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Abstract

The paper studies quasilinear elliptic problems in the Sobolev
spaces W 1,p(Ω), Ω ⊂ RN , with p = N , that is, the case of Pohozhaev-
Trudinger-Moser inequality. Similarly to the case p < N where the
loss of compactness in W 1,p(RN ) occurs due to dilation operators
u 7→ t(N−p)/pu(tx), t > 0, and can be accounted for in decompositions
of the type of Struwe’s “global compactness” and its later refinements,
this paper presents a previously unknown group of isometric operators
that leads to loss of compactness in W 1,N

0 over a ball in RN .
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We give a one-parameter scale of Hardy-Sobolev functionals, a
“p = N”-counterpart of the Hölder interpolation scale, for p > N ,
between the Hardy functional

∫ |u|p
|x|p dx and the Sobolev functional∫ |u|pN/(N−mp) dx. Like in the case p < N , these functionals are

invariant with respect to the dilation operators above, and the
respective concentration-compactness argument yields existence of
minimizers for W 1,N -norms under Hardy-Sobolev constraints.
2000 Mathematics Subject Classification. Primary 35J20, 35J35,
35J60; Secondary 46E35, 47J30, 58E05.
Keywords. Trudinger-Moser inequality, elliptic problems in
two dimensions, concentration compactness, global compactness,
asymptotic orthogonality, weak convergence, Palais-Smale sequences.

1 Introduction

Dirichlet forms in dimension 2, or, more generally, quasilinear elliptic
problems set in the Sobolev space W 1,p with p = N in dimension N , are of
major interest to researchers in partial differential equations, mathematical
physics, calculus of variations and functional analysis, particularly because
this case is not as well understood as and is quite different from the case
of Sobolev spaces with N > p. The counterpart of Sobolev imbeddings
in this case is the Pohozhaev-Trudinger-Moser inequality (see Pohozhaev
[10], Trudinger [16], Moser [9]) and the study of problems involving the

correspondent nonlinearity eλ|u|
N

N−1
often cannot draw on properties of the

critical Sobolev nonlinearity |u| pN
N−p for N > p. As an example of one of

numerous pecularities of the Pohozhaev-Trudinger-Moser functional one can
mention that it is a continuous functional on W 1,N , and there is a R > 0
such that it is bounded on balls of radius less than R and is unbounded on
balls of radius greater than R.

In this paper we construct dilation operators which act isometrically in
W 1,N

0 over a unit ball, and are a natural analog of the dilation operators

htu
def
= t

N−p
p u(t·) in W 1,p(RN), N > p. These dilations preserve the Sobolev

norm and the weighted Lp-norm with the Hardy potential (|x|−p for N > p,
(|x| log 1

|x|)
−N for p = N), as well as the Lp∗ norm (for N > p) but they do

not preserve the Pohozhaev-Trudinger-Moser term.
We give, in terms of the dilations above, a weak continuity statement for

the Pohozhaev-Trudinger-Moser nonlinearity, Lemma 2.4. A similar result is
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proved also for the weighted critical nonlinearities of Hardy-Sobolev type. We
also show existence of minimizers for the Hardy-Sobolev inequality. Similar
existence for the Pohozhaev-Trudinger-Moser nonlinearity has been proved
by Carleson and Chang [5] (see also de Figueiredo, do Ó and Ruf [6]).

We also prove a structural theorem for bounded sequences in W 1,N
0 (B),

where B = B1(0) is a unit ball in RN , which is similar to Struwe’s
“global compactness” [12] and its subsequent refinements known in the case
N > p. (Note that global compacntess results in [11][3] while providing
asymptotic behavior of bounded sequences in W 1,N

0 , use the different
blowup transformations than this paper and end up with asymptotic profiles
supported in the whole RN .) Our starting point for this result is the following
version of global compactness, see [14, Theorem 5.1]:

