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1. Introduction

In this paper we will discuss the existence of a nontrivial solution of the following
class of semilinear biharmonic problem involving critical exponents

62u + a(x)u = h(x)|u|q−1u + k(x)|u|p−1u in RN ;

u∈H 2(RN ); N ≥ 5; (P)

where 1¡q¡p ≤ 2∗∗−1 = (N + 4)=(N − 4) and a; h; k :RN→R are bounded, non-
negative and continuous functions.
We recall that semilinear and quasilinear problems for second order equations have

been extensively studied in the last years. For Laplace operator and subcritical case,
they have been studied for instance by Rabinowitz [30], Coti-Zelati and Rabinowitz
[14], Kryszewski and Szulkin [21], Alama and Li [1] when a; h and k are 1-periodic,
while in the paper [25] Montecchiari has dropped the periodicity condition on a; h and
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k and proved the existence of an uncountable set of bounded solutions provided that
the functions a; h and k are small perturbations of the 1-periodic functions in the sense
that there exist periodic continuous function a∞; h∞ and k∞ and a set A⊂RN “large
at inKnity”, that is, ∀R¿ 0; ∃x∈A such that BR(x) = {y∈RN : ‖y− x‖¡R}⊂A, and
∀�¿ 0; ∃R¿ 0 such that

max

{
sup

A\BR(0)
|a− a∞|; sup

A\BR(0)
|h− h∞|; sup

A\BR(0)
|k − k∞|

}
¡�:

On the other hand, Brezis and Nirenberg [8] have been the Krst to study semilinear
elliptic problem in bounded domains involving critical exponents. After this paper,
many authors have considered the problem above for Laplacian or p-Laplacian opera-
tors, exploring either the approach used by [8] or a combination of this technique with
the concentration compactness principle of Lions ([22,23]), among others, we would
like to mention Garcia and Peral [18], Ambrosetti, Garcia and Peral [4], Ambrosetti
and Struwe [3], Capozzi et al. [10] and references therein when domain is bounded,
and Noussair et al. [27], Benci and Cerami [5], Cao et al. [9], Pan [28], Ben-Naoum
et al. [6] and references therein in whole space RN . Still in the critical case, Jianfu and
Xiping [19] have treated a quasilinear elliptic problem where the function a satisKes
the following condition:

there exist a∞ ¿ 0 such that

a(x) → a∞; as |x| → ∞; a(x)� a∞; (a0)

where the last inequality is strict on a subset of positive measure in RN : Recently,
motived by the paper [19], Alves et al. [2] studied this kind of problems for the
Laplacian operator with h= � and k = 1, as a perturbation of the 1-periodic problem.
For the biharmonic operators, in the case where a = 0 and p = 2∗∗−1; adapting

a compactness result due to Egnell [17], problem (P) was studied by Noussair et al.
[26]. For other results involving biharmonic operators with critical growth, we refer to
van der Vorst [31], Bernis et al. [7], Edmunds et al. [16], Pucci and Serrin [29] and
references therein.
Here, we basically extend the results in [2] for the biharmonic operators, but diPerent

from the case k = 1, the coeQcient k brings another diQculty with respect to the
lack of compactness, but this was overcame by using a version of the concentration
compactness principle for the biharmonic operator.
First of all we are going to prove that the 1-periodic problem (P) possesses

a nontrivial solution assuming that the functions a; h and k satisfy the following
hypothesis:

a(x + p) = a(x); h(x + p) = h(x); k(x + p) = k(x); x∈RN ; p∈ZN ; (h1)

there exists a0 ¿ 0 such that

a(x) ≥ a0 ¿ 0; x∈RN ; (h2)

h(x) ≥ 0; inf
x∈ B(0;�)

h= �0 ¿ 0; �¿ 0 (h3)
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and

k(x)¿ 0; k(x) = |k|L∞ + O(|x|4) near at the origin: (h4)

Then, we shall prove the existence of a nontrivial solution for the nonperiodic problem

62u + A(x)u = H (x)|u|q−1u + K(x)|u|2∗∗−1u in RN ;

u∈H 2(RN ); N ≥ 5; (P#)

when the functions A;H; K :RN→R are small perturbations of the 1-periodic func-
tions a; h and k; respectively. More precisely, A;H; K are nonnegative and continuous
functions verifying the following assumptions:
there exists A0 ¿ 0 such that

A(x) = a(x)−W (x) ≥ A0 with W (x) ≥ 0; x∈RN ; (h5)

H (x)− h(x) → 0 as |x| → ∞;

H (x) ≥ h(x); x∈RN ; (h6)

K(x)− k(x) → 0 as |x| → ∞;

K(x) ≥ k(x) K(x) = |K |L∞ +O(|x|4) near at the origin; (h7)

where at least one of the inequalities above is strict on a subset of positive measure
in RN .
We are now ready to state our main result.

Theorem 1.1. Assume that W ∈LN=4(RN ); p= 2∗∗ − 1; (h1)–(h7) hold. In addition;
suppose either N ≥ 8 and q¿ 1 or 5 ≤ N ≤ 7 and p − 2¡q¡p. Then; problem
(P#) has a nontrivial solution u∈H 2(RN ). Problem (P#) still possesses a nontrivial
solution u∈H 2(RN ) provided 5 ≤ N ≤ 7; 1¡q ≤ p − 2 and �0 is su;ciently large.

2. Preliminary results

Let E denote the Sobolev space H 2(RN ) endowed with norm

‖u‖2 =
∫
RN

(|6u|2 + au2);

which is equivalent to usual norm on E. Also |u|q means the norm in Lq(RN ).
We shall state the following auxiliary result.

Theorem 2.1. Assume p = 2∗∗ − 1; (h1)–(h4). Suppose either

N≥8 and q¿ 1 or 5 ≤ N ≤ 7 and p − 2¡q¡p: (2.1)

Then; problem (P) has a nontrivial solution u∈H 2(RN ). Problem (P) still possesses
a nontrivial solution u∈H 2(RN ) provided

5 ≤ N ≤ 7; 1¡q ≤ p − 2 and �0 is su;ciently large: (2.2)
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Remark 1. Even this result it extends or complements those of some papers
above mentioned in the sense that here the nonlinearity involves the Sobolev’s critical
exponent.

3. Proof of Theorem 2.1

Consider the C1 functional I on E given by

I(u) =
1
2

∫
RN

|6u|2 + au2 − 1
q + 1

∫
RN

h|u|q+1 − 1
2∗∗

∫
RN

k|u|2∗∗

with Fr*echet derivative

I ′(u)v =
∫
RN
(6u6v + auv)−

∫
RN

h|u|q−1uv −
∫
RN

k|u|2∗∗−2uv:

First of all, we recall that it is standard to prove that I veriKes the following.

Lemma 3.1 (Mountain Pass Geometry). I satis>es the following conditions
(i) There exist &; '¿ 0; such that I(u) ≥ '; ‖u‖= &:
(ii) There exist e∈E; ‖e‖¿& such that I(e) ≤ 0:

From the Lemma above, by using the Ambrosetti–Rabinowitz Mountain Pass
Theorem without (PS)c condition (see [24]), it follows that there exists a (PS)c
sequence {un}; that is, {un}⊂E such that I(un) → c and I ′(un) → 0; where c is
characterized by

c = inf
*∈ T

max
t ∈ [0;1]

I(*(t))

and

T = {*∈C([0; 1]; E): I(*(0)) = 0 and I(*(1)) = e}:
Since (2.1)–(2.2) hold, applying the same argument used in [8] (see also [11]), we
conclude that the level c deKned above veriKes the inequalities

0¡c¡
2
N
|k|(4−N )=4

∞ SN=4;

where S is the best Sobolev constant deKned by

S = inf
{∫

RN
|6u|2: u∈D2;2(RN ); |u|L2∗∗ = 1

}
:

