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In this paper we deal with semilinear elliptic problem of the form

&=2 2u+V(z) u= f (u),
u # C 2(R2) & H 1(R2) , u>0,

in R2

in R2 ,

where = is a small positive parameter, V : R2 � R is a positive potential bounded
away from zero, and f (u) behaves like exp(:s2) when s � +�. We prove the
existence of solutions concentrating around a local minima not necessarily non-
degenerate of V(x), when = tends to 0. � 2001 Academic Press
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1. INTRODUCTION

This paper has been motivated by recent works concerning standing
wave solutions of the nonlinear Schro� dinger equation
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2�+V(z) �&# |�| p&1 �, in RN (1)
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i.e., solutions of the form

�(z, t)=exp(&iEt��) v(z),

where �, m, # are positive constants, p>1, E # R, V # C1(RN, R) and v is a
real function. It is well known that � satisfies (1) if and only if the function
v(z) solves the elliptic equation

&
�2

2m
2v+(V(z)&E ) v=# |v| p&1 v, in RN.

In [10], Floer and Weinstein studied the case N=1 and p=3. They used
a Lyapunov�Schmidt type reduction to prove the existence of standing
wave solutions concentrating at each given nondegenerate critical point of
the potential V(z), when � tends to 0, under the assumption that V is
bounded. This method and result was extended by Oh in [16] to prove a
similar result to higher dimensional cases with 1<p<(N+2)�(N&2). The
Lyapunov�Schmidt reduction method requires basically local conditions
for the potential V(z) and a nondegeneracy condition is essential. On the
other hand, the calculus of variations based on variants of the mountain-
pass theorem has been used by Rabinowitz in [18] to prove the existence
of a positive ``least-energy'' solution when � is small, 1<p<(N+2)�(N&2),
and V(z) satisfies the following global condition:

inf
z # RN

V(z)< lim inf
|z| � �

V(z). (2)

Moreover, Wang, in [19], has obtained the concentration behavior around
the global minimum of V(z) for these solutions, when � tends to 0. In [7],
Felmer and del Pino have used the variational method based on local moun-
tain-pass to prove the existence of standing wave solutions concentrating
around local minima not necessarily nondegenerate of V(z), when � tends to
0. It is natural to ask if this result is true, under a similar local condition for
the potential V(z), when we consider nonlinearities in the critical growth
range. In [3], a positive answer to this question was given in the case N�3
and here we consider the two-dimensional case. To be more precise, we deal
with a semilinear elliptic problem of the form

&=2 2u+V(z) u= f (u),
u # C2(R2) & H1(R2) ,

in R2,
u>0, in R2,

(P=)

where = is a small positive parameter and the potential V: R2 � R satisfies
the following conditions:
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(V1) V is locally Ho� lder continuous in R2 and there exists a positive
constant V0 such that

V(z)�V0 , \z # R2;

(V2) there exists a bounded domain 0/R2 such that

V1.inf
0

V(z)< min
�0

V(z).

We also assume that the nonlinearity f (s) satisfies the following conditions:

(f1) f # C1(R) and f (s)#0 for s�0;

(f2) f (s)=o1(s) near origin;

(f3) f has critical growth at +�; namely, there exists :0>0 such that

lim
s � +�

f (s)
exp(:s2)

=0, \:>:0 ; lim
s � +�

f (s)
exp(:s2)

=+�, \:<:0 ;

( f4) there is a constant +>2 such that, for all s>0,

0�+F(s)=+ |
s

0
f (t) dt<sf (s);

(f5) the function s � f (s)�s is increasing;

(f6) there is p>2 and $>0 such that for all s>0,

f (s)�\p
2

(Sp+$) p \4?
:0+

1& p�2

+ s p&1,

where

Sp= inf
u # H1(R2)"[0]

(�R2 ( |{u|2+V1u2) dz)1�2

(�R2 |u| p dz)1�p . (3)

The main result of this paper is stated as follows.

Theorem 1. Suppose that the potential V satisfies (V1)�(V2) and that
the nonlinearity f satisfies (f1)�(f6). Then there is =0>0 such that when
0<=<=0 , problem (P=) possesses a positive bound state solution u=(z) with
the following properties:

(i) u= has at most one local (hence global ) maximum z= in R2 and
z= # 0;

(ii) lim= � 0+ V(z=)=V1=inf0 V;
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(iii) there are C and ` positive constants such that for all z # R2,

u=(z)�C exp \&` } z&z=

= }+ .

