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Abstract

We study semilinear elliptic equations in a generally unbounded domain Ω ⊂ RN when the
pertinent quadratic form is nonnegative and the potential is generally singular, typically a
homogeneous function of degree −2. We prove solvability results based on the asymptotic
behavior of the potential with respect to unbounded translations and dilations, while the
nonlinearity is a perturbation of a selfsimilar, possibly oscillating, term f∞ of critical growth
satisfying f∞(λjs) = λ

N+2
N−2 jf∞(s), j ∈ Z, s ∈ R. This paper focuses on two qualitatively

different cases of this problem, one when the quadratic form has a generalized ground state and
another where the presence of potential does not change the energy space. In the latter case we
allow nonlinearities with oscillatory critical growth. An important example of such quadratic
form is the one on RN with the radial Hardy potential −µ|x|−2 with µ = µ∗ in the first case,
µ < µ∗ in the second case, where µ∗ = (N−2)2

4 is the largest constant for which the energy form
remains nonnegative.
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1 Introduction

The main goal of this paper is to provide an approach to the stationary nonlinear Schrödinger
equation Lu = f(x, u), L = −∆ − V (x) ≥ 0, in generally unbounded domains, under somewhat
minimal conditions on V and f . We consider two qualitatively different cases. In the first case it is
assumed that the operator L possesses a ground state. A typical example of a problem admitting
a ground state (which is not an eigenfunction in the classical sense, hence not a L2-function)
involves the Schrödinger operator L = −∆−V (x) in RN , when the potential is the Hardy potential
V (x) = λ

|x|2 in the limiting situation λ = (N−2
2 )2. Despite the fact that the generalized ground state

might not belong to any standard functional space, it gives rise to a linking geometry involving
2-dimensional manifolds, which in turn yields a sign-changing solution (cf. [16]).

The other case that we study is focused on the potential V that does not affect the energy
space, which remains D1,2(RN ). In this case we use the standard mountain pass argument.

Our starting point is the equation

−∆u = g(x, u) in Ω , (1.1)

where Ω ⊂ RN is a general domain and g : Ω×R→ R is a continuous function such that g(x, 0) = 0
and

g′s(x, 0) := V (x)

exists. Therefore, equation (1.1) can be written as

−∆u− V (x)u = f(x, u) in Ω , (1.2)

where f ′s(x, 0) := 0. Let us assume that

Q(u) =
∫

Ω

[|∇u|2 − V (x)u2
]

dx ≥ 0 , u ∈ C∞
0 (Ω) . (1.3)

Schrödinger operators with “double criticality”, that is, with a non-compact potential term
involving a potential of positive homogeneity −2, in particular µ|x|−2, and with the critical
nonlinearity λ|u|2∗−2u, have been addressed already by Terracini [16]. Further results on the
problem with some variations, in particular, its extension to different classes of unbounded domains,
and the critical nonlinearity λ(x)|u|2∗−2u, have been obtained in [4], [13] and [14].

The present paper can be regarded as a generalization of the above mentioned work. While we do
not presume that the potentials are of Hardy type, the latter emerge naturally in the concentration
compactness argument as asymptotic potentials under dilations in presence of a variational penalty
condition that compares the potential with its asymptotic value. The second direction in which the
prior work is generalized is that the nonlinearity may be regarded as a subcritical perturbation of
a critical nonlinearity, where the latter is not restricted to a multiple of |u|2∗−2u (see the discussion
below). The third direction of generalization here is that we allow the quadratic form of the
potential to have a ground state (which is not necessarily an integrable first eigenfunction), the
model situation being the Hardy inequality with the optimal constant. For the sake of simplicity
we consider the problem in the whole RN , but most of the arguments can be extended to general
open sets (using truncations like in the celebrated Brezis-Nirenberg problem [3]).
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The problems considered here lack compactness due to both translations and dilations. The
approach relies on eliminating various types of possible concentrations to obtain convergence of
bounded sequences. The elimination mechanisms may include considerations of symmetry (cf. the
pioneering paper [15] of Strauss) or, as in our case, arguments in the spirit of the concentration-
compactness method of P.L. Lions [7, 8]. Here, we follow the version of concentration-compactness
presented in [19] and which was applied in [18] to the case V = 0 of the present problem. By
contrast with [18] this paper is focused on the role of the potential.

We do not restrict our study to energy spaces contained in D1,2(Ω), N ≥ 3. Instead we allow
potentials such that

inf
u∈C∞0 (Ω),

R
B u=1

Q(u) = 0 , (1.4)

where B is an open bounded set satisfying B ⊂ Ω. It has been shown by [10] that (1.4) implies that
every minimizing sequence converges in H1

loc to a unique (up to a scalar multiple) positive solution
of

−∆u− V u = 0, in Ω , (1.5)

which is called (generalized) ground state. A typical example of a problem that admits a ground
state (which is not an eigenfunction in the sense that the terms in (1.3) are no longer integrable,
and which is not a L2-function) is given by the Hardy potential V (x) = λ

|x|2 in the limiting situation

λ = (N−2
2 )2. The ground state in this case is |x| 2−N

2 , x ∈ Ω = RN \ {0}, N ≥ 3.
Concerning coercivity properties of Schrödinger operators with singular potentials, we quote

the following result in [12].

Theorem 1.1. Let Q be a nonnegative functional on C∞
0 (Ω) of the form (1.3) with a ground state

ϕ. Then ϕ is the global positive solution (which is a unique supersolution) of (1.5). Moreover,
there exists a positive continuous function W such that for every bounded open set B, B ⊂ Ω, the
following inequality holds:

Q(u) + C

∣∣∣∣
∫

B
udx

∣∣∣∣
2

≥
(∫

Ω
W |u|2∗dx

)2/2∗

∀u ∈ C∞
0 (Ω), (1.6)

for some suitable constant C = C(B) > 0.

In presence of a ground state, the natural energy space for such problems, sometimes denoted
by D1,2

V (Ω), is the completion of C∞
0 (Ω) in the norm

‖u‖ =

(
Q(u) +

(∫

B
udx

)2
)1/2

. (1.7)

In this paper we find solutions of (1.2) as critical points of the functional

J(u) =
1
2
Q(u)−

∫

Ω
F (x, u) dx. (1.8)

Note that if one attempts to define the functional (1.8) on the completion of C∞
0 (Ω) with respect to

the norm Q(·)1/2, then one immediately faces the consequences of the fact that the corresponding
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complete space is no longer continuously imbedded in L1
loc and the ground state belongs to the

zero element of the completion. On the other hand, it is known that D1,2
V (Ω) ⊂ H1

loc(Ω) (see e.g.
Proposition 3.1 in [11]). Thus it is natural to consider the functional (1.8) on the space D1,2

V (Ω),
and to make assumptions on f(x, s) so that the functional (1.8) is continuously differentiable on
D1,2

V (Ω), and has a linking geometry. In the case when the ground state is an eigenfunction in the
classical sense, the appropriate linking geometry involves two-dimensional paths. Here we extend
this construction to the case of general ground states. We note that the mountain pass argument
(that is, the use of one-dimensional paths) would handle, in a uniform way, both nonnegative and
sign-changing nonlinearities. On the other hand, (1.2) with a positive f cannot have a solution,
as multiplication of it by a minimizing sequence for (1.4) followed by integration will result in a
contradiction.

In the second case, where the quadratic form Q is bounded from above and from below by
‖∇u‖2

2, one may use the standard mountain pass argument, which allows autonomous nonlinearities
of oscillatory critical growth (more general than F (u) = λ|u|2∗), (see [19], Chapter 5). These are
continuous functions verifying the relation

f(λjs) = λ(2∗−1)jf(s) , j ∈ Z ,

whereby one starts with an arbitrary continuous function f (possibly oscillatory) defined on
[1, λ], λ > 1, and extends it continuously to (0, +∞) through the relation above, with a similar
construction on (−∞, 0) for f given on the interval [−λ,−1]. As it can easily be seen, such a
function has the exact critical growth |s|2∗−1, in the sense that there exists constants C1, C2 > 0
such that C1|s|2∗−1 ≤ |f(s)| ≤ C2|s|2∗−1 for all s ∈ R. Also, the terminology selfsimilar could be
used to describe such a function as it ‘reproduces’ in variable scales on the intervals [λj−1, λj ] (and
[−λj ,−λj−1]) the original f given on [−λ,−1]∪[1, λ]. An equivalent formulation of the selfsimilarity
condition is that the functions

g±(t) := λ−(2∗−1)tf(±λt), t ∈ R,

are 1-periodic.
Functionals with nonlinearities of critical growth are not weakly continuous and require the

use of a concentration-compactness argument which, as the problem is not autonomous, involves
comparison with asymptotic problems with regard to both translations and dilations. We use the
penalty condition V > V∞, similar to that introduced by Lions in minimization problems and its
adaptations to mountain pass problems. As V∞ here corresponds to dilational limits as well, it
follows from the penalty condition that V ≥ 0, and moreover, unless all asymptotic limits of V
are zero, there must exist a positive asymptotic limit V∞ homogeneous of degree −2. Therefore,
a corresponding concentration-compactness argument will involve comparison with solutions of
nonlinear Schrödinger equations with potentials of Hardy type.

