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Abstract

In this paper we study existence and properties of solutions of the problem Aw = 0 on the half-space
RY with nonlinear boundary condition dw/0n + w = |w|P~?w where 2 < p < 2(N —1)/(N —2) and
N > 3. We obtain a ground state solution w = w(zx1,...,xn_1,t) which is radial and has exponential
decay in the first N — 1 variables. Moreover, w has sharp polynomial decay in the variable .
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Introduction
This article is concerned with the nonlinear boundary value problem
ow _ (P)

where Rf (N > 3) is the Euclidean half space, 7 is the unit outer normal to the boundary BR{X and
2<p<2,=2(N—-1)/(N —2). Recall that 2, is the critical Sobolev exponent for the trace embedding

HYRY) — LY0RY), 2<gq¢<2.
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Our main goal here is to study the existence, symmetry and asymptotic behavior of positive solutions of
(P)-

The interest in this problem comes from the fact that it appears naturally after blow up when studying
solutions of the nonlinear boundary value problem

Au = 0 in Qev
0 .
gu _ |ulP"2u —u  on 09, (1.1)
on

where ¢ is a positive parameter, Q. := {e" !z : z € Q} and Q is a bounded domain in RY with smooth

boundary 0f2. More precisely, if we stand at a point on the boundary 92 and take ¢ — 0, then the domain
Q. becomes a half space which, after a convenient rotation and translation, may be assumed to be Rf . Note
that w = 1 is a positive solution of (1.1). By using an approach of [10], the authors in [1] have used (P) as
a limit problem in order to obtain a nontrivial positive solution of (1.1). We note also that problem (1.1) is
related to the steady state of a parabolic problem introduced by Steklov [13].

For convenience, we write z = (z,t) € Rf with 2 € RV~ and ¢ > 0. Hereafter, we identify aRf =RN-1
and we use the notation RY :=RY URN L.

In order to prove the existence of solution of (P), we shall use a minimax argument to the energy
associated functional with (P),

1
I(u) = 7/ |Vul|? dz + f/ u? dz — 7/ (u™)P dz, (1.2)
2 Rf 2 RN-1 P JrN—1
defined on the natural space
H={ueD"RY) :ulgn-1 € L2RY"1)},

(where u|gn-1 is understood in the sense of trace) endowed with the inner product

<u,v >= VuVo dz —|—/ uv dz
RY RN -1
and the corresponding norm
|ul|3 = / |Vu|? dz +/ u? d. (1.3)
RY RN -1

One can see that H is a Hilbert space and since C§°(RY) is dense in DV2(RY) it follows that the restrictions
to RY of functions in C§°(RY) are dense in H.

Now let us define what we mean by a solution of (P) in H. We say that w € H is a H—weak solution
of (P) if, for all p € H,

VwVedz + /

weder = / lw[P~2we da. (1.4)
RN-1 RN-1

N
RJr

In what follows, we mention some known results on nonexistence for problem (P). Note that if w is a
H — weak solution of (P) with 2 < p < 2,, for each a > 0 the function a'/?~2w(az) is a solution of:

_ : N
Aw = in  RY,

— = |wP?w—oaw on RN (1.5)



Using a convenient sequence of cut-off functions, we can prove that the following Pohozaev’s identity holds:
N -2 P 2
7/ |Vw|?dz = (N — 1)/ Jwl” _ - dx,
2 R RN-1 D 2
which implies that, if & > 0 and p = 2, then problem (1.5) does not have H-weak solution. However, if

a =0 and p = 2, then
o\ (N—2)/2
(-2
o= (=

N
+

is a positive solution of (1.5) for each fixed z € RY = {(z,t) € RV : t < 0} (see [5]). Problem (P) is
related to the Yamabe problem with boundary, namely, to find a Riemaniann metric conformal to Euclidean
metric whose scalar curvature is zero and the mean curvature of the boundary is constant, see more details
in Adimurthi-Yadava [2]. In the subcritical case 2 < p < 2,, Hu in [4] showed that if a = 0, then problem
(1.5) does not admit any classical bounded positive solution. On the other hand, our result asserts that lower
order terms reverse this situation. In fact, we prove that cp(Rf ), the least energy level of the functional I,
is achieved. Moreover, we can see that
N p—2 N _
CP(RJr) = ) SP(RJr)p/(p 2)’
p
where
N .
Sp®Y) = inf {[Vull3a gy, + lul3ganr) : w € H, Jullpoen-1) =1}