In order to treat variationally this class of problems, with f behaving like
exp(:s2) when s � +�, we use the so-called Trudinger�Moser inequality
which says that if u is a H1(R2) function then for all :>0 the integral
�R2 [exp(:u2)&1] dz is finite (see Lemma 2 in the next section). Indeed,
this inequality motivates the notion of criticality given in (f3). There is an
extensive bibliography on this subject. See, for example, [5, 6] for the
semilinear elliptic equations and [2, 8, 9] for quasilinear equations. We
adapt some of their ideas to overcome the difficulties arising from the criti-
cal growth and unboundedness of the domain. Furthermore, as in [3] and
[7], we make a suitable modification on the nonlinearity f (s) outside the
domain 0 such that the associated energy functional satisfies the Palais�
Smale condition, and then using some elliptic estimates we can prove that,
for sufficiently small =, the associated minimax critical point is indeed a
solution to the original equation. This elementary idea allows us to use the
variational methods to deal with local conditions for the potential V(z).

This paper is composed of three sections; taking preliminaries in the
following section, we shall prove the existence and concentration behavior
in the last section.

2. AUXILIARY PROBLEM

We make a suitable modification on the nonlinearity f (s) outside the
domain 0 such that the associated energy functional satisfies the
Palais�Smale condition and to which we can apply the mountain-pass
theorem. Namely, we consider the following Carathe� odory function

g(z, s)=/0(z) f (s)+(1&/0(z)) f� (s)

where /0 is the characteristic of 0 and

f� (s)={
f (s),
V0

k
s,

if s�a,

if s>a,

with k>+�(+&2)>1 and a>0 such that f (a)=aV0 �k.
Using assumptions (f1)�(f5) it is easy to check that g(z, s) satisfies the

following properties:
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(g1) g(z, s) is piecewise C1 in s for any fixed z and g(z, s)#0 for
s�0;

(g2) for each $>0 and ;>:0 there is a constant c=c($, ;)>0 such
that

g(z, s)�$s+c exp(;s2), \s�0;

(g3)

0<+G(z, s)�g(z, s) s, (z, s) # [0_(0, +�)] _ [(R2&0)_(0, a]]

and

0�2G(z, s)�g(z, s) s�
1
k

V(z) s2, (z, s) # (R2&0)_[0, +�),

where G(z, s)=�s
0 g(z, t) dt;

(g4) the function s � g(z, s)�s is increasing,

Now, we consider an energy functional given by

J(u)= 1
2 |

R2
[|{u|2+V(z) u2] dz&|

R2
G(z, u) dz,

defined on the Hilbert space

H={u # H1(R2) : |
R2

V(z) u2 dz<�=,

endowed with the inner product given by (u, v)=�R2 [{u {v+V(z) uv] dz
and the induced norm &u&.- (u, u). J is well defined and it is a C1 functional
with Fre� chet derivative given by

These statements are standard (see [17]) and they follow from the conditions
(g1)�(g2) taking into account the following Trudinger�Moser inequality,
which was proved in [9] (see also [5] for a slightly different version).

Lemma 2. If u # H1(R2) and :>0, then

|
R2

[exp(:u2)&1] dz<�.
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Moreover, if &{u&L2�1, &u&L2�M and :<4?, then there exists a constant
C, which depends only on : and M, such that

|
R2

[exp(:u2)&1] dz�C.

The next result concerns the mountain-pass geometry of J. Its proof is
a consequence of our assumptions (f2), (f3), and (g3) and can be found in
[5, 9].

Lemma 3. The functional J satisfies the following conditions:

(i) there exist \, _>0, such that J(u)�_ if &u&=\,

(ii) for any nonnegative function u # C �
0 (0)"[0], we have J(tu) �

&� as t � +�.

Lemma 4. J satisfies the Palais�Smale condition.

Proof. Let (un)/H be a Palais�Smale sequence of the functional J. For
n big enough, using (g3) we have

c++1+&un &�+ J(un)&J$(un) un

=\+&2
2 + &un&2+|

R2
[ung(z, un)&+G(z, un)] dz

�\+&2
2 + &un&2&+ |

R2&0
G(z, un) dz

�\+&2
2 + &un&2&

+
2k |

R2&0
V(z) u2

n dz

�_(+&2) k&+
2k &&un&2;

thus &un& is bounded, since (+&2) k>+. Now we can take a subsequence,
denote again by (un), weakly convergent to some u # H. We are going to
prove that this convergence is actually strong. For that matter it suffices
to show that, given $>0, there is an R>0 such that

lim sup
n � � |

[ |z|�R]
[|{un | 2+V(z) u2

n] dz<$. (4)
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Consider the test function �R(z) un , where �R # C �
0 (R2, [0, 1]), �R(z)=0

if |z|�R�2, �R(z)=1 if |z|�R and |{�R(z)|�C�R for all z # R2. Since (un)
is bounded, from (??) we obtain

|
R2

[|{un |2+V(z) u2
n] �R dz+|

R2
un {un {�R dz

=|
R2

g(z, un) �Run dz+on(1).

