-\Delta \phi_{\varepsilon}+\frac{V_{1}}{2} \phi_{\varepsilon} \geqslant 0 & \text { in } & |x| \geqslant R_{0} \\
\phi_{\varepsilon} \geqslant 0 & \text { in } & |x|=R_{0} \\
\lim _{|x| \rightarrow \infty} \phi_{\varepsilon}(x)=0 . &
\end{array}
$$

By the maximum principle, we have that $\phi_{\varepsilon}(x) \geqslant 0$ for all $|x| \geqslant R_{0}$. Hence, $\omega_{\varepsilon}(x) \leqslant M \exp (-\zeta|x|)$ for all $|x| \geqslant R_{0}$ and $\varepsilon \in\left(0, \varepsilon_{0}\right)$. This estimate implies easily that the last item of Theorem 1 holds.

ACKNOWLEDGMENTS

This work was done while the first author was visiting the Courant Institute of Mathematical Sciences. He thanks Professor Louis Nirenberg and all the faculty and staff of CIMS-NYU for their kind hospitality.

REFERENCES

1. T. Aubin, "Nonlinear Analysis on Manifolds: Monge-Ampère Equations," SpringerVerlag, New York/Heidelberg/Berlin, 1982.
2. Adimurthi, Existence of positive solutions of the semilinear Dirichlet problem with critical growth for the N-Laplacian, Ann. Scuola Norm. Sup. Pisa 17 (1990), 393-413.
3. C. O. Alves, J. M. do Ó, and M. A. S. Souto, Local mountain-pass for a class of elliptic problems in \mathbb{R}^{N} involving critical growth, Nonlinear Anal., in press.
4. H. Berestycki and P.-L. Lions, Nonlinear scalar field equations, I. Existence of ground state, Arch. Rational Mech. Anal. 82 (1983), 313-346.
5. D. M. Cao, Nontrivial solution of semilinear elliptic equation with critical exponent in \mathbb{R}^{2}, Comm. Partial Differential Equations 17 (1992), 407-435.
6. D. G. de Figueiredo, O. H. Miyagaki, and B. Ruf, Elliptic equations in $\mathbb{R}^{N 2}$ with nonlinearities in the critical growth range, Calc. Var. 3 (1995), 139-153.
7. M. del Pino and P. L. Felmer, Local mountain-pass for semilinear elliptic problems in unbounded domains, Calc. Var. 4 (1996), 121-137.
8. J. M. do Ó, Semilinear Dirichlet problems for the N-Laplacian in \mathbb{R}^{N} with nonlinearities in the critical growth range, Differential Integral Equations 9 (1996), 967-979.
9. J. M. do Ó, N-Laplacian equations in \mathbb{R}^{N} with critical growth, Abstract Appl. Anal. 2 (1997), 301-315.
10. A. Floer and A. Weinstein, Nonspreading wave packets for the cubic Schrödinger equations with bounded potential, J. Funct. Anal. 69 (1986), 397-408.
11. B. Gidas, W.-M. Ni, and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic problem in \mathbb{R}^{N}, in "Mathematical Analysis and Applications, Part A" (L. Nachbin, Ed.), Adv. Math. Suppl. Studies, Vol. 7, pp. 369-402, Academic Press, New York, 1981.
12. D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equation of Second Order," second ed., Springer-Verlag, New York, 1983.
13. O. Kavian, "Introduction à la théorie des points critiques et applications aux problèmes elliptiques," Springer-Verlag, Paris, 1993.
14. J. Moser, A sharp form of an inequality by N. Trudinger, Ind. Univ. Math. J. 20 (1971), 1077-1092.
15. W. M. Ni and I. Takagi, On the shape of least-energy solutions to semilinear Neumann problem, Comm. Pure Appl. Math. 14 (1991), 819-851.
16. Y.-G. Oh, Existence of semi-classical bound states of nonlinear Schrödinger equations with potential on the class $(V)_{a}$, Comm. Partial Differential Equations 13 (1988), 1499-1519.
17. P. H. Rabinowitz, "Minimax Methods in Critical Point Theory with Applications to Differential Equations," CBMS Regional Conf. Ser. in Math., Vol. 65, Amer. Math. Soc., Providence, RI, 1986.
18. P. H. Rabinowitz, On a class of nonlinear Schrödinger equations, Z. Angew Math. Phys. 43 (1992), 272-291.
19. X. Wang, On concentration of positive bound states of nonlinear Schrödinger equations, Comm. Math. Phys. 153 (1993), 229-244.