The paper is organized as follows. In Section 2 we state the main theorems in this paper. In
Section 3 we survey properties of Schrödinger operators with a generalized ground state and of the
associated energy space. In Section 4 we prove the existence result for the ground state case. In
Section 5 we prove existence of solution of mountain pass type in the case of Hardy-type potentials
and oscillatory critical nonlinearity.
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2 Statements of the main theorems

For convenience of the reader, we comment below on the main theorems in this paper mentioned
in the Introduction, namely Theorem 4.3 and Theorem 5.2.

Theorem 2.1. Assume the Ambrosetti-Rabinowitz superlinearity condition

(H1) s f(x, s) ≥ µF (x, s) > 0 for all x ∈ Ω and |s| 6= 0 (and some µ > 2) ,

and

(H2) lim|s|→∞
F (x,s)

s2 = +∞ uniformly for x in compact subsets of Ω;

(H ′
3) |f(x, s)| ≤ W1(x)|s|p1−1 + W2(x)|s|p2−1 for all (x, s) ∈ Ω×R where 2 < p1 ≤ p2 < 2∗ and Wi

satisfy ∫

Ω

(
W 2∗

i

W pi

) 1
2∗−pi

dx < ∞ for i = 1, 2 ,

(and we recall that W is given in (1.6));

In case −∆u − V (x)u = 0 has a (generalized) ground state (in particular when V (x) = µ 1
|x|2 with

µ = (N−2
2 )2), then problem

−∆u− V (x)u = f(x, u) in Ω (2.1)

has a (weak) nonzero solution in D1,2
V (Ω).

Regarding our second main theorem, the following well-known result is an immediate corollary
of Theorem 5.2:

Corollary 2.2. Let N ≥ 3, 2 < p < 2∗ := 2N
N−2 , and 0 < µ <

(
N−2

2

)2. Then problem

−∆u− µ
1
|x|2 u = |u|2∗−2u

has a non-zero solution u ∈ D1,2(RN ) .

We refer the reader to [17] for the endpoint case µ =
(

N−2
2

)2.
Results of this paper also include a Sobolev-type inequality in the energy space of the optimal

Hardy inequality, Proposition 3.1, and a condition of weak continuity of functionals in such energy
spaces, Lemma 4.1.

3 A singular Schrödinger operator with a “large” ground state

Let Ω ⊂ RN , N ≥ 3, be a bounded domain and let D > supx∈Ω |x|. The inequality below is due [5,
Theorem A] by Filippas and Tertikas, with the correction [6] that excludes from the statment the
endpoint value D = supx∈Ω |x|. The counterexample to the endpoint case was presented by Musina
in [9], and the definitive version of the theorem, elaborating dependence of the constant (3.1) on
D, was provided by Adimurthi, Filippas and Tertikas as [1, Theorem B].
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For all u ∈ C∞
0 (Ω),

∫

Ω
|∇u|2dx−

(
N − 2

2

)2 ∫

Ω

u2

|x|2 dx ≥ CD

(∫

Ω
|u|2∗

(
log

( |x|
D

)) 2−2N
N−2

dx

)2/2∗

. (3.1)

It is also proved in [5] that the exponent (2N − 2)/(N − 2) cannot be decreased. Here we extend
this estimate to the whole RN . @@We set the following bounded function that vanishes at zero
and at infinity.

ηD(r) = 1/ log(D max{r, r−1}) r > 0. (3.2)

Proposition 3.1. Let D > 1. There exists CD > 0 such that for every u ∈ C∞
0 (RN \ {0})

(∫

B
udx

)2

+
∫

RN

|∇u|2dx−
(

N − 2
2

)2 ∫

RN

u2

|x|2 dx ≥ CD

(∫

RN

|u|2∗ηD(|x|) 2N−2
N−2 dx

)2/2∗

. (3.3)

Proof: Let

QN (u) :=
∫

RN

|∇u|2dx−
(

N − 2
2

)2 ∫

RN

u2

|x|2 dx.

Let us prove the inequality first for radially symmetric functions. Using (3.1) on a unit ball
centered at the origin, repeating it for the function r2−Nu(1/r) with u with support in the exterior
of the ball, and adding the two inequalities, we immediately obtain (3.3) for all radial functions
u ∈ C∞

0 (RN \(SN−1∪{0})) where SN−1 is the N−1-dimensional unit sphere centered at the origin.
Then, by an elementary density argument, (3.3) holds for all radial functions u ∈ C∞

0 (RN \ {0})
such that u(1) = 0, and therefore,

u(1)2 + QN (u) ≥ C

(∫

RN

|u|2∗ηD(r)
2N−2
N−2 dx

)2/2∗

(3.4)

@@is true for all radial functions u ∈ C∞
0 (RN \ {0}). Note, however, that for any bounded set

B ⊂ RN , there exists a constant C > 0 such that

u(1)2 ≤ CQ(u) + C

(∫

B
udx

)2

. (3.5)

Indeed, the right hand side defines an equivalent D1,2
V (RN )-norm (with V =

(
N−2

2

)2 1
|x|2 ), and

D1,2
V (RN ) is continuously imbedded into H1

loc(RN ). In particular, this implies that restriction of u
to an annulus λ−1 < r < λ with any λ > 0 has a bounded H1-norm, which implies that u 7→ u(1)
is a continuous functional in the subspace of radial functions of D1,2

V (RN ), which yields (3.5). From
here and (3.4) follows (3.3) for radial functions.

Let now Pu(r) = ω−1
N

∫
SN−1 u(r, ω)dω, where ωN is the area of SN−1, and (r, ω) are polar

coordinates in RN . Note that if Pu = 0, then

∫

RN

|∇u|2 ≥
[(

N − 2
2

)2

+ λ1

]∫

RN

u2

|x|2 dx,
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where λ1 > 0 is the first positive eigenvalue of Laplace-Beltrami operator on SN−1. This implies
that, whenever Pu = 0,

QN (u) ≥ C

(∫

RN

|u|2∗dx

)2/2∗

. (3.6)

Inequality (3.3) for general functions u follows now from its restriction to the radial functions Pu
combined with (3.6) for (I − P )u. ¥

4 Generalized ground state and linking geometry

Consider a generalized ground state ϕ of (1.5) and the functional J(u) defined in (1.8) for
u ∈ D1,2

V (Ω). The following assumptions will be made on the nonlinearity F (x, s) =
∫ s
0 f(x, t) dt,

where f : Ω× R→ R is continuous:

(H1) s f(x, s) ≥ µF (x, s) > 0 for all x ∈ Ω and |s| 6= 0 (and some µ > 2) ;

(H2) lim|s|→∞
F (x,s)

s2 = +∞ uniformly for x in compact subsets of Ω;

(H3) |F (x, s)| ≤ W1(x)|s|p1 + W2(x)|s|p2 for all (x, s) ∈ Ω × R, where 2 < p1 ≤ p2 < 2∗ and Wi

satisfy ∫

Ω

(
W 2∗

i

W pi

) 1
2∗−pi

dx < ∞ for i = 1, 2,

and we recall that W is given in (1.6);

Let ϕj ∈ C∞
0 (Ω) is an approximating sequence for the generalized ground state ϕ satisfying

Q(ϕj) → 0 and 0 ≤ ϕj → ϕ uniformly on conpact subsets of Ω. (4.1)

For existence of such a sequence see [11].

Lemma 4.1. Under the assumption (H3) the functional K(u) =
∫
Ω F (x, u)dx is weakly continuous

on D1,2
V (Ω).

Proof: We first note that, for any measurable set A ⊂ Ω, we have by (1.6), (1.7) and Hölder
inequality that

∫

A
Wi|u|pi dx =

∫

A

Wi

W
pi
2∗

W
pi
2∗ |u|pi dx

≤
(∫

A

(
W 2∗

i

W pi

) 1
2∗−pi

dx

) 2∗−pi
2∗ (∫

Ω
W |u|2∗ dx

) pi
2∗

≤
(∫

A

(
W 2∗

i

W pi

) 1
2∗−pi

dx

) 2∗−pi
2∗

‖u‖pi .