Here we are interested in finding a ground state solution of (P) that is, a positive solution w € H whose
energy is minimal among the energy of all nontrivial solutions of (P) in H. Let us point out that Lions
prove in [9, page 275] the existence of a ground state solution of (P) in the Sobolev space H*(RY). Since
H 1(]&1\! ) — H, the solution found by Lions might not be a ground state solution in H. We shall analyze the
behavior of w and prove that in fact w € H 1(Rf ). To our knowledge few properties about the asymptotic
behavior of solution of (P) are known. Here, in order to obtain the asymptotic behavior of solutions of (P),
we combine a new Harnack’s inequality with a comparison argument. (see also [6] for related results).

As a consequence of [14, Theorem 0.1], all positive solution in H of (P) are radially symmetric with
respect the first N — 1 variables provided that p € [2N/(N — 1),2,). Here, we complement this result, since
by our argument this result holds for all p € (2,2,). We remark that this improvement was obtained thanks
to the polynomial decay of w proved in Section 3. As we will see, the symmetry will allow us to improve the
decay of w in the first N — 1 variables. In fact, we will prove that all positive solutions in H have exponential
decay in the first NV — 1 variables. In order to prove this fact, some non standard and sharp decay estimates
are carefully obtained.

Our main result is summarized by the following theorem. o
Theorem 1.6. Problem (P) has a ground state solution w € C>®(RY) N C**(RY) N H such that

(i) w is radially symmetric with respect to the variable x € RN~ that is, w(x,t) = w(r,t) if r = |z|.
Moreover, w,(r,t) < 0 in (0,400) x [0, +00).

(i) w has exponential decay in the variable x and polynomial decay in the variable t; more precisely, there
exist positive numbers c1 and co such that

1

55 = N
Aro@or VA= @) eRy

w(z) < c1 exp(—calz|)

Moreover, for each x € RN fized, there exist positive numbers c3,cy and ty such that

C. C
= <wla,t) < 4

tN =~ W fOT all t Z t().



2 Existence results

We note that the family of functions w(x,t) = at +b, with a,b € R satisfying —a +b = bP~1, are classical
solutions of (P), but not H—weak solutions. In this section we establish the existence of a ground state
solution of (P). We first require several technical results.

Lemma 2.1. For each p € [2,2.] we have the continuous embedding
H — LP(RN-1).
Proof. From the classical trace embedding
DIARY) — L2 (RVY), (2:2)

(see [8]) together with the interpolation inequality and 6 € (0, 1), there exists C' > 0 such that

0p/2 (1-0)p/2+
/ lu|P do < (/ |u|? dx) (/ |u) dx)
RN-1 RN-1 RN-1
op/2 (1-0)p/2
C (/ |u|? dx) (/ |Vul? dz)
RN -1 RY

Op/2 1—-0 2
Cllullg?"? ull§ =772,

IN

IN

which completes the proof. |

It follows from Lemma 2.1 that the functional I is well defined in H and belongs to the class C%(H,R).
Moreover, one can see that nonnegative H —weak solutions of (P) are critical points of I and conversely.

By using Lemma 2.1 it is standard to show that the functional I has the mountain pass structure on the
space H. Thus, the minimax level

Ny _
cp(R7) = inf a1 (9(t))

is positive, where

§:={9€C([0,1], H) : g(0) =0and I(g(1)) <O0}.

Therefore, there exists a Palais-Smale sequence (PS sequence for short) (u.,) C H at the level ¢,(RY), that
is,
I(um) — cp(RY) and  I'(uy) — 0.

Lemma 2.3. If (u,) C H is a (PS) sequence at the level c,(RY), then (u,,) is bounded and there exists
b > 0 such that
[ufll Lo ey—1y > b >0, (2.4)

for m suficiently large.

Proof. If (uy,) is a (PS) sequence at level ¢,(RY), one can see that

p
(5 = 1) lunnll3 = pI(m) = I'(tm )t < pep(RY) + Cilfumlo + o,

which implies that ||u.,||s is bounded. Since (uy,) is bounded for m sufficiently large we have

cp(Rf) 1, (1 1 + P
L S L) = ) = (5 = ) s



This yields that (2.4) holds.

In order to prove the existence of a nontrivial critical point of I at the minimax level c,(R%Y) we establish

some technical lemmata.

Lemma 2.5. For each q € [2,2.] and y € RN~1 there exists a constant C = C(N,q) > 0 such that

1/2
lullzoay < € (IVula g () + 1lBaey) > we H,

where
Bi(y)={z eRY : |2~ (y,0)| <1} and I'(y) = {x e RN "' : |z —y| < 1}.

Proof. As a consequence of Friedrichs inequality we have

1/2
el sty < C (1900255 ) + IelBeey) o+ w € H,

which together with the trace embedding H' (B (y)) < L?(0B; (y)) implies that (2.6) holds.

Lemma 2.8. If (uy,) C H is a (PS) sequence, then there exists C' = C(N,p) > 0 such that

sup / (wh)? dz > C > 0.
yERN =1 JT(y)

Proof. For q € (p,2,) fixed and by interpolation we have

(1—a)p

HU”ZL)p(r(y)) = HUHLz(r(y) [[w ||Lq(r(y ueH,

where a = pq/[(p — 2)(q — 2)]. Now, we consider two cases.

Case 1: ¢. =4(q — 1)/q < p. In this case we have ap/2 > 1. Then, setting

/
gy = (V0122 ) + Il 32 ) )
and using (2.10) together with Lemma 2.5 we obtain

11—«
< Cillull ey lll 3 .,

(1—a)p/2
<o sw [ s el 2 Nl e,
L(y) Y

yERN -1

(1-a)p/2
< sup / ude> lallg? =l
—1JT(y)

yERN—1

H“H[,p(r @)

(2.6)

2.7)

(2.10)

(2.11)

where C1, Cs are positive constants which depend only on N and p. Now we choose a family {Bl+ (y)} covering
RN=! and such that each point of RVN~! is contained in at most N such balls. Summing up inequalities

(2.11) over this family, we find

(1-a)p/2
/ |ulP dz < NC ( sup / u? dsc) el 572 ] 2.
RN -1 yERN=1 JT(y)

(2.12)



Now, setting u = w}, in (2.12) and using the fact that (u,,) is bounded we obtain
(1—a)/2
luflan <€3 sp [ ipdey
yERN -1 JT(y)

which together with Lemma 2.3 implies that (2.9) holds.
Case 2: ¢, = 4(¢ — 1)/q > p. In this case we have that

lell o -1y < loall 2 Gee 3y Il Ly a1
for some 3 € (0,1). Therefore, (2.10) follows by using (2.12) with p = ¢, and o = [gq./[(¢ — 2)](g= — 2)]. W
Now we are ready to prove the existence of a nontrivial H-weak solution of (P).
Proposition 2.13. There exists a ground state solution at the level c,(RY).

Proof. By Lemma 2.8, there exits a sequence of points (y,,) C RV~! such that

JRRCAR =
T'(ym)

Thus, considering the new sequence wy,(+) = Um (- + Ym), it follows from (2.14) that

/ (wt)? de >
T(0)

Using the invariance by translation, it is easy to show that I(w,,) — ¢,(RY) and I’(w,,) — 0. Using again
Lemma 2.3 we obtain that (wy,) is bounded. Since H is reflexive, we can take a subsequence (still denoted
in the same way) such that w,, — w in H. Thus, w,, — w in L? (RY~!) and hence it follows from (2.14)
that w is nontrivial.

| o

N | o

(2.14)

Claim 2.15. ¢,(RY) = I(w) and I'(w) = 0.

Indeed, since I'(wy,,) — 0 in H’ (dual space) and w,, — w in H, taking the limit we obtain I'(w)¢ = 0 for
all ¢ € H. Thus, taking ¢ = w™ as testing function, it follows that w is a nonnegative H—weak solution of

(P).

Since I'(w)w = 0 and the norm is weakly lower semicontinuous, