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1. Introduction

The main purpose of this paper is to study the existence of weak solutions of the
quasilinear elliptic problem

−:mu+ a(x)um−1 = h(x)uq + k(x)um
∗−1; x∈RN ;

u∈H 1;m(RN ); u(x)¿ 0; x∈RN ;
(1)

where 1¡m¡N , m − 1¡q¡m∗ − 1; m∗ = Nm=(N − m) and a; h; k : RN → R are
continuous functions.
The study of this class of problems has received considerable attention in recent

years. First, we would like to mention the progress involving the Laplacian operator,
which corresponds to the case m = 2. Benci and Cerami [8] assuming that h≡ 0;
k ≡ 1; a(x) is a nonnegative function and |a|LN=2 is suBciently small, have proved
that problem (1) has at least one solution. Pan [24] have considered the case a≡ 0
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and h∈Lp(RN ) with p∈ [p1; p2] where p1 ¡ 2N=(N + 2− q(N − 2))¡p2 if N ¿ 3
and p2 ¡ 3 if N =3: Problems with autonomous asymptotic behavior at inJnite, more
precisely, a(x) is a nonnegative function, a(x) → a0 ¿ 0 as |x| → +∞ and h≡ k ≡ 1;
have been treated by Jianfu and Xi Ping [18]. Rabinowitz [25], among other results,
obtained a nontrivial solutions to the problem −:u + a(x)u = f(x; u) in RN , under
the assumption that a(x) was a nonnegative coercive function, that is, a(x) → +∞ as
|x| → +∞ and that the potential F(x; u)=

∫ s
0 f(x; t) dt was superquadratic and f(x; u)

had subcritical growth. Miyagaki [23] studied this problem involving critical Sobolev
exponent namely for f(x; u) = �|u|q−1u + |u|2∗−2u with �¿ 0: Alves et al. [4] have
considered the case when a(x) is a radial function, h≡ � and k ≡ 1: Problems involving
the m-Laplacian operator have been studied in [19] assuming autonomous asymptotic
behavior at inJnite. In [5] it was obtained a existence result with 0¡q¡m∗−1; a≡ 0;
h∈L�((RN ) (1=� + (q + 1)=m∗ = 1) and k ≡ 1. In [2], assuming also that |h|L� is
suBciently small and 1¡q¡m it was obtained a multiplicity result. Ben-Naoum
et al. [9] using minimization techniques showed the existence of a nontrivial solution
under the assumption that the function a is negative on a set of positive measure and
h≡ 0; k ≡ 1:
After the well-known results of Brezis–Nirenberg [10], problems involving elliptic

equations with critical growth in bounded domains have been studied by several authors,
see for example [7,15,11,13,17] and the references therein.
The special features of this class of problems, considered in this paper, is that it is

deJned in RN , involve critical growth and a nonlinear operator. To overcome these
diBculties that has arisen from these features we combine concentration compactness
principle due to Lions [20,21], appropriate estimates for the levels associated with the
mountain-pass theorem and the comparison arguments involving the Nehari manifold.
Some of these ideas we adapt from [1,3,12,15,19]. Our main result improves the ex-
istence conditions in [3,18], since we are considering here a more general class of
operator and nonlinearities. We also improve the results contained in [19], as we are
concerning a class of nonlinearity which have periodic asymptotic behavior at inJnite.
Furthermore, it is not clear that an straightforward application of their arguments works
to our class of problems.
We are now describing our main assumptions in a more precise way:

(H1) There exists a continuous Z-periodic function A : RN → R such that
1. A(x) ≥ a0 ¿ 0 for all x∈RN ;
2. a(x) ≤ A(x); for all x∈RN ;
3. a(x)− A(x) → 0 as |x| → +∞:

(H2) There exists a continuous Z-periodic function H : RN → R such that
1. H (x) ≥ 0 for all x∈RN and inf B2(0)

H = �0 ¿ 0,
2. h(x) ≥ H (x); for all x∈RN ;
3. h(x)− H (x) → 0 as |x| → +∞:

(H3) There exists a continuous Z-periodic function K : RN → R such that
1. K(x)¿ 0 for all x∈RN ,
2. k(x) ≥ K(x); for all x∈RN ,
3. k(x) = ‖k‖∞ + O(|x|(N−m)=(m−1)); for all x∈B1(0);
4. k(x)− K(x) → 0 as |x| → +∞:
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(H4) At least one of the nonnegative continuous functions

A(x)− a(x); h(x)− H (x) and k(x)− K(x)

is positive on a subset of positive measure.
Our main result in this paper is stated as follows.

Theorem 1. Assume 1¡m¡N; m¡q¡m∗ − 1 and (H1)–(H4). Then problem (1)
has a solution provided that one of the following conditions holds:
(i) N ≥ m2;
(ii) m¡N ¡m2 and m∗ − m=(m+ 1)− 1¡q;
(iii) m¡N ¡m2; m∗ − m=(m+ 1)− 1 ≥ q and inf B2(0)

H is su<ciently large.

This paper is organized as follows: Section 2 contains some preliminary facts in-
cluding a existence result to a periodic problem; in Section 3, we proved our main
result.

2. Existence of solutions for a limit problem

In this section we will discuss the existence of a nontrivial solution for the following
problem:

−:mu+ A(x)um−1 = H (x)uq + K(x)um
∗−1 for x∈RN ;

u∈H 1;m(RN ); u(x) ≥ 0 for x∈RN ;
(2)

where A;H; K :RN →R are continuous Z-periodic functions with A(x) ≥ a0 ¿ 0, H (x) ≥
0, K(x)¿ 0 for all x∈RN and inf B2(0)

H = �0 ¿ 0.
The solutions of problem (2) will be found as the critical points of the Fr.echet

diMerentiable functional given by

J∞(u) =
1
m

∫
RN

[|∇u|m + A(x)|u|m]− 1
q+ 1

∫
RN

H (x)uq+1
+ − 1

m∗

∫
RN

K(x)um
∗

+ ;

where u± = max{± u; 0}, deJned on the Sobolev space H 1;m(RN ), endowed with the
equivalent norm

‖u‖=
{∫

RN
[|∇u|m + A(x)|u|m]

}1=m

:

We set in the associated functional J∞ the integral
∫
RN K(x)um

∗
+ in order to obtain

nonnegative solutions.
It is standard to prove that J∞ veriJes the mountain-pass geometrical conditions as

we state in the following result (cf. [6]).

Lemma 2 (Mountain-pass geometry). The functional J∞ satis=es the following
conditions:
• there exist �; �¿ 0; such that J∞(u) ≥ � if ‖u‖= �;
• for any u∈H 1;m(RN ) with u+ nontrivial; we have J∞(tu) → −∞ as t → +∞:
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Now, in view of Lemma 2, we may apply a version of mountain-pass theorem
without a compactness condition such as the one of Palais–Smale (cf. [14,22]), to
obtain a Palais–Smale sequence of functional J∞, more precisely, (un)⊂H 1;m(RN )
such that

J∞(un) → C∗ ≥ �¿ 0 and J ′
∞(un) → 0;

where

C∗ = inf
"∈ N

max
0≤t≤1

J∞("(t)) (3)

and

N = {"∈C([0; 1]; H 1;m(RN )): J∞("(0)) ≤ 0 and J∞("(1)) ≤ 0}:
In this work we are denoting by S the best Sobolev constant to the Sobolev embed-

ding, D1;m(RN ) ,→ Lm
∗
(RN ), that is,

S = inf{‖∇u‖mLm=‖u‖mLm∗ : u∈D1;m(RN )− {0}}: (4)

We recall that D1;m(RN ) is the completion of C∞
0 (RN ) with respect to the norm

‖u‖mD1; m = ‖∇u‖Lm .
According to Lemma 2 in [26] the inJmum S is attained by the functions w' given

by

w'(x) =
C(N;m)'(N−m)=m2

['+ |x|m=(m−1)](N−m)=m ; C(N;m) =

[
N
(
N − m
m− 1

)m−1
](N−m)=m2

(5)

for any x∈RN and any '¿ 0:
As it was done in [10,15], we are using in the next lemma, the extremal functions

(5), in order to get a more precise estimate about the minimax level C∗ obtained by
the mountain-pass theorem in (3).

Lemma 3. There exists v∈H 1;m(RN )− {0} such that

max
t≥0

J∞(tv)¡ ‖K‖(m−N )=m
∞

SN=m

N
; (6)

provided that one of conditions (i), (ii) or (iii) in Theorem 1 holds.