We remark that the inKmum above is achieved by functions

u�(x) = CN

(
�

�2 + |x|2
)(N−4)=2

; �¿ 0;

where CN is chosen so that u� satisKes the equation

62u = u2
∗∗−1 in RN ; N ≥ 5;

see (e.g. [26] or [16]).
Also, we will need the following lemma that gives a behavior of (PS)c sequence.
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Lemma 3.2. Let {un} be a (PS)c sequence such that un * 0 weakly in E; with c¡
2=N |k|(4−N )=4

∞ SN=4. Then; k1=2
∗∗

un→ 0 in L2∗∗
loc (RN ); in addition the sequence {un} ver-

i>es either
(a) un → 0 strongly in E or
(b) There exist &; �¿ 0 and {yn}∈RN such that

lim sup
n→∞

∫
B&(yn)

|un|2 ≥ �;

where Br(y) denotes the ball in RN of center at y and radius r.

Proof. Since un * 0 weakly in E, we may suppose that

k|un|2∗∗ */ and |6un|2 * 0 (weak∗-sense of measure:)

Using a version of the concentration compactness principle due to Lions [23] (see
e.g. [31] for a bounded domains version, also [12]), there exist an at most countable
index set J , distinct points {xj}j ∈ J ⊂RN , and nonnegative weights {0j; /j}j ∈ J such
that

/=
∑
j ∈ J

/j�xj and 0 ≥
∑
j ∈ J

0j�xj ;

where �xi is the Dirac mass at xi ∈RN . Furthermore

S
(

/i

|k|∞

)(N−4)=N

≤ 0i:

It can be proved (see [18, p. 881]) that

/i ≥ |k|(4−N )=4
∞ SN=4 or /i = 0:

Then

J =W (empty set) or Knite:

In our case J =W. In fact, suppose on the contrary that J �= W: Then

c + on(1) = I(un)− 1
2 I

′(un)un

=
(
1
2

1
q + 1

)∫
RN

h|un|q+1 +
2
N

∫
RN

k|un|2∗∗

≥ 2
N

∫
RN

k|un|2∗∗

≥ 2
N

∫
RN

Xk|un|2∗∗ ;

where X is a cut-oP function, X∈C∞
c (RN ); 0 ≤ X ≤ 1; X ≡ 1 on B�(xi); X ≡ 0 on

RN\B2�(xi); |∇X| ≤ 2=� and |6X| ≤ 2=�2.
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Passing to the limit in the inequality above, we obtain

c ≥ 2
N

∑
i∈ J

X(xi)/i =
2
N

∑
i∈ J

/i ≥ 2
N
|k|(4−N )=4

∞ SN=4;

which is a contradiction. Hence, since J =W; we have∫
RN

k|un|2∗∗X → 0; ∀X∈C∞
c (RN );

that is,

k1=2
∗∗

un → 0 in L2∗∗
loc (RN ):

This proves the Krst part. Suppose that (b) does not hold. Using Lion’s result
([22, Lemma 1:1] or [14, Lemma 2:18]) follows:∫

RN
h|un|q+1 → 0:

From I ′(un)un = on(1); we conclude

‖un‖2 =
∫
RN

k|un|2∗∗ + on(1):

Assume that ‖un‖2 → l(l¿ 0). Since I(un) → c and
∫
RN k|un|2∗∗→ l, it follows that

c = 2=Nl.
Arguing as in [8] and observing that

||un||2 ≥
∫
RN

|6un|2 ≥ S
(∫

RN
|un|2∗∗

)2=2∗∗

≥ S

|k|2=2∗∗∞

(∫
RN

k|un|2∗∗
)2=2∗∗

;

we get that c ≥ 2=N |k|(4−N )=4
∞ SN=4; which is a contradiction, then (a) holds.