Thus, from property (g3) for R>0 suitably large,

|
R2

[|{un |2+V(z) u2
n] �R dz+|

R2
un{un {�R dz

�
1
k |

R2
V(z) u2

n �R dz+on(1),

which implies that

|
[ |z|�R]

[|{un | 2+V(z) u2
n] dz�

C
R

&un &L2 } & {un&L2+on(1)

and (4) follows. Thus, the proof of Lemma 4 is complete. K

In view of the previous lemmas, applying the mountain-pass theorem
(see [17]) we obtain the main result of this section.

Theorem 5. For all =>0, the functional

J=(u)= 1
2 |

R2
[=2 |{u|2+V(z) u2] dz&|

R2
G(z, u) dz

possesses a nonnegative critical point u= # H"[0] at the level

c== inf
u # H"[0]

max
t�0

J=(tu). (5)

Remark 1. (i) This characterization of the mountain-pass level c=

given in (5) has been established in [7] and [18] as a consequence of
properties of g(z, s).

(ii) Since g(z, s)=0 for s�0 and J $=(u=) ,=0 for all , # H, choosing
the test function ,=u=

&=max[&u= , 0] # H, we have that &u=
&&=0. Thus,

we conclude that u= is a nonnegative function.
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3. PROOF OF THEOREM 1

First, we scale the spatial variable by setting z==x and let I= denote the
energy functional

I=(u)= 1
2 |

R2
[|{u|2+V(=x) u2] dx&|

R2
G(=x, u) dx

defined on the Hilbert space

H==[u # H 1(R2) : |
R2

V(=x) u2<�],

(u, v).|
R2

[{u{v+V(=x) uv] dx,

associated to the problem

&2u+V(=x) u= g(=x, u), R2. (6)

Thus, from Theorem 5, v=(x)=u=(z) is a critical point of I= at the level

b==I=(v=)= inf
v # H="[0]

max
t�0

I=(tv). (7)

We suppose, without loss of generality, that �0 is smooth, 0 # 0, and
V(0)=V1 .

In order to derive some estimates on the mountain-pass level b= we consider
the following autonomous problem

&2u+V1u= f (u), R2. (8)

The energy functional corresponding to Eq. (8) is

I1(u)= 1
2 |

R2
[|{u| 2+V1u2] dx&|

R2
F(u) dx, \u # H 1(R2).

Now, we state the following basic result.

Theorem 6. Suppose that the nonlinearity f satisfies (f1)�(f6). Then,
problem (8) possesses a positive ground state solution | at the level

c1=I1(|)= inf
v # H 1"[0]

max
t�0

I1(tv)<
4?
:0

. (9)

Furthermore, | is spherically symmetric about some point in R2 and �|��r
is negative for all r>0, where r is the radial coordinate about that point.
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Proof. First we observe that the radial symmetry for any solution of
problem (8) follows from a result due to Gidas et al. (see [11, Theorem 2]).

By the definition of Sp given in (3), there exists u$ # H1(R2)"[0] such
that

Sp+
$
2

>
(�R2 ( |{u$ |2+V1 u 2

$) dx)1�2

(� |u$ | p dx)1�p .

Let

v$=\4?
:0 +

1�2 |u$ |
(�R2 ( |{u$ |2+V1u 2

$) dx)1�2 ,

We have

|
R2

( |{v$ |2+V1v 2
$) dx=

4?
:0

and

Sp+
$
2

>
\|R2

( |{v$ |2+V1v 2
$) dx+

1�2

\| v p
$ dx+

1�p =
\4?

:0+
1�2

\| v p
$ dx+

1�p ,

which implies that

| vp
$ dx>

\4?
:0 +

p�2

\Sp+
$
2+

p .

Hence, by ( f6) we have

|
R2

F(v$) dx=|
R2 |

v$

0
f (s) ds dx

�\1
2

(Sp+$) p \4?
:0+

1& p�2

+ |
R2

v p
$ dx

>
1
2 \4?

:0 +=
1
2 |

R2
( |{v$ | 2+V1v 2

$) dx.
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Therefore, we have proved that

|
R2

F(v$) dx> 1
2 |

R2
( |{v$ | 2+V1v2

$) dx. (10)

In order to proceed further we introduce the following manifold:

M={u # H1(R2)"[0] : |
R2

F(u) dx=
V1

2 |
R2

u2 dx=
and we consider the constrained problem

I 0
1=inf {|R2

|{u| 2 dx : u # M= . (11)

Claim 1. M{< and 0<I 0
1��R2 |{v$ |2<4?�:0 .

Verification of Claim 1. From (10) and (f2) it is easy to see that there
exists t� # (0, 1] such that t� v$ # M. Thus, I 0

1��R2 |{v$ |2. Assume for the sake
of contradiction that I 0

1=0; thus there exists a sequence (un)/H1(R2)"[0]
such that

|
R2

F(un) dx=
V1

2 |
R2

u2
n dx and lim

n � � |
R2

|{un | 2 dx=0.

From our assumptions we have that

F(s)�
V1

4
s2+cs[exp(;s2)&1], \s # R.

Also, it holds that

|
R2

|un |[exp(;u2
n)&1] dx�c &{un&L2 &un &2

L2 , (12)

since from the Gagliardo�Nirenberg inequality (see [1])

|
R2

|un |2k+1 dx�Ckk &{un &2k&1
L2 &un &2

L2 ,
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which implies

|
R2

|un |[exp(;u2
n)&1] dx= :

�

k=1

;k

k! |R2
|un |2k+1 dx

�C &{un&L2 &un&2
L2 ,

because ��
k=1

(;k)k

k! &{un&2k&2
L2 converges.

Now, using (12), one obtains

V1

2 |
R2

u2
n dx�

V1

4 |
R2

u2
n dx+c &{un&L2 &un &2

L2 .

Thus,

&{un&L2�
V1

4c
>0,

which is a contradiction and Claim 1 is proved.

Claim 2. I 0
1 is achieved.

Verification of Claim 2. Let (un)/H1(R2)"[0] be a minimizing sequence
of I 0

1 ; thus

|
R2

F(un) dx=
V1

2 |
R2

u2
n dx and lim

n � � |
R2

|{un |2 dx=I 0
1 .

Furthermore, taking u~ n(x)=un(_nx) where _n=&un&L2 , we have that

&u~ n&L2=1, &{u~ n&L2=&{un&L2 and |
R2

F(u~ n) dx=
V1

2
.

Thus, up to subsequence, we may assume that

u~ n ( u~ in H1(R2), u~ n(x) � u~ (x) a.e. in R2 , and &{u~ n&2
L2<

4?
:0

.

In what follows, we make use of the limit

lim
n � � |

R2
F(u~ n) dx=|

R2
F(u~ ) dx, (13)
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which we prove later. From (13), one sees easily that u~ is nontrivial. Also,
we have

V1

2
&u~ &2

L2�lim inf
n � �

V1

2
&u~ n&2

L2=lim inf
n � � |

R2
F(u~ n) dx=|

R2
F(u~ ) dx.

Indeed, we have that

V1

2
&u~ &2

L2=|
R2

F(u~ ) dx

and therefore I 0
1 is achieved by u~ . To prove this fact we argue by contradic-

tion. Thus, assume that

1
2 &u~ &2

L2<|
R2

F(u~ ) dx.

Hence, there exists t # (0, 1) that such that tu~ # M. Hence,

I 0
1�t2 |

R2
|{u~ | 2 dx<|

R2
|{u~ | 2 dx�lim inf

n � � |
R2

|{u~ n |2 dx=I 0
1 ,

which is a contradiction.
Now we give the proof of limit in (13). We use the Schwarz symmetriza-

tion method. Notice that we may assume that u~ n(x)�0 for all x # R2. Since
F(s) is an increasing function and F(0)=0 then

|
[ |x|�R]

F(u~ n) dx=|
[ |x|�R]

F(u~ n*) dx,

where u~ n* denotes the Schwarz symmetrization of u~ n .
By our assumptions (f2)�(f3), given '1>0, there exist \1 , \2>0 such

that

F(s)�'1s2, \ |s|�\1 . (14)

and

F(s)�'1[exp(;s2)&1], \ |s|�\2 , (15)

where ;>:0 is a number to be determined. Radial lemma (see [4, Lemma
A.II]) leads to

|u~ n*(x)|�C
&u~ n&H1

- |x|
�C

1

- |x|
. (16)
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From (14) and (16) we see easily that for all '>0 there exists R>0 such
that

|
[ |x|�R]

F(u~ n*) dx<'. (17)

Let A/[x : |x|<R1] be a Lebesgue mensurable set; using (14) and (15)
we have

|
A

F(u~ n) dx�'1 |
R2

|u~ n | 2 dx+'1 |
R2

[exp(;u~ 2
n)&1] dx+|A| sup

\1�|s|�\2

F(s).