Any bounded sequence uk in D1,2(RN), N > 2, has a renumbered

subsequence such that, defining htu
def
= t

N−p
p u(t·),

uk −
∑

n∈N
h

t
(n)
k

[w(n)(· − y
(n)
k )] → 0 in L2N/(N−2), (1.1)

with some w(n) ∈ D1,2(RN), and some sequences t
(n)
k > 0, y

(n)
k ∈ RN ,

such that the terms in the expansion have asymptotically disjoint supports.
Moreover,

w(n) = w-lim [h
1/t

(n)
k

w(n)](·+ y
(n)
k )

and ∑
‖w(n)‖2

D1,2 ≤ lim sup ‖uk‖2
D1,2 .

In other words, while the Sobolev imbedding of D1,2(RN) into
L2N/(N−2)(RN) is not compact, every bounded sequence in D1,2(RN) possesses
a subsequence convergent in L2N/(N−2)(RN) after subtraction of “fugitive”
terms, that is, the defect of compactness is structured by the means of
sequences of translations and dilations acting upon arbitrary asymptotic
profiles.

Note that in restriction to radially symmetric functions the decomposition
(1.1) does not contain translations, that is, y

(n)
k = 0, and all dilations occur

about the origin. If Ω is bounded, there are also no terms with t
(n)
k → 0 (see

[14, Proposition 5.1, Lemma 5.4]).
Let us fix the following equivalent norm in W 1,N

0 (Ω):

‖u‖N
1,N

def
=

∫

Ω

|∇u|N dx.
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Then

sup
u∈W 1,N

0 (Ω),‖u‖1,N≤1

∫

Ω

eαN |u|N/(N−1)

dx < ∞, (1.2)

where
αN = Nω

1/(N−1)
N−1

is the largest constant for which (1.2) holds. By ωN−1 we denote the area of
the unit N − 1-dimensional sphere. The functional

Φ(u)
def
=

∫

Ω

eαN |u|N/(N−1)

dx (1.3)

defines an Orlicz space, into which W 1,N
0 (Ω) is imbedded continuously, but

not compactly. Moreover, unlike in the case N > p, the functional Φ is
continuous but unbounded on every ball ‖u‖ ≤ r with r > 1, it is sequentially
weakly continuous in the ball ‖u‖ ≤ r for any r < 1, and is continuous on
every sequence in the ball ‖u‖ ≤ 1 that converges weakly to a nonzero limit.
An important question concerning weak continuity of Φ is then its behavior
on sequences ‖uk‖ ≤ 1 that converge weakly to zero. We refer to [8] for
the discussion of weak convergence in this case and in particular for the
statements above.

Let us denote the subspace of radial functions in W 1,N
0 (B) as W 1,N

0,r (B).

We prove in this paper that for every sequence uk ⇀ 0 in W 1,N
0,r (B) and

every λ > 0,

∀µ∗k, 〈µ∗k, uk〉 → 0 ⇒
∫

B

(eλ|uk|N/(N−1) − 1) dx → 0, (1.4)

where µ∗k is an arbitrary sequence of duality conjugates to the Moser functions
µt (see definitions in the beginning of Section 2). Furthermore, the left hand
side in (1.4) also yields that for every p > N ,

Qp(uk)
def
=

∫

B

|uk|p

|x|N
(
log 1

|x|

)N+(p−N)N−1
N

dx → 0. (1.5)

The latter expression is the left hand side of the natural W 1,N -counterpart
of the Hardy-Sobolev inequality (the Hölder interpolation between the Hardy

term
∫
RN |u|p|x|−p dx and the critical Sobolev functional

∫
RN |u|

2N
N−2 dx). Note
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that, unlike in the case of higher dimension, Hardy-Sobolev inequality holds
for p ∈ [N,∞], and at the right end of the scale, where in the higher
dimension we have the critical Sobolev term, we have a weighted L∞-norm,
which in some respects can be regarded as another critical nonlinearity,
alongside with the Pohozhaev-Trudinger-Moser term. Indeed, we observe
in this paper that the transformations

gsu(x)
def
= s(1−N)/Nu(|x|s−1x), s > 0, (1.6)

form a group of isometries on W 1,N
0 (B), and, moreover, they preserve the

functionals (1.5). Remarkably, Hardy inequality in W 1,N
0 (B) is readily

available in Adimurthi and Sandeep [4], that contains the Hardy term Qp|p=N ,
the best constant, and further correction terms.

We conclude the paper with an existence proof, based on concentration
compactness argument involving transformations (1.6), for the minimization
problem

κp
def
= inf

Qp(u)=1

∫

B

|∇u|N dx, p > N. (1.7)

In Section 2 we prove the implication (1.4). In Section 3 verify (1.5). In
Section 4 we show existence of minimizers in (1.7). In Section 5 we prove
a “global compactness” statement for bounded sequences in W 1,N

0,r (B). The
main results of this paper are Lemma 3.3, Lemma 3.4, Theorem 4.2 and
Theorem 5.1.

2 Weak continuity properties of the

Pohozhaev-Trudinger-Moser functional

In what follows we will use the notations B for the unit ball B1(0), r for |x|,
and set

ηr
def
= log

1

r
, 0 < r < 1.

The following family of functions was introduced by Moser [9] in order to
study the optimal parameters in the Pohozhaev-Trudinger-Moser inequality:

µt(r)
def
= (ωN−1)

− 1
N η

N−1
N

t min

{
ηr

ηt

, 1

}
, r, t ∈ (0, 1). (2.1)
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In what follows we define a continuous functional on u ∈ W 1,N
0,r (B) associated

with the function µt, t ∈ (0, 1):

〈µ∗t , u〉 def
=

∫

B

∇µt|∇µt · ∇u|N−2 dx.

Lemma 2.1. Let u ∈ W 1,N
0,r (B). Then for every t ∈ (0, 1),

〈µ∗t , u〉 = ω
1/N
N−1η

(1−N)/N
t u(t). (2.2)

Proof. We have

〈µ∗t , u〉 = ωN−1

∫ t

1

u′(r)|µ′t(r)|N−1rN−1dr

= ωN−1ω
1−N

N
N−1η

(1−N)/N
t

∫ t

1

u′(r)dr = ω
1/N
N−1η

(1−N)/N
t u(t).

The well-known estimate below is an immediate consequence of
Lemma 2.1.

Corollary 2.2. Every function u ∈ W 1,N
0,r (B) satisfies the inequality

sup
r∈(0,1)

|u(r)|η(1−N)/N
t ≤ ω

−1/N
N−1 ‖u‖1,N (2.3)

and the constant ω
−1/N
N−1 in the right hand side is optimal.

Proof. Apply Hölder inequaluty to (2.2). The best constant is attained on
u = µt.

Lemma 2.3. If uk ∈ W 1,N
0,r (B) and for every sequence tk ∈ (0, 1), 〈µ∗tk , uk〉 →

0, then
sup

0<r<1
|uk(r)|η(1−N)/N

r → 0. (2.4)

Proof. Let tk ∈ (0, 1) be such that

|uk(tk)|η(1−N)/N
tk

≥ 1

2
sup

0<r<1
|uk(r)|η(1−N)/N

r .

By Lemma 2.1, 〈µ∗tk , uk〉 → 0 implies

uk(tk)η
(1−N)/N
tk

→ 0,

and (2.4) follows.
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Functionals with the growth rate similar to that of (1.3), have the
following continuity property related to convergence (2.4).

Proposition 2.4. Assume now that uk ⇀ 0 in W 1,N
0,r (B),and that for

any sequence tk ∈ (0, 1), 〈µ∗tk , uk〉 → 0. If ψ ∈ C(B × R) satisfies

ψ(x, s) ≤ M |s|N/(N−1) with some M > 0 and ψ(x, 0) = 0 for all x ∈ B,
then ∫

B

(eψ(x,uk) − 1) dx → 0.

Proof. By Fatou lemma

lim inf

∫

B

eψ(x,uk) dx ≥ |B|. (2.5)

By Lemma 2.3, there is a sequence εk → 0 such that |uk|N/(N−1)(r) ≤ εkηr.
Then ∫

B

eψ(x,uk)dx ≤
∫

B

eM |uk|N/(N−1)

dx ≤
∫

Ω

rMεk dx → |B|. (2.6)

Combine (2.5) and (2.6).

3 Cocompactness of imbeddings of W 1,N
0,r (B)

We use the following definition introduced in [15].

Definition 3.1. Let X be a Banach space and D a set of automorphisms

of X One says that uk
D
⇀ 0 (or uk converges to zero D-weakly) on X if for

every gk ∈ D, gkuk ⇀ 0, and that an imbedding of X into a Banach space Y

is (D-)cocompact if uk
D
⇀ 0 in X implies uk → 0 in the norm of Y .

In what follows the group D will be the group of operators (1.6) on
W 1,N

0,r (B). In what follows we prove D-cocompactness of imbeddings of

W 1,N
0,r (B) into spaces Lp(B, Vpdx).
We start with a formula that is verified by direct computation.

Proposition 3.2. For every s > 0 and t ∈ (0, 1),

gsµt = µt1/s . (3.1)
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Lemma 3.3. Assume that uk ∈ W 1,N
0,r (B) is D-weakly convergent to zero.

Then for every sequence sk ∈ (0, 1), 〈µ∗sk
, uk〉 → 0 and consequently

sup
r∈(0,1)

|uk(r)|η(1−N)/N
r → 0. (3.2)

Proof. Let tk ∈ (0, 1) be an arbitrary sequence and let sk = log 1
tk

. Since

uk
D
⇀ 0, 〈µ∗1/e, gsk

uk〉 → 0. By Proposition 3.2, taking into account that
operators gsk

are isometries, we have

〈µ∗1/e, gsk
uk〉 = 〈µ∗tk , uk〉.

Then from Lemma 2.3 follows (3.2).

Lemma 3.4. Let Qp, p > N , be the functional (1.5). If uk ∈ W 1,N
0,r (B),

satisfies (3.2) (in particular, if uk
D
⇀ 0), then Qp(uk) → 0.

Proof. Taking into account the Hardy-type inequality (see Adimurthi and
Sandeep, [4]) ∫

B

|u|N
rNηN

r

dx ≤
(

N − 1

N

)N ∫

B

|∇u|N dx, (3.3)

by (3.2) we have

Qp(uk) ≤
∫

B

|uk|N
rNηN

r

dx

(
sup

r∈(0,1)

|uk(r)|
η

N−1
N

r

)p−N

→ 0.

Remark 3.5. Using the terminology of [15], Lemma 3.4 and Lemma 3.3
assert that W 1,N

0,r (B) is D-cocompactly imbedded into the weighted space
Lp(B, Vpdx), where

Vp(r) =

{
r−N

(
log 1

r

)−N−(p−N)N−1
N , N < p < ∞,(

log 1
r

) 1−N
N , p = ∞

(3.4)

Similarly, Lemma 3.3 combined with Proposition 2.4 can be interpreted as
a cocompactness statement in connection to the correspondent Orlicz norm.
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Remark 3.6. It is easy to see that, conversely to Lemma 3.4 resp.
Lemma 3.3, if uk is a bounded sequence in W 1,N

0,r (B) and Qp(uk) → 0 for some

p > N , resp. supr∈(0,1) |uk(r)|η(1−N)/N
r → 0, then uk

D
⇀ 0. Indeed, any such

convergence yields weak convergence in W 1,N
0,r (B), and since the functionals

Qp are invariant with respect to dilations (1.6), this implies gsk
uk ⇀ 0 in

W 1,N
0,r (B) for any sequence sk > 0.

4 Minimizers for Hardy-Sobolev inequalities

in W 1,N
0

Lemma 4.1. Let uk ⇀ u in Lp(X, dµ) where (X, dµ) is a measure space. If
q ≥ 2 and uk ≥ 0, then

∫
uq

kmathrmdµ ≥
∫

uqdµ +

∫
|uk − u|qdµ + o(1). (4.1)

Note that this result does not follow from Brezis-Lieb lemma since the
latter has an additional requirement uk(x) → u(x) for almost every x ∈ X.

Proof. Consider the elementary inequality

(1 + t)q ≥ 1 + |t|q + qt, t ≥ −1, q ≥ 2. (4.2)

Note that this inequality becomes identity when q = 2. To verify the
inequality, one considers cases t ≥ 0 and −1 ≤ t < 0. In both cases the
inequality follows from the equality at zero and the derivative of constant
sign, which is easy to verify. This inequality in turn implies

uq
k ≥ uq + |uk − u|q + quq−1(uk − u).

Integrating this inequality and noting that the integral of the last term tends
to zero since uk ⇀ 0 we arrive at (4.1)

Theorem 4.2. The infimum

κp
def
= inf

{∫

B

|∇u|N dx : u ∈ W 1,N
0 (B), ‖u‖Lp(B,Vp dx) = 1

}
, p < N ≤ ∞,

(4.3)
is attained on some positive function w ∈ W 1,N

0,r (B). Moreover, every radial
minimizing sequence has a subsequence uk such that, with some sk > 0, the
sequence s

(1−N)/N
k uk(r

sk) converges to a point of minimum in W 1,N
0 (B).

9



Proof. In the case p = ∞ the theorem follows from (2.3) and the infimum is
attained on u = µt for any t ∈ (0, 1).

Consider now the case N < p < ∞. Let Qp be the functional
(1.5). Note that the weight (3.4) is decreasing. Then, by the standard
rearrangement results, denoting as w∗ the decreasing spherical rearrangement
of a nonnegative function w, we have

Qp(u) ≤ Qp(|u|∗) and

∫

B

|∇u|N dx ≥
∫

B

|∇|u|∗|N dx.

Consequently, the infimum in (4.3) does not increase if we restrict it to
nonnegative monotone functions in the radial subspace W 1,N

0,r (B). The
positivity of κp follows from that of κN and the estimate (2.3):

Qp(u) ≤ QN(u) sup
r
|u(r)|p−N(log

1

r
)−(p−N)N−1

N ≤ C‖u‖p. (4.4)

Let uk ∈ W 1,N
0,r (B) be a minimizing sequence, that is, ‖uk‖N

1,N → κp and

Qp(uk) = 1. If uk
D
⇀ 0, then by Lemma 3.3, Q(uk) → 0, a contradiction.

Consequently, for a renamed subsequence, there exists a sequence gk ∈ D
and a w ∈ W 1,N

0,r (B) \ {0}, such that gkuk ⇀ w. Note that functions gkuk

remain decreasing radial functions. Then, by Brezis-Lieb lemma,

1 = Qp(gkuk) = Qp(w) + Qp(gkuk − w) + o(1), (4.5)

Let vk(r) = −(gkuk)
′(r) and v(r) = −w′(r). Then vk ⇀ v in LN(B), vk ≥ 0

and v ≥ 0. Applying Lemma 4.1 to the sequence vk with q = N , we obtain:

κp = ‖gkuk‖N
1,N + O(1) = ‖w‖N

1,N + ‖gkuk − w‖N
1,N + o(1), (4.6)

Let t = Qp(w) so that from (4.5) follows that Qp(gkuk − w) → 1 − t. Then
from (4.6) follows 1 ≥ tN/p + (1 − t)N/p, which, since p > N , is false unless
t = 0 or t = 1. The first possibility, however, is excluded since w 6= 0. Then
‖w‖N

1,N ≥ κp = ‖gkuk‖N
1,N + o(1), which implies, by weak semicontinuity of

the norm ‖gkuk‖1,N → ‖w‖1,N and, since gkuk ⇀ w, we arrive at gkuk → w

in W 1,N
0,r (B).

Remark 4.3. By (2.3) and (3.3), κN =
(

N−1
N

)N
, κ∞ = ωN−1 and therefore,

by direct evaluation,

κp ≤
(

N − 1

N

)N2/p

ω
p−N

p

N−1.
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The functional Qp is an interpolation between the Hardy term in (3.3)
and (2.3) and since (2.3) lies at the right end of interpolation scale, the
functions µt, on which κ∞ is attained, may be regarded as the low-dimensional
counterpart of the scaled Talenti solutions [13]. Similarly to the higher
dimension, the best Hardy constant, κN , is not attained (Adimurthi and
Sandeep, [4]).

5 Global compactness theorem

In this section we derive a structural statement for bounded sequences in
W 1,N

0,r (B), B ⊂ RN , equipped with the group D of transformations (1.6).

Note that the operators (1.6) are unitary operators on W 1,N
0 (B) and

satisfy

gk ∈ D, gk 6⇀ 0 ⇒ gk has a strongly (elementwise) convergent subsequence.
(5.1)

Indeed, it is easy to see that

gsk
∈ D, gsk

⇀ 0 ⇔ | log sk| → ∞. (5.2)

If sk → 0, then for any v ∈ C∞
0 (B \ {0}), gsk

v = 0 for k sufficiently large
since |x|sk → 1 uniformly on supp v. If sk →∞, then

∣∣∣∣
∫

u(x)gsk
v(x) dx

∣∣∣∣ ≤ Cs
(1−N)/N
k → 0.

Consequently (u, gsk
v) → 0 in both cases, and by density this extends to all

v ∈ W 1,N
0 (B). Then (5.1) follows from compactness of closed intervals on R.

Theorem 5.1. Let uk ⇀ 0 in W 1,2
0 (B) or let uk ⇀ 0 be a sequence of radial

non-increasing functions in W 1,N
0 (B) for N ≥ 3. There exist s

(n)
k ∈ (0,∞),

k ∈ N, n ∈ N, such that for a renumbered subsequence,

w(n) = w-lim
(
s
(n)
k

)(1−N)/N

uk(r
−s

(n)
k ), (5.3)

| log(s
(m)
k /s

(n)
k )| → ∞ for n 6= m, (5.4)

∑

n∈N

∫

B

|∇w(n)|N dx ≤ lim sup

∫

B

|∇uk|N dx, (5.5)

uk −
∑

n∈N

(
s
(n)
k

)(1−N)/N

w(n)(rs
(n)
k )

D
⇀ 0, (5.6)
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and the series
∑

n∈N
(
s
(n)
k

)(1−N)/N

w(n)(rs
(n)
k ) converges in W 1,N

0 (B)

uniformly in k.
Furthermore, whenever functions uk are radial, the D-weak convergence

in (5.6) is equivalent to the convergence in Lp(B, Vp) for each p ∈ (N,∞].

Proof. First note that the last assertion is a quote from the cocompactness
results Lemma 3.3 and Lemma 3.4.

For N = 2 the theorem is an immediate application of Corollary 3.2 from
[14], whose conditions are verified by (5.1). Interpretation of relation (3.9)
from [14] by (5.2) gives (5.4).

For N ≥ 3 the theorem is an immediate application of Theorem 2.6
from [15] with F (u) = ‖u‖N

1,N , whose conditions are verified by (5.1) and by
Lemma 4.1 applied to positive sequences −u′k(r).

This result is complementary to the blowup analysis in W 1,N (e.g. [1],[2],
[3], [7])) as it deals with general bounded sequences rather than with critical
sequences of specific functionals and, more significantly, it suggests that the
blowups for these problems are more naturally to define in terms of the
transformations (1.6) rather than by an inflation on the linear scale.
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