Let be {un} a (PS)c sequence which was obtained above such that

0¡c¡
2
N
|k|(4−N )=4

∞ SN=4:

Using the inequality,

I(un)− 1
q + 1

I ′(un)un ≤ M + ‖un‖; n suQciently large;

we conclude that {un} is bounded in E. Then we can assume that un * u weakly in
E; (up to a subsequence).
Now, applying a Brezis and Lieb’s result (see [20]) we have∫

RN
k|un|2∗∗−2unv =

∫
RN

k|u|2∗∗−2uv + on(1); ∀v∈E
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and ∫
RN

h|un|q−1unv =
∫
RN

h|u|q−1uv + on(1); ∀v∈E:

From these equalities and keeping in mind that I ′(un)v = on(1); ∀v∈E; we obtain

I ′(u)v = 0; ∀v∈E:

If u �= 0; we have Knished. Next, consider the case u = 0.
By Lemma 3.2 and noting that c¿ 0 we have that there exist &; �¿ 0 and {yn}⊂RN

(we may assume, without loss of generality, that {yn}⊂ZN ) such that

lim sup
n→∞

∫
B&+1(yn)

|un|2 ≥ �¿ 0: (3.1)

Now, letting vn(x) = un(x − yn); since a; h and k are 1-periodic functions and by an
easy computation we obtain

‖vn‖= ‖un‖; I(vn) = I(un) and I ′(vn) → 0:

Then, there exists v∈E such that vn * v weakly in E and it follows that I ′(v) = 0.
We claim that

Claim 1. v �= 0.

Veri�cation of Claim 1. By (3.1), taking a subsequence if necessary, we get
√

� ≤ |vn|L2(B&(0)) ≤ |vn|L2(B&+1(0)) ≤ |v|L2(B&+1(0)) + |vn − v|L2(B&+1(0));

thus, from the Sobolev’s compact imbedding Theorem we conclude that v �= 0: This
proves Claim 1 and Theorem 2.1.

4. Proof of Theorem 1.1

Some arguments of this proof were adapted from the articles [2,15,19]. Consider the
functional IW : EW→R associated to problem (P#), deKned by

IW (u) =
1
2

∫
RN

|6u|2 + (a−W )u2 − 1
q + 1

∫
RN

H |u|q+1 − 1
2∗∗

∫
RN

K |u|2∗∗ ;

where EW denote the Sobolev space H 2(RN ) endowed with the norm equivalent to
usual norm in H 2(RN ) given by

‖u‖2W = ‖u‖2 −
∫
RN

Wu2;

and we denote Io = I , ‖ · ‖o = ‖ · ‖ and Eo = E for W = 0:
Also, deKne

Jv = inf
u∈M

{I(u)};
where

M = {u∈E\{0}: I ′(u)u = 0};
which is nonempty from Theorem 2.1. The following result is crucial on our proof.
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Lemma 4.1. (i) Jv ¿ 0.
(ii) There exists u∈M such that I(u) = Jv:

Proof of Lemma 4.1. (i) Suppose by contradiction that Jv=0; then there exists un ∈M
such that I(un) → Jv = 0:
But, since un ∈M we have

I(un) =
(
1
2
− 1

q + 1

)∫
RN

h|un|q+1 +
2
N

∫
RN

k|un|2∗∗ + on(1) → 0:

Hence
∫
RN k|un|2∗∗→ 0 and

∫
RN h|un|q+1→ 0: Combining with I ′(un)un =0; we

conclude that

‖un‖ → 0: (4.1)

On the other hand, since 0 �= un ∈M; we have

1 ≤ C1‖un‖q−1 + C2‖un‖2
∗∗−2:

Combining this inequality with (4.1) we reach a contradiction. This proves (i).
(ii) We claim that

Claim 2. c = Jv:

Veri�cation of claim 2. Taking u∈M and adapting an argument used in [15, p. 288],
we have

max
t≥0

I(tu) = I(u):