We use |A| to denote the Lebesgue measure of a mensurable subset A. By
Lemma 2, if we choose ;>:0 sufficiently close to :0 , we see that
�R2 [exp(;u~ 2

n)&1] dx is bounded, independent of n, since &{u~ n&2
L2<4?�:0 .

So, by this estimate we have

|
A

F(u~ n) dx<', (18)

if |A| is suitably small. In view of (17) and (18), applying Vitali's theorem
we obtain (13).

Since I 0
1>0 is achieved, according to the Lagrange multiplier method we

have

|
R2

{u~ {, dx=* |
R2

[ f (u~ )&V1u~ ] , dx, \, # H 1(R2).

Choosing the test function ,=u~ we have that

* |
R2

[ f (u~ )&V1 u~ ] u~ dx=|
R2

|{u~ | 2 dx>0.

Also, it holds that

|
R2

[ f (u~ )&V1u~ ] u~ dx�(+&2) |
R2

F(u~ ) dx.

Thus, * is a positive number. Choosing the test function ,=max[&u~ , 0]
we conclude that u~ �0. By the standard regularity theory of the elliptic
equations (see Proposition 8 below), we conclude that u~ is a classical solu-
tion and u~ (x) � 0 as |x| � �. Hence, applying the maximum principle
u~ >0 in R2.

301NONLINEAR SCHRO� DINGER EQUATIONS IN R2



Let |(x)=u~ (*&1�2 x); we get

&2|+V1|= f (|), in R2.

By Pohozaevs identity (see [13]),

|
R2

F(|) dx=
V1

2 |
R2

|2 dx.

Thus,

I1(|)= 1
2 |

R2
|{||2 dx= 1

2 |
R2

|{u~ |2 dx<
4?
:0

.

Since I $1(|) |=0, we have that maxt�0I1(t|)=I1(|). Therefore

c1= inf
v # H1"[0]

max
t�0

I1(tv)�I1(|)= 1
2 |

R2
|{||2 dx= 1

2 I 0
1 .

Indeed, we have that c1=I 0
1 �2. Notice that, given '>0, there is

v # H1(R2)"[0] such that

c1�J(v)=max
t�0

J(tv)�c1+'.

Also, there exists t0>0 such that t0 v # M, that is,

|
R2

F(t0v) dx=
V1

2 |
R2

(t0v)2 dx.

So

1
2 I 0

1� 1
2 |

R2
|{(t0v)| 2 dx=J(t0v)�J(v)�c1+'.

Thus, Theorem 6 is completely proved.

Lemma 7. lim sup= � 0 b=�c1 .

Proof. Let | be a ground state solution of problem (8). Without loss of
generality we may assume that | maximizes at zero. Now consider the test
function |=(x)=,(=x) |(x), where , # C �

0 (R2, [0, 1]), ,(x)=1 if x # B\(0)
and ,(x)=0 if x � B2\(0). Here we are assuming that B2\(0)//0. It is easy
to check that |= � | in H 1(R2), I1(|=) � I1(|), as = � 0, and the support of
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|= is contained in 0==[x # R2: =x # 0]. In particular, |= # H= . For each
=>0 consider t= # (0, +�) such that

max
t�0

I=(t|=)=I=(t=|=).

Thus,

b==infv # H="[0] maxt�0 I=(tv)

�maxt�0 I=(t|=)=I=(t=|=)

=
t2

=

2 |
R2

[|{|= |2+V(=x) |2
= ] dx&|

R2
F(t=|=) dx.

Claim. t= � 1 as = � 0.

Verification of claim. Since I $=(t=|=)(t=|=)=0, using assumption (f6) we
have

t2
= |

R2
[|{|= |2+V(=x) |2

= ] dx=|
R2

f (t=|=) t=|= dx

�Ctp
= |

R2
|p

= dx. (19)

Since &|=&H=
�C and |= � |>0 in L p, from (19) we derive easily that (t=)

is bounded. Thus, up to subsequence, we have t= � t1�0. Indeed, t1>0
because t2

= &|=&H=
�2b=�2c� >0 where c� is the mountain-pass level of the

functional I� defined as

I� (u). 1
2 |

R2
[ |{u|2+V0 |u| 2] dx&|

R2
F(u) dx.