(4.2)
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Let un ⇀ u weakly in D1,2
V (Ω). Then ‖un‖ ≤ C and, given α > 0, we pick R > 0 sufficiently

large so that, in view of (H3) with AR = Ω \ (Ω ∩BR), we have

(∫

AR

(
W 2∗

i

W pi

) 1
2∗−pi

dx

) 2∗−pi
2∗

<
ε

6Cpi
, i = 1, 2 . (4.3)

It follows from (H3), (4.2) and (4.3) that

|K(un)−K(u)| =
∣∣∣∣
∫

Ω
F (x, un)− F (x, u) dx

∣∣∣∣

≤
∫

Ω∩BR

|F (x, un)− F (x, u)| dx +
2ε

3
.

(4.4)

Finally, since Ω ∩BR is bounded and again in view of (H3), there exists N ∈ N such that the last
integral above is less than ε/3, and it follows from (4.4) that

|K(un)−K(u)| < ε ∀ n ≥ N .

The proof is complete. ¥

Remark 4.1. Similarly to the above lemma, one can show that K ′(u) ∈ (D1,2
V (Ω))′ is well defined

for all u ∈ D1,2
V (Ω) and u 7→ K ′(u) is a compact map from D1,2

V (Ω) to (D1,2
V (Ω))′ provided that the

following condition holds:

(H ′
3) |f(x, s)| ≤ W1(x)|s|p1−1+W2(x)|s|p2−1 for all (x, s) ∈ Ω×R where, as before, 2 < p1 ≤ p2 < 2∗

and Wi satisfy ∫

Ω

(
W 2∗

i

W pi

) 1
2∗−pi

dx < ∞ for i = 1, 2 .

Lemma 4.2. Assume (H1)−(H3). Let B be an open set, B ⊂ Ω, ω ∈ C∞
0 (B) is a nonzero function

satisfying ∫

B
ω(x) dx = 0 , (4.5)

and let ϕj be as in (4.1) and D+
j,R := {u = tϕj + sω | s ≥ 0 , s2 + t2 ≤ R2 }. Then

(i) There exist ρ > 0 and α > 0 such that J(u) ≥ α > 0 if ‖u‖ = ρ and
∫
B u dx = 0 ;

(ii) maxu∈∂D+
j,R

J(u) ≤ α
2 if j ∈ N and R > 0 are sufficiently large, where ∂D+

j,R denotes the

boundary of D+
j,R in span {ϕj , ω} .
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Proof: (i) Let W := {u ∈ D1,2
V (Ω) | ∫

B u dx = 0 } and consider the sphere Sρ := {u ∈
D1,2

V (Ω) | ‖u‖ = ρ and
∫
B u dx = 0 } in W . Using (H3) and the estimate (4.2), we have for some

constant C1,2 > 0 and p = min { p1, p2 } that

J(u) ≥ 1
2
ρ2 − C1,2ρ

p ,

for all u ∈ Sρ, provided ρ < 1. By taking ρ > 0 suitably small, it follows that

J(u) ≥ α > 0 for all u ∈ Sρ . (4.6)

(ii) Let u = tϕj + sω ∈ ∂D+
j,R. Consider first s = 0, |t| ≤ R. From (H1) and (4.1), we have

J(tϕj) =
1
2
t2Q(ϕj)−

∫

Ω
F (x, tϕj) dx ≤ 1

2
R2Q(ϕj) −→ 0 as j →∞ .

Fix R > ρ. From the above estimate we can take j = j(R) ∈ N sufficiently large so that

J(tϕj) ≤ α

2
. (4.7)

Next, we consider u = tϕj + sω ∈ ∂D+
j,R with s ≥ 0 and s2 + t2 = R2, and define the

set Aδ := {x | sgn(t)ω(x)ϕj(x) ≥ δ } ⊂ Ω. Note that Aδ 6= ∅ by picking δ > 0 small (say
0 < δ < min { sup(ω+, ϕj) , sup(ω−, ϕj) }). Using (H1) and (H2) it follows that

J(tϕj + sω) ≤ 1
2
Q(tϕj + sω)−

∫

Aδ

F (x, tϕj + sω) dx

≤ C R2 −
∫

Aδ

F (x, tϕj + sω) dx

≤ C R2 −M R2

≤ 0 ,

(4.8)

by taking M = M(R) ≥ C. The proof of (ii) (hence, of Lemma 4.2) is complete in view of (4.7)
and (4.8) . ¥