Choose to ∈R and uo = tou such that I(uo)¡ 0: Then *(t)= tuo ∈T and it follows that
I(u) ≥ c; that is

Jv ≥ c: (4.2)

Now, we are going to prove the reversed inequality. Let {un}⊂E such that I(un) → c
and I ′(un) → 0: From the boundedness of {un} we get I ′(un)un → 0 and in addition,
arguing as in [19] or [15], there exists a sequence {tn}∈R+ such that

I ′(tnun)tnun = 0: (4.3)

Hence tnun ∈M: Using (4.3) we have

‖un‖2 = tq−1
n

∫
RN

h|un|q+1+ t2
∗∗−2

n

∫
RN

k|un|2∗∗ : (4.4)

Hence tn does not converge to 0, otherwise, since {un} is bounded, using (4.4) we
have ‖un‖→ 0; which is impossible since c¿ 0: Also, tn does not go to inKnity. In
fact, dividing (4.4) by t2

∗∗−2
n , we get

‖un‖2
t2

∗∗−2
n

= tq−1−2∗∗
n

∫
RN

h|un|q+1 +
∫
RN

k|un|2∗∗ : (4.5)
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On the other hand, since I ′(un)un → 0; we obtain

‖un‖2 =
∫
RN

h|un|q+1 +
∫
RN

k|un|2∗∗ + on(1): (4.6)

Now, assuming that tn→∞; by (4.5) we get that k1=2
∗∗

un→ 0 in L2∗∗ : Then using the
interpolation inequality it follows that∫

RN
h|un|q+1 → 0;

which, together with (4.6), leads to ‖un‖ → 0; contradicting c¿ 0:
Hence, the sequence {tn} is bounded and there exists to ∈ (0;∞) such that tn → to

(passing to a subsequence if necessary).
Subtracting (4.4) from (4.6), we have

on(1) = (tq−1
n − 1)

∫
RN

h|un|q+1 + (t2
∗∗−2

n − 1)
∫
RN

k|un|2∗∗ : (4.7)

Passing to the limit into (4.7), we obtain

0 = (tq−1
o −1)l1 + (t2

∗∗−2
o − 1)l2;

where limn→∞
∫
RN h|un|q+1 = l1 ≥ 0 and limn→∞

∫
RN k|un|2∗∗= l2 ¿ 0.

Therefore, to = 1; that is,

tn → 1: (4.8)

Note that, by (4.8) and recalling that tnun ∈M; we have

Jv ≤ I(tnun)

= t2n

[
I(un) +

1
q + 1

(1− tq−1
n )

∫
RN

h|un|q+1 +
1
2∗∗

(1− t2
∗∗−2

n )
∫
RN

k|un|2∗∗
]

= t2nI(un) + on(1)

= (t2n − 1)I(un) + I(un) + on(1):

Passing to the limit we obtain Jv ≤ c: This concludes the veriKcation of claim 2.
Since I veriKes the mountain-pass geometry, there is a bounded (PS)c sequence {un};

so that there exists u∈E such that un * u weakly in E (up to a subsequence). Since
V is periodic and c= Jv ¡ 2=N |k|(4−N )=4

∞ SN=4; arguing as in the proof of Theorem 2.1,
we can assume u �= 0:

Claim 3.

I(u) = Jv (≡ c¡ 2
N |k|(4−N )=4

∞ SN=4):

Veri�cation of claim 3. First, we recall that u is a nontrivial solution of (P), that is,
u∈M: Then

I(u) ≥ Jv: (4.9)
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On the other hand, since I ′(un)un → 0; we get

Jv = c = I(un) + on(1)

= I(un)− 1
2
I ′(un)un + on(1)

=
(
1
2
− 1

q + 1

)∫
RN

h|un|q+1 +
2
N

∫
RN

k|un|2∗∗ + on(1):

Now, taking the limit and using Fatou’s Lemma, we obtain

Jv ≥
(
1
2
− 1

q + 1

)∫
RN

h|u|q+1 +
2
N

∫
RN

k|u|2∗∗

= I(u)− 1
2
I ′(u)u

= I(u);

which together with (4.9) concludes the proof of Lemma 4.1.

Remark 2. From the proof of Lemma 4.1, we can choose u∈M satisfying

Jv = I(u) and I ′(u)6= 0; ∀6∈E:

Note that from (h5)–(h7), it follows that IW satisKes the mountain-pass geometry (see
Lemma 3.1), so that, there exists a (PS)cW sequence {un} in EW , that is

IW (un) → cW and I ′W (un) → 0; (4.10)

where

cW = inf
*∈ TW

max
t ∈ [0;1]

IW (*(t))

and

TW = {*∈C([0; 1]; EW ): IW (*(0)) = 0 and IW (*(1)) ≤ 0};
(see [13]). From Remark 2, let be u∈M such that I(u) = Jv and I ′(u)6= 0; ∀6∈E:
We may assume that the Lebesgue’s measure of the set

supp u ∩ {x∈RN : W (x) �= 0}; (4.11)

is positive, otherwise from Remark 2, we have

I ′(u)6= I ′W (u)6= 0; ∀6∈C∞
o (RN );

therefore, u is a nontrivial solution of (P#): Then, choosing t∗ ∈R such that

0¡cW ≤ sup
t≥0

IW (tu) = IW (t∗u);

by using (h5)–(h7), (4.11) and recalling that u∈M; we have

0¡cW ≤ IW (t∗u)¡I(t∗u) ≤ sup
t≥0

I(tu) = Jv:
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Hence

cW ¡Jv = c¡
2
N
|k|(4−N )=4

∞ SN=4:

It is standard to prove that the sequence {un} in (4.10) is bounded, then up to a sub-
sequence, we have un * u weakly in EW and arguing as in the proof of Theorem 2.1,
we conclude that u is a weak solution of (P#).
Finally we are going to prove that u �= 0:
Suppose on the contrary that u = 0; that is, un * 0 weakly in EW :
Since W ∈LN=4(RN ); using a result by Brezis–Lieb ([20]) we have∫

RN
Wu2n → 0: (4.12)

Note that

|I(un)− IW (un)| ≤
∣∣∣∣12

∫
RN

Wu2n +
1

q + 1

∫
RN

|(H − h)uq+1
n |

+
1
2∗∗

∫
RN

|(K − k)u2
∗∗

n

∣∣∣∣= J1 + J2 + J3:

From (4.12), (h6) and the Sobolev compact embedding theorem, the Krst two integrals
go to zero, and by Lemma 3.2, more precisely, using the fact that k1=2

∗∗
un→ 0; in

L2∗∗
loc (RN ) and (h7) the last one also goes to zero. Then

|I(un)− IW (un)|= on(1):

Therefore,

I(un) → cW ¡
2
N
|k|(4−N )=4

∞ SN=4:

On the other hand, noting that W ≥ 0 and taking 6∈E⊂EW with ‖6‖ ≤ 1; we obtain

|(I ′(un)− I ′W (un))6|=
(
≤

∫
RN

Wu2n

)1=2

C +
∫
RN

|(H − h)uq
n6|

+
∫
RN

|(K − k)u2
∗∗−1

n 6|

= I1 + I2 + I3

for some constant C ¿ 0 and on the Krst inequality we used the HYolder’s inequality.
As before, by Lemma 3.2, (h6)–(h7) and (4.12), the integral Ii(i = 1; 2; 3) goes to

zero. It follows that

I ′(un) → 0

so that,

I(un) → cW ¡Jv and I ′(un) → 0:

Now, arguing as in the veriKcation of Claim 2, there exists a sequence {tn}⊂R
satisfying

tn → 1; I ′(tnun)tnun = 0
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and

cW ≥ Jv;

which is a contradiction.
This completes the proof of Theorem 1.1.
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