Passing to the limit in (19), we get

|
R2

[|{||2+V1|2] dx=t&2
1 |

R2
f (t1|) t1 | dx. (20)

Now, subtracting (20) from

|
R2

[|{|| 2+V1|2] dx=|
R2

f (|) | dx,
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we achieve

0=|
R2 _f (t1|)

(t1|)
&

f (|)
| &|2 dx,

which implies that t1=1, because of our assumption (f5). Thus, the proof
of the claim is complete.

Notice that we also have that

I=(t=|=)=I1(t=|=)+
t2

=

2 |
R2

[V(=x)&V1]||= |2 dx.

Thus, taking the limit as = � 0 and using the fact that V(=x) is bounded
on the support of |= and the Lebesgue dominated convergence theorem,
we conclude the proof of the lemma. K

Now we have I=(v=)�c1+o=(1), where o=(1) goes to zero as = � 0.
Notice that

&v=&2
H=

=|
R2

g(=x, v=) v= dx

and that there exists =0>0 such that

+
2

&v=&2
H=

�|
R2

+G(=x, v=) dx++c1+1, \= # (0, =0),

which together with assumption (g3) implies that

\+
2

&1+ &v=&2
H=

�|
R2&0=

[+G(=x, v=)& g(=x, v=) v=] dx++c1+1

�|
R2&0=

(+&2) G(=x, v=) dx++c1+1

�|
R2&0=

\+&2
2k + V(=x) v2

= dx++c1+1

�\+&2
2k + &v=&2

H=
++c1+1.

Thus, &v=&H=
�C, for all = # (0, =0). Of course, we have also that

(v=)[0<=�=0] is bounded in H1(R2).
The next result is fundamental for our proof of Theorem 1 and concerns

the regularity of the family (v=).
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Proposition 8. The functions v= belong to L�(R2). Moreover, &v= &L��
C for all 0<=�=0 and the functions v= decay uniformly to zero as
|x| � +�.

Proof. We set _n=sn+2=2n+1 and consider the test function ,=
�2v= [Tk (v=)]sn, where Tk (v=)=min[k, v=] and � # C �

0 (R2, [0, 1]). Using
that v= is a critical point of I= and our assumptions we find that

|
R2

[{v= {,+V(=x) v= ,] dx�|
R2 _V0

2
v=+C(V0 , ;) v=[exp(;v2

= )&1]& , dx,

which implies that

|
R2 _{ v= {,+

V(=x)
2

v= ,& dx�C |
R2

v=[exp(;v2
= )&1] , dx. (21)

From (21), it is easy to achieve

|
R2

|{v= | 2 �2[Tk (v=)]sn dx+sn |
R2

�2v=[Tk (v=)]sn&1 {v= {[Tk (v=)] dx

+2 |
R2

v=�[Tk (v=)]sn {v= {� dx+|
R2

V(=x)
2

�2 v2
= [Tk (v=)]sn dx

�C |
R2

�2v2
=[Tk (v=)]sn [exp(;v2

= )&1] dx.

Thus,

|
R2

|{v= | 2 �2[Tk (v=)]sn dx+sn |
R2

�2[Tk (v=)]sn |{[Tk (v=)]|2 dx

+2 |
R2

v= �[Tk (v=)]sn {v= {� dx+|
R2

V(=x)
2

�2v2
=[Tk (v=)]sn dx

�C |
R2

�2v2
=[Tk (v=)]sn [exp(;v2

= )&1] dx.

By Young's inequality, it follows that

|
R2

v= �[Tk (v=)]sn {v={� dx

�
$
2

2 |
R2

�2[Tk (v=)]sn |{v= |2 dx+
1

2$2 |
R2

v2
= [Tk (v=)]sn |{�| 2 dx.
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Now, using the Gagliardo�Nirenberg inequality (see [13, Proposition 8.12]),

&u&2
L4�C &u&L2 &{u&L2�

C
2

(&u&2
L2+&{u&2

L2),

we obtain

&�v=[Tk (v=)]sn�2&2
L4

�
C
2

[&�v=[Tk (v=)]
sn�2&2

L2+&{[�v=[Tk (v=)]sn�2]&2
L2]

�
C
2 {|R2

�2v2
=[Tk (v=)]sn dx+4 |

R2
|{v= | 2 �2[Tk (v=)]sn dx

+4 |
R2

|{�| 2 v2
=[Tk (v=)]sn dx

+2sn |
R2

�2v2
=[Tk (v=)]sn&2 |{[Tk (v=)]|2 dx= .

Thus,

&�v=[Tk (v=)]sn�2&2
L4

�
C
2 {|R2

�2v2
=[Tk (v=)]sn dx+4 |

R2
|{v= |2 �2[Tk (v=)]sn dx

+4 |
R2

|{�|2 v2
=[Tk (v=)]sn dx

+2sn |
R2

�2[Tk (v=)]sn | {[Tk (v=)]|2 dx= .

These estimates imply that

&�v=[Tk (v=)]sn�2&2
L4 �C {|R2

|{�|2 v2
=[Tk (v=)]sn dx

+|
R2

�2v2
=[Tk (v=)]sn [exp(;v2

= )&1] dx= . (22)

Notice that, by the radial lemma, we can choose \ suitably large such that

{||x|�\�2
[exp(;v2

= )&1]2 dx=
1�2

�1�2C.
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Consider � # C �
0 (R2, [0, 1]) such that �#1 if |x|�\�4, �#0 if |x|�

\&2 and |{�|�1 and hence, by Ho� lders inequality,

|
R2

�2v2
=[Tk (v=)]sn [exp(;v2

= )&1] dx�
1

2C
&�v=[Tk (v=)]sn�2&2

L4 . (23)

From (22) and (23) we find

&v= [Tk (v=)]sn �2&2
L4( |x|�\)�&�v=[Tk (v=)]sn �2&2

L4

�C |
R2

|{�|2 v2
= [Tk (v=)]sn dx

�C |
|x| �\�2

v sn+2
= dx.

Thus, letting k � +�, by the dominated convergence theorem,

&v=&L_n+1( |x| �\)�C1�_n &v=&L_n ( |x|�\�2) . (24)

We can use the same argument taking � # C �
0 (B2\$(x0), [0, 1]) such that

�#1 if |x0&x|�\$ and |{�|�2�\$ to prove that

&v=&L_n+1 (B\ $ (x0))�C1�_n &v=&L_n(B2 \$ (x0)) . (25)

Therefore, from (24) and (25), by a standard covering argument, we can
show that

&v=&L_n+1�C1�_n &v=&L_n .

Iteration yields

&v=&L_n+1�C� 1�_n #� n&1�_n &v=&L_1 , \= # (0, =0),

where C is independent of n, since both series are convergent. Finally, letting
n � � and observing that &u&��limn � � &u&L_n , we deduce easily that
v= # L�(R2) and in addition that

&v=&��C, for all 0<=<=0 . (26)

From (21) and (26), it is easy to see that for all nonnegative , # C �
0 (R2),

|
R2

{v= {, dx�C |
R2

v=, dx.
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Also, it is known that H1(R2)/�Ls(R2) for all s�2. By standard
regularity result [12, Theorem 8.17], for any ball Br (x) of radius r centered
at any x # R2,

sup
y # Br(x)

v=( y)�C[&v= &L2(B2r(x))+&v=&L4(B2r(x))], \= # (0, =0).

Thus, the uniform vanishing of the family (v=)[0<=�=0] is implied. K

Lemma 9. If the family ( y=)[0<=�=0] /R2 is such that =y= # 0 and
v=( y=)�'0>0, for all = # (0, =0). Then

lim
= � 0

V(=y=)=V1 .

Furthermore, |=(x).v=(x+ y=) converges uniformly over compacts to the |
solution of problem (8).

Proof. Let us take a sequence =n z0 and yn # R2 such that =nyn # 0 and
v=n

( yn)=u=n
(=n yn)�'0>0. Since =n yn # 0� , up to subsequence, we have

=nyn � x0 # 0� . Set vn=v=n
and |n(x)=vn(x+ yn). Thus, for all , # C �

0 (R2),

|
R2

[{|n {,+V(=nx+=n yn) |n ,] dx=|
R2

g(=n x+=nyn , |n) , dx. (27)

Since &|n&H1=&vn &H1 is bounded, up to subsequence, we may assume that
there is | # H 1(R2) such that

|n ( | in H1(R2) and |n(x) � |(x) a.e. in R2.

We set

g~ (x, |)=/(x) f (|)+(1&/(x)) f� (|)

and

/(x)= lim
n � �

/0(=n x+=nyn) a.e. in R2.

Using similar arguments as for Lemma 2.1 in [6], we can prove that

lim
n � � |

R2
g(=nx+=n yn , |n) , dx=|

R2
g~ (x, |) , dx, \, # C �

0 (R2). (28)
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Now taking the limit in (27) we achieve that | satisfies

|
R2

[{| {,+V(x0) |,] dx=|
R2

g(x, |) , dx, \, # C �
0 (R2).

Thus, | is a critical point of the energy functional

I� (|)= 1
2 |

RN
[ |{||2+V(x0) |2] dx&|

RN
G� (x, |) dx,

where G� is the primite of g~ . Notice that in the case that x0 # 0 we have
=nx+=nyn # 0 for n sufficiently large. Hence, /(x)=1 for all x # RN, and so
| is a critical point of the energy functional

Ix0
(|)= 1

2 |
RN

[|{||2+V(x0) |2] dx&|
RN

F(|) dx.

On the other hand, if x0 # �0, without loss of generality we may suppose
that the outer normal vector & in x0 is (1, 0). Let P=[x # RN : x1<0].
Notice that /#1 on P, since for each x # P, we have that =nx+=nyn # 0,
for n sufficiently large, because =nyn # 0. Thus, in both cases g~ (x, s)= f (s),
for all x # P. This implies that the mountain-pass level c~ associated to the
functional I� is identical to the mountain-pass level cx0

associated to the
functional Ix0

. Indeed, from G� (x, s)�F(s), we have Ix0
(u)�I� (u), for all

u # H 1(R2) and then cx0
�c~ . On the other hand, Ix0

(u)=I� (u) for all u with
support contained in P.

Also, the dependence of the mountain-pass level c1 (as defined in (9)) on
the constant potential V1 is continuous and increasing (for details see
[18]). Hence, using Fatou's lemma and Lemma 7, we get

2c1�2I� (|)=|
R2

[|~ g(x, |)&2G� (x, |)] dx

� lim inf
n � � {|R2

[|ng(=nx+=n yn , |n)&2G(=nx+=nyn , |n)] dx=
= lim inf

n � � {|R2
[vng(=nx, vn)&2G(=nx, vn)] dx=

=lim inf
n � � {2I=n

(v=n
)&I $=n

(v=n
) v=n

]�2c1 .

Thus, lim= � 0 b==c1 . Furthermore, if V(x0)>V1 we have c1<c~ �I� (|)=
c0 , which is a contradiction; then V(x0)=V1 .
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We conclude also from what we have proved that |= ( | in H1(R2), where
| is a solution of problem (8). From this fact, together with elliptic estimates
(see Proposition 8), we conclude the second part of this lemma. K

From Proposition 8, we conclude that there exists a \>0 such that
|=(x)�a for all |x|�\. Also, we can choose =0>0 suitably small such that
B\(0)/0=0

. Therefore, for all = # (0, =0),

&2|=+V(=x+=y=) |== f (|=), in R2.

Thus, there is =0>0 such that when 0<=<=0 , problem (P=) possesses a
positive bound state solution.

Taking translations, if necessary, we may assume that |= achieved its
global maximum at the origin of R2. Now, by the fact that |= converges
uniformly over compacts to | together with Lemma 4.2 in [15], we con-
clude that |= possesses no critical point other than the origin for all
= # (0, =0).

We note that the maximum value of u=(=x)=v=(x) is achieved at a point
z===x= # 0 and it is away from zero. Thus, the second item in Theorem 1
is a consequence of Lemma 9.

Finally, we are going to prove the exponential decay of the solutions.
Since the functions |= decay uniformly to zero as |x| � +�, we can
choose R0>0 such that for all = # (0, =0),

f (w=(x))�
V1

2
w= (x), \ |x|�R0 . (29)

Set ,(x)=M exp(&` |x| ) where ` and M are such that 2`2<V1 and
M exp(&`R0)�|= (x), for all |x|=R0 . It is easy to see that

2,�`2,, \x{0. (30)

Also, from (29) and (30) we see that the function ,==,&|= satisfies

&2,=+
V1

2
,=�0 in |x|�R0 ,

,=�0 in |x|=R0 ,

lim |x| � � ,=(x)=0.

By the maximum principle, we have that ,=(x)�0 for all |x|�R0 . Hence,
|=(x)�M exp(&` |x| ) for all |x|�R0 and = # (0, =0). This estimate implies
easily that the last item of Theorem 1 holds.
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