Theorem 4.3. Assume conditions (H1), (H2), (H ′
3). Then problem (1.2) has a (weak) non-zero

solution in D1,2
V (Ω), i.e., (1.8) has a critical point u ∈ D1,2

V (Ω) \ {0}.
Proof: As observed in Remark 4.1, the functional K(u) =

∫
Ω F (x, u) dx is continuously

differentiable on the space D1,2
V (Ω) with u 7→ K ′(u) being a compact mapping. Consider the

following class Φ of deformations of the two-dimensional half-disk D+
j,R, where j and R are chosen

as in Lemma 4.2, and ϕj and ω are as in (4.1) and (4.5) respectively:

Φ := { h ∈ C(D+
j,R, D1,2

V ) | h(u) = u if u ∈ ∂D+
j,R } .
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As is well-known, the minimax value

c := inf
h∈Φ

max
u∈D+

j,R

J(h(u))

satisfies c ≥ α > 0 and there exists a Palais-Smale sequence uk at the level c, i.e., one has

J(uk) −→ c > 0 , J ′(uk) −→ 0 .

Since we have J ′(u) = u−K ′(u), with K ′ a compact mapping by (H ′
3), a standard argument shows

that there exists u ∈ D1,2
V (Ω) such that uk −→ u. Thus u ∈ D1,2

V (Ω) is a critical point of J , i.e., u
is a (weak) solution of (1.8). As usual, u 6= 0 since J(u) = c > 0. The proof is complete. ¥

5 Schrödinger equation with oscillatory critical nonlinearity and
singular potential

Let λ > 1 and N ≥ 3. Consider f(s) ∈ C(R) satisfying the following assumptions:

(F1) f(s) = f∞(s) + o(|s|2∗−1) as |s| → 0 or |s| → ∞ , where f∞ satisfies sups>0 f∞(s) > 0 and
the selfsimilar relation

(F2) f∞(λjs) := λ
N+2
N−2

jf∞(s), j ∈ Z ;

(F3) F (s) =
∫ s
0 f and F∞(s) =

∫ s
0 f∞ are such that

F (s) > F∞(s) , s 6= 0;

(F4) There exists δ > 0 such that f(s)
s|s|δ is a nondecreasing function for all s > 0 and is nonincreasing

for s < 0.

Remark 5.1. In what follows we assume that V > 0. This is not a substantial restriction, since
from a particular case of the penalty condition (V1) below, namely, V (x) ≥ lims→0 4sV (2sx), it
follows that V ≥ 0, provided that V has a point of continuity (which we readily assume and set,
without loss of generality, at the origin).

LetM denote the Banach space of continuous multipliers from D1,2(RN ) to L2(RN ). We assume
that V

1
2 ∈M and that for any sequence @@(yk, sk) ∈ RN ×R with |sk| → ∞, there exists ŷ ∈ RN

such that, a renamed subseqence of 2skV 1/2(2sk(x + ŷ) − yk) converges in the metric of M (and,
consequently, almost everywhere). In what follows we will say that a sequence of potentials Vk ≥ 0
converges in the sense of M if the sequence V

1/2
k converges in M.

We will assume the following penalty conditions on V :

(V1) V (x) ≥ V∞(x) := lim 4skV (2sk(x + ŷ) − yk), where V∞ is any of the subsequential limits
defined above;

(V2) lim|y|→∞ V (· − y) = 0 in the sense of M;

10



(V3) there exists an ε ∈ (0, 1) such that, for every u ∈ C∞
0 (Ω),

(1− ε)
∫

RN

|∇u|2 dx−
∫

RN

V (x)u2 dx ≥ 0.

Above as well as and in what follows we use the notations V∞ and ŷ with the understanding that
these are relative to the sequence (yk, sk). @@Note that V∞ < ∞ a.e., since otherwise it is easy to
show that the quadratic from Q has negative values, contrary to our assumption.

Example 5.1. Conditions (V1) - (V3) are satisfied, in particular, by the Hardy potential

Vµ(x) = µ
1
|x|2 , 0 < µ <

(
N − 2

2

)2

.

Note that (V1) and (V2) are also satisfied by finite sums of Hardy potentials of the form Vµ(· − y),
y ∈ RN , possibly perturbed by positive lower order potentials (i.e., h(· − y) satisfying h(x) =
o(Hν(x)) as either |x| → 0 or |x| → ∞). If any such potential is multiplied by a sufficiently small
scalar, condition (V1) is also satisfied. In particular, we point out that all the conditions (F1)-(F4)
and (V1)-(V3) are satisfied in the model problem

−∆u− Vµ(x) u = |u|2∗−2u, u ∈ D1,2(RN ) ,

where N ≥ 3, 2 < p < 2∗ := 2N
N−2 , and 0 < µ <

(
N−2

2

)2.

Remark 5.2. A connection of potentials satisfying (V1) with the Hardy potential is not accidental,
since every potential V∞ given by (V1) is a positive homogeneous function of degree −2 relative to
the origin at ŷ. Indeed, the limit in (V1) does not change if we replace s with s + r, r ∈ R. From
this it follows immediately that V∞(2r(x + ŷ)) = 4rV∞(x + ŷ).

On the other hand, condition (V2) excludes some well-studied Hardy-type potentials such as
V (x) = µ

x2
1
, µ ∈ (0, 1

4). This is not a shortcoming of the method used in the paper, but serves the
authors’ intention to study here the core problem rather than the one in full generality.

Now let us consider a limiting quadratic form

Q∞(u) =
∫

RN

(|∇u|2 − V∞(x)u2
)

dx . (5.1)

¿From (V3) and the positivity of V it follows that the norms associated with the respective quadratic
forms (1.3) and (5.1) in the spaces D1,2

V (RN ) and D1,2
V∞(RN ) are equivalent to the usual gradient

norm in D1,2(RN ). Define

ψ(u) =
∫

RN

F (u) dx , ψ∞(u) =
∫

RN

F∞(u) dx

and
J(u) =

1
2
Q(u)− ψ(u) , J∞(u) =

1
2
Q∞(u)− ψ∞(u). (5.2)

11



Also, from (F1), (F2) and (V3) it follows that J and J∞ are C1-functionals on D1,2(RN ). It is
easy to conclude from (F1) and supF∞ > 0 in (F3), that there exists a point e ∈ D1,2 such that
J∞(e) ≤ 0. We define

Φ = {vt ∈ C([0, 1],D1,2) | v0 = 0, v1 = e}, (5.3)

and
c := inf

vt∈Φ
max
t∈[0,1]

J(vt) , c∞ := inf
vt∈Φ

max
t∈[0,1]

J∞(vt). (5.4)

Remark 5.3. Note that even without assuming the penalty conditions (F3), (V1) and (V2) one always
has the non-strict inequality c ≤ c∞ (we recall that generally these are multiple inequalities), since
one can consider the mountain path statement (5.4) for c restricted to nearly-optimal paths for c∞,
under suitable dislocations, that is, paths of the form γ

N−2
2

jvt(γj · +y) with large |j| or |y|. The
proof of this statement is analogous to that given in [18] in the case V = 0, and is omitted.

Theorem 5.2. Assume (F1) - (F4) and (V1) - (V3). Then there exists u ∈ D1,2(RN ) such that
J(u) = c and J ′(u) = 0.

Proof: 1. The standard mountain pass argument implies that there exists a sequence
uk ∈ D1,2(RN ) such that J(uk) → c and J ′(uk) → 0. It follows from (F4) (which implies the
Ambrosetti-Rabinowitz condition of the form (H1)) that uk is bounded in D1,2(RN ).

2. Consider now the renamed subsequence of uk given by Theorem 6.1 below together with the
corresponding w(n), sequences j

(n)
k ∈ Z and y

(n)
k ∈ RN . Due to (6.3), Lemma 6.2 and Lemma 6.3,

we have the following lower estimate for c:

c = lim J(uk) ≥ J(w(1)) +
∑

n≥2

J (n)
∞ (w(n)) . (5.5)

Note that w(1) is necessarily a critical point of J , and the functions w(n), n ≥ 2, are critical points
of corresponding functionals J

(n)
∞ , which are the asymptotic functionals J∞ from (5.2) relative to

the sequences (j(n)
k , y

(n)
k ). When j

(n)
k = 0, the functional J

(n)
∞ has the nonlinearity F

(n)
∞ = F and

the potential V
(n)
∞ = 0 < V due to (V2). In the remaining case, when |j(n)

k | → ∞, the nonlinearity
is F

(n)
∞ = F∞ < F by (F3) while the potential V

(n)
∞ = 0 ≤ V by (V1). Therefore, for any n ≥ 2, and

any w 6= 0, J(w) < J
(n)
∞ (w).

3. From the Ambrosetti-Rabinowitz condition (H1) which is here a consequence of (F4), it
follows that J

(n)
∞ (w(n)) ≥ 0 for every n. Assume now that there is m ≥ 2 such that w(m) 6= 0.

Then, using (F4) in order to show that the function t 7→ J
(m)
∞ (tw(m)) has a unique critical point

(that of maximum), which is necessarily t = 1 since w(m) is a critical point of J
(m)
∞ , we infer from

(5.5) that
J (m)
∞ (w(m)) ≤ c ≤ max

t
J(tw(m)) < max

t
J (m)
∞ (tw(m)) = J (m)

∞ (w(m)) ,

which is a contradiction. Consequently, by (6.4) we have that uk → w(1) in L2∗ . Finally, from the
relation J ′(uk) → 0 in D1,2, it follows that uk converges in D1,2, which concludes the proof. ¥
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6 Appendix: Weak convergence decomposition in D1,2(RN)

The following theorem is Theorem 5.1 in [19], with the dilation factor 2 replaced by general γ.

Theorem 6.1. Let uk ∈ D1,2(RN ), N ≥ 3, be a bounded sequence. Let γ > 1. There exist
w(n) ∈ D1,2(RN ), y

(n)
k ∈ RN , j

(n)
k ∈ Z with k, n ∈ N, and disjoint sets N0,N+∞,N−∞ ⊂ N, such

that, for a renumbered subsequence of uk,

w(n) = weak lim γ−
N−2

2
j
(n)
k uk(γ−j

(n)
k (·+ y

(n)
k )), n ∈ N, (6.1)

|j(n)
k − j

(m)
k |+ |y(n)

k − y
(m)
k | → ∞ for n 6= m, (6.2)∑

n∈N
‖w(n)‖2

D1,2 ≤ lim sup ‖uk‖2
D1,2 , (6.3)

uk −
∑

n∈N
γ

N−2
2

j
(n)
k w(n)(γj

(n)
k · −y

(n)
k ) → 0 in L2∗(RN ), (6.4)

and the series above converges uniformly in k.
Furthermore, 1 ∈ N0, y

(1)
k = 0; j

(n)
k = 0 whenever n ∈ N0; j

(n)
k → −∞ (resp. j

(n)
k → +∞)

whenever n ∈ N−∞ (resp. n ∈ N+∞); and y
(n)
k = 0 whenever |y(n)

k | is bounded.

The following statement is an elementary modification of Lemma 5.6 in [19].

Lemma 6.2. Assume (F1) and (F2) with λ = γ(N−2)/2. Let uk, w
(n) ∈ D1,2(RN ), y

(n)
k ∈ RN ,

j
(n)
k ∈ Z, and N0,N+∞,N−∞ ⊂ N, be as provided by Theorem 6.1. Then

lim
k→∞

∫

RN

F (uk) =
∑

n∈N0

∫

RN

F (w(n)) +
∑

n∈N+∞∪N−∞

∫

RN

F∞(w(n)). (6.5)

Lemma 6.3. Let V ≥ 0 and V
1
2 ∈ M. Assume (V2) and assume that the limit V∞(x) in (V1)

exists for every x. Let uk, w
(n) ∈ D1,2(RN ), y

(n)
k ∈ RN and j

(n)
k ∈ Z, y

(n)
k ∈ RN be as provided by

Theorem 6.1. Let Q(n) = Q∞ be as in (5.1) relative to the sequence (j(n)
k , y

(n)
k ). Then

lim sup
k→∞

Q(uk) ≥
∑

n∈N

∫

RN

Q(n)(w(n))2 . (6.6)

The proof of the lemma follows easily from the bilnear expansion of the form Q evaluated on the
left hand side of (6.4) By continuity it suffices to consider finitely many terms. It is easy to see that

the mixed terms in the expansion vanish in the limit. The limits of Q(γ
N−2

2
j
(n)
k w(n)(γj

(n)
k · −y

(n)
k ))

can be easily evaluated by a linear change of variable in the integral and the use of the definition
of V∞ in (V1).
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