Proof. Consider the functions

�'(x) = )(x)w'(x) and v'(x) =
�'(x)(∫

|x|≤2 K(x)�m∗
' dx

)1=m∗ ;

where )∈C∞
0 (RN ; [0; 1]); )(x) = 1 if |x| ≤ 1 and )(x) = 0 if |x| ≥ 2: By a similar

argument to that used in [1,13,15], we show that the functions �' and v' satisfy the
following estimates:
(A)

∫
|x|≥1 |∇�'(x)|m dx = O('(N−m)=m);

(B) k1 ¡
∫
|x|≤2 K(x)�m∗

' (x) dx¡k2 for ' suBciently small,
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(C)
∫
|x|≤1 |x|(N−m)=(m−1)wm∗

' (x) dx = O('(N−m)=m);

(D)
∫
RN |∇v'(x)|m dx ≤ ‖K‖(m−N )=N

∞ S + O('(N−m)=m):
In view of Lemma 2, for each '¿ 0 small, there exists t' ¿ 0 such that

J∞(t'v') = max{J∞(tv'): t ≥ 0}:
Note that, at t = t', we have (d=dt)J∞(tv') = 0, that is,

tm−1
'

∫
RN

[|∇v'|m + A(x)|v'|m] dx = tq−1
'

∫
RN

H (x)vq+1
' dx − tm

∗−1
' :

From this and estimates (A)–(D), it follows that t' ¿�0 ¿ 0, for all 0¡'¡'0, where
�0 is a positive constant independent of '. Furthermore, by straightforward calculations
we Jnd

J∞(t'v')≤ ‖K‖(m−N )=m
∞

SN=m

N
+ O('(N−m)=m) +

∫
|x|≤2

[c1a(x)vm' − c2�0vq+1
' ] dx

+ ‖K‖(m−N )=m
∞

SN=m

N

+ '(N−m)=m

[
M + '(m−N )=m

∫
|x|≤2

[c1a(x)vm' − c2�0vq+1
' ] dx

]
;

where �0
:= inf B2(0)

H (x)¿ 0 and M; c1 and c2 are positive constants independent
of ':

Claim 1. There is '¿ 0 su<ciently small such that

M + '(m−N )=m
∫
|x|≤2

[c1a(x)vm' − c2Hvq+1
' ] dx¡ 0:

From this claim we easily see that

max
t≥0

J∞(tv') = J∞(t'v')¡ ‖K‖(m−N )=m
∞

SN=m

N
;

and taking u= t'v' we obtain (6).

Veri�cation of Claim 1. Once more, using estimates (A)–(D), and the expression of
v' we have

'(m−N )=m
∫
|x|≤2

[c1a(x)vm' − c2�0vq+1
' ] dx ≤ P(') + Q(');

where

P(') = '(m−N )=m
∫
|x|≤1

[c3a(x)vm' − c4�0vq+1
' ] dx

≤ c5'(m
2−N )=mK' − c6�0'(q+1)[(N−m)=m2−(N−m)=m]+[(m−1)=m]N+(m−N )=m;

K' =
∫ '(1−m)=m

0

sN−1

(1 + sm=(m−1))N−m ds;
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Q(') = '(m−N )=m
∫
1≤|x|≤2

[c3a(x)vm' − c4�0vq+1
' ] dx

≤ c5'(m−N )=m
∫
1≤|x|≤2

wm
'

≤ c6

∫
1≤|x|≤2

|x|m(m−N )=(m−1) dx ≤ c7

for some positive constants c3; c4; c5; c6 and c7 independent of ': Finally, using these
estimates and studying separately conditions (i)–(iii) in Theorem 1, we prove that
there exists '¿ 0 such that

P(')¡c7 −M:

Thus, the Claim 1 follows.

The next result gives an important aspect of the behavior of Palais–Smale sequences
associated to the functional J∞ at level b¡ ‖K‖(m−N )=m

∞ SN=m=N .

Lemma 4. Let (un)⊂H 1;m(RN ) be a (PS)b sequence associated to the functional J∞
such that un * 0 in H 1;m(RN ) and b¡ ‖K‖(m−N )=m

∞ SN=m=N: Thus; one of the following
conditions holds:
(a) un → 0 strong in H 1;m(RN );
(b) there is a sequence (yn)⊂RN ; and 0; �¿ 0 such that

lim sup
n→+∞

∫
B0(yn)

|un|m dx ≥ �:

Proof. Suppose that condition (b) does not hold. Using Lemma 1:1 in [20], it follows:∫
RN
(un)

q+1
+ dx → 0 as n → +∞

for m¡q+ 1¡m∗. From J ′
∞(un)un = on(1), we conclude

‖un‖m =
∫
RN

K(x)(un)m
∗

+ dx + on(1):

Assume that ‖un‖m → ‘ (‘¿ 0): Since J∞(un) → b it follows that b = ‘=N: Now,
according to (4),

‖un‖m ≥ S
(∫

RN
um

∗
n dx

)m=m∗

≥ S
(∫

RN
(un)m

∗
+ dx

)(N−m)=N

≥ S‖K‖(m−N )=m
∞

(∫
RN

K(x)(un)m
∗

+ dx
)m=m∗

:
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Thus, passing to the limit we achieve

b ≥ ‖K‖(m−N )=N
∞

SN=m

N
;

which is a contradiction with our assumption, then (a) holds.

Now we are ready to state the following existence result.

Theorem 5. Assume that A;H; K : RN →R are continuous Z-periodic functions with
A(x) ≥ a0 ¿ 0; H (x) ≥ 0; K(x)¿ 0 for all x∈RN and inf B2(0)

H = �0 ¿ 0: Then;
problem (2) has a nontrivial solution provided that one of the conditions (i); (ii) or
(iii) in Theorem 1 holds.

Proof. We know that there is a bounded sequence (un)⊂H 1;m(RN ) such that

J∞(un) → C∗; 0¡C∗ ¡ ‖K‖(m−N )=m
∞ SN=m=N and J ′

∞(un) → 0:

Then, up to the subsequence, un * u0 weakly in H 1;m(RN ). Now, using the same kind
of ideas contained in [1,15], we can prove that, for all )∈H 1;m(RN );∫

RN
|∇un|m−2∇un∇) dx →

∫
RN

|∇u0|m−2∇u0∇) dx;

∫
RN

A(x)|un|m−2un) dx →
∫
RN

A(x)|u0|m−2u0) dx;

∫
RN

H (x)(un)
q
+) dx →

∫
RN

H (x)(u0)
q
+) dx;

∫
RN

K(x)(un)m
∗−1

+ ) dx →
∫
RN

K(x)(u0)m
∗−1

+ ) dx:

From this, together with J ′
∞(un) → 0, passing to the limit, it is easy to prove that∫

RN
[|∇u0|m−2∇u0∇)+ A|u0|m−2u0)] =

∫
RN

H (u0)
q
+)+

∫
RN

K(u0)m
∗−1

+ ) (7)

for all )∈H 1;m(RN ). Let u0 = (u0)+ + (u0)− and taking as test function )(x) = (u0)−
in (7) we have∫

RN
[|∇(u0)−|m + A(x)(u0)m−] dx = 0:

Hence (u0)− ≡ 0, thus u0 ≥ 0. If u0 is nontrivial we have Jnished, otherwise, that
is u0 ≡ 0, from C∗ ¿ 0 we see that un does not go to zero strongly in H 1;m(RN ).
Therefore, from Lemma 4, there are 0; �¿ 0 and (yn)⊂RN (which without loss of
generality, we may assume that (yn)⊂ZN ) such that

lim sup
n→+∞

∫
B0+1(yn)

|un|m dx ≥ �¿ 0: (8)

Note that, if we set vn(x)= un(x−yn), since A; H and K are Z-periodic functions, by
a simple change of variable we can show that

‖vn‖= ‖un‖; J ′
∞(vn) = J ′

∞(un) + on(1) and J∞(vn) = J∞(un):
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Therefore, vn *v in H 1;m(RN ) and J ′
∞(v)) = 0, for all )∈H 1;m(RN ). Thus, v is

a weak solution of problem (2). Furthermore, from the weak lower semicontinuity
of the norm and (8) (taking a bigger ball if necessary) we conclude that v is non-
trivial.

3. Proof of Theorem 1

In this section we are going to prove the existence of a solutions to problem (1) as
critical point of the associated Fr.echet diMerentiable functional given by

J (u) =
1
m

∫
RN

[|∇u|m + a(x)|u|m]− 1
q+ 1

∫
RN

h(x)uq+1
+ − 1

m∗

∫
RN

k(x)um
∗

+ ;

deJned on the Sobolev space H 1;m(RN ), with the equivalent norm

‖u‖=
{∫

RN
[|∇u|m + a(x)|u|m] dx

}1=m

:

Some arguments used here were adapted from [3,12,19]. By M∞ we denote the
following Nehari manifold:

M∞ = {u∈E − {0}: J ′
∞(u)u= 0}

and we consider the constrained problem

C∞ = inf{J∞(u): u∈M∞}: (9)

Note that M∞ is non empty from Theorem 5.
We begin stating the following fundamental result.

Proposition 6. (a) C∞ ¿ 0.
(b) There exists u∈M∞ such that J∞(u) = C∞:

Proof. Assume for the sake of contradiction that C∞ =0; then there exists (zn)⊂M∞
such that J∞(zn) → 0. Since zn ∈M∞, it follows that

‖zn‖m =
∫
RN

H (x)(zn)
q+1
+ +

∫
RN

K(x)(zn)m
∗

+ (10)

and

J∞(zn) =
(
1
m

− 1
q+ 1

)∫
RN

H (x)(zn)
q+1
+ +

1
N

∫
RN

K(x)(zn)m
∗

+ → 0

as n → +∞: Since m¡q+ 1 and H;K are nonnegative functions we have that∫
RN

H (x)(zn)
q+1
+ → 0 and

∫
RN

K(x)(zn)m
∗

+ → 0

as n → +∞, which together with (10) implies that

‖zn‖ → 0: (11)
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On the order hand, dividing (10) by ‖zn‖m and using the Sobolev inequality, we achieve

1 ≤ C1‖zn‖q+1−m + C2‖zn‖m
∗−m;

which proves that (11) does not occur. Therefore (a) holds.
To prove (b), Jrst we observe that, adapting an argument used in [12, p. 288], we

have

max
t≥0

J∞(tu) = J∞(u)

for each u∈M∞. In view of Lemma 2, we can choose t0 ∈ (0;+∞) such that
J∞(t0u)¡ 0 and we set u= t0u. Note that "(t) = tu∈N and

J∞(u) = max
0≤t≤1

J∞("(t)) ≥ C∗:

Therefore,

C∞ ≥ C∗: (12)

Now, as in the proof of Theorem 5, we consider (un)⊂H 1;m(RN ) such that

un * u0; J∞(un) → C∗ and J ′
∞(un) → 0:

For each un consider tn ∈ (0;+∞) such that tnun ∈M∞, that is,

J ′
∞(tnun)(tnun) = 0: (13)

Thus,

‖un‖m = tq+1−m
m

∫
RN

H (x)(un)
q+1
+ dx + tm

∗−m
n

∫
RN

K(x)(un)m
∗

+ dx: (14)

Since J ′
∞(un)un → 0 as n → +∞, we have

‖un‖m =
∫
RN

H (x)(un)
q+1
+ dx +

∫
RN

K(x)(un)m
∗

+ dx + on(1): (15)

Claim 2. tn → 1 as n → +∞:

Veri�cation of Claim 2. First we prove that (tn) is bounded. Assume by contradiction
that tn → +∞. Dividing (14) by tm

∗−m
n , we obtain

‖un‖m
tm

∗−m
n

=
1

tm
∗−(q+1)

n

∫
RN

H (x)(un)
q+1
+ dx +

∫
RN

K(x)(un)m
∗

+ dx:

Since (un) is bounded in H 1;m(RN ) and tn → +∞ as n → +∞, we conclude that∫
RN

K(x)(un)m
∗

+ dx → 0 as n → +∞: (16)

Since K is a Z-periodic continuous functions and K(x)¿ 0; for all x∈RN , it follows
that K(x) ≥ k0 ¿ 0; for all x∈RN ; which implies that∫

RN
(un)m

∗
+ dx → 0 as n → +∞:
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Using the interpolation inequality, we prove that∫
RN
(un)

q+1
+ dx → 0 as n → +∞:

Since H is Z-periodic, we obtain∫
RN

H (x)(un)
q+1
+ dx → 0 as n → +∞;

which together with (15) and (16) imply that

‖un‖ → 0 as n → +∞;

which is a contradiction with J∞(un) → C∗ ≥ �¿ 0: Therefore, up to subsequence,
we have tn → t1: Now, subtracting (14) from (15), we achieve

on(1) = (tq+1−m
m − 1)

∫
RN

H (x)(un)
q+1
+ dx + (tm

∗−m
n − 1)

∫
RN

K(x)(un)m
∗

+ dx:

Passing to the limit we obtain that

0 = (tq+1−m
1 − 1)l1 + (tm

∗−m
1 − 1)l2;

where

l1 = lim
∫
RN

H (x)(un)
q+1
+ dx ≥ 0 and l2 =

∫
RN

K(x)(un)m
∗

+ dx¿ 0:

Therefore, t1 = 1 and Claim 1 holds.

Note that

C∞ ≤ J∞(tnun)

= tmn

[
J∞(un) +

1
q+ 1

(1− tq+1−m
n )

∫
RN

H (x)(un)
q+1
+ dx

+
1
m∗ (1− tm

∗−m
n )

∫
RN

K(x)(un)m
∗

+ dx
]

= tmn J∞(un) + on(1)

= (tmn − 1)J∞(un) + J∞(un) + on(1):

Once more passing to the limit we get

C∞ ≤ C∗;

which together with (12) imply that

C∞ = C∗:
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Finally, we are going to prove that minimization problem (9) has a solution, more
precisely, we shall prove that J∞(u0) = C∞: Note that

C∞ = J∞(un) + on(1)

= J∞(un)− 1
m

J ′
∞(un)un + on(1)

=
(
1
m

− 1
q+ 1

)∫
RN

H (x)(un)
q+1
+ dx +

1
N

∫
RN

K(x)(un)m
∗

+ dx + on(1):

Thus, using the Fatou’s Lemma, we conclude that

C∞ ≥
(
1
m

− 1
q+ 1

)∫
RN

H (x)(u0)
q+1
+ dx +

1
N

∫
RN

K(x)(u0)m
∗

+ dx

= J∞(u0)− 1
m

J ′
∞(u0)u0 = J∞(u0):

Therefore,

C∞ = J∞(u0);

since u0 ∈M∞: Thus (b) holds.

It is easy to check that the functional J has a geometry of the mountain-pass theorem.
Therefore, applying the mountain-pass theorem without Palais–Smale condition together
with the arguments from Section 2, we obtain a bounded sequence (vn)⊂H 1;m(RN )
such that

J (vn) → C∗∗; 0¡C∗∗ ¡ ‖k‖(m−N )=m
∞

SN=m

N
and J ′(vn) → 0 as n → +∞:

Furthermore, vn * v0 weakly in H 1;m(RN ). Arguing as in the proof of Theorem 5, we
conclude that v0 is a critical point of functional J and v0 ≥ 0.

Claim 3. v0 is nontrivial.

Veri�cation of Claim 3. Assume for the sake of contradiction that v0 ≡ 0: Thus, from
the fact that h(x)−H (x)→ 0 as |x|→∞ and the Sobolev compact embedding theorem,
we Jnd∫

RN
[h(x)− H (x)](vn)

q+1
+ dx → 0 as n → +∞ (17)

and ∫
RN

[A(x)− a(x)]|vn|m dx as n → +∞: (18)

Next, we assume the following result, which will be proved later.
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Claim 4.∫
RN
(k(x)− K(x))(vn)m

∗
+ → 0 as n → +∞: (19)

Note that

|J∞(vn)− J (vn)| ≤ 1
m

∫
RN

[A(x)− a(x)]|vn|m dx

+
1

q+ 1

∫
RN

[h(x)− H (x)](vn)
q+1
+ dx

+
1
m∗

∫
RN

[k(x)− K(x)](vn)m
∗

+ dx:

Using HTolder and Sobolev inequalities, we have that

|(J ′
∞(vn)− J ′(vn)))| ≤C1

∫
RN

[A(x)− a(x)]|vn|m dx

+C2

∫
RN

[h(x)− H (x)](vn)
q+1
+ dx

+C3

∫
RN

[k(x)− K(x)](vn)m
∗

+ dx

for all )∈H 1;m(RN ) with ‖)‖ ≤ 1, where C1, C2 and C3 are constants independent
of n: This estimate together with (17)–(19) imply that

|J∞(vn)− J (vn)| → 0 and ‖J ′
∞(vn)− J ′(vn)‖ → 0 as n → +∞:

Therefore,

J∞(vn) → C∗∗; 0¡C∗∗ ¡ ‖k‖(m−N )=m
∞

SN=m

N
and J ′

∞(vn) → 0 as n → +∞:

Repeating the same idea in the proof of Proposition 6, we conclude that

C∞ ≤ C∗∗:

On the other hand,

C∗∗ ≤ max
t≥0

J (tu0) = J (t∗u0)¡J∞(t∗u0) ≤ max
t≥0

J∞(tu0) = J∞(u0) = C∗ = C∞;

which it is a contradiction. Therefore, Claim 3 holds.

Veri�cation of Claim 4. Taking a subsequence, we may suppose that

k(vn)m
∗

+ * 6 and |∇(vn)+|m * 7 (weak∗-sense of measure): (20)

Using the so-called Concentration-Compactness Principle II, due to Lions (cf. [21]),
there exists an at most countable index set U, sequences (xi)⊂RN , (6i), (7i)⊂(0;∞),
i∈U such that

6=
∑
i∈U

6i9xi and 7 ≥
∑
i∈U

7i9xi
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where 9xi is Dirac mass at xi ∈RN . Furthermore,

S
(

6i
‖k‖∞

)m=m∗

≤ 7i: (21)

Let Q'(x)
:= Q((x−xi)='), x∈RN , '¿ 0, where Q∈C∞

0 (RN ; [0; 1]) is such that Q≡ 1
on B1(0), Q≡ 0 on RN − B2(0) and |∇Q| ≤ 2. Using that

J ′(vn)(Q'(vn)+) → 0 as n → +∞
and (20), we obtain

lim
n→+∞

∫
RN

|∇(vn)+|m−2(vn)+∇Q'∇(vn)+ dx

=
∫
RN

hvq+1
0 Q' dx +

∫
RN

Q' d6−
∫
RN

Q' d7:

Taking the limit in this last expression as ' → 0 and using that

lim
'→0

[
lim

n→+∞

∫
RN

|∇(vn)+|m−2(vn)+∇Q'∇(vn)+ dx
]
= 0;

we conclude that

7i = 6i:

Thus, from (21), we have

6i ≥ ‖k‖(m−N )=m
∞ SN=m: (22)

Therefore, U is at most a Jnite set, that is, there are at most a Jnite number of
singularities, because 6 is a bounded measure. Now we shall prove that (22) does not
occur and consequently we have that U= ∅. Assume for the sake of contradiction that
we have (22) for i∈U. Since

C∗∗ = J (vn) + on(1)

= J (vn)− 1
m
J ′(vn)vn + on(1)

=
1
N

∫
RN

k(x)(vn)m
∗

+ dx +
(
1
m

− 1
q+ 1

)∫
RN

h(x)(vn)
q+1
+ dx + on(1)

≥ 1
N

∫
RN

k(x)(vn)m
∗

+ dx + on(1)

≥ 1
N

∫
RN

Q'(x)k(x)(vn)m
∗

+ dx + on(1);

taking the limit as n → ∞, we obtain

C∗∗ ≥ 1
N

∑
i∈U

Q'(xi)6i =
1
N

∑
i∈U

6i ≥ ‖k‖(m−N )=m
∞

SN=m

N
;
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which is a contradiction. Therefore,∫
RN

)(x)k(x)(vn)m
∗

+ dx → 0 as n → +∞ for all )∈C∞
0 (RN );

that is,

k(vn)m
∗

+ → 0 in L1loc(RN ) as n → +∞:

This fact, together with assumption (H3) and the estimate∣∣∣∣
∫
RN
(k(x)− K(x))(vn)m

∗
+

∣∣∣∣
≤

∣∣∣∣∣
∫
|x|≤R

(k(x)− K(x))vm
∗

n+

∣∣∣∣∣+
∣∣∣∣∣
∫
|x|≥R

(k(x)− K(x))vm
∗

n+

∣∣∣∣∣ ;
implies that Claim 4 holds.

Using elliptic regularity theory, as it was done in [28], we may show that
u∈L∞loc (RN ) (see also [13,16], for an adaptation of the results by Trudinger to quasi-
linear equations). Finally, by the maximum principle or Harnack’s inequality, it is
standard to prove that u¿ 0 in RN (see Theorem 1:2 in [27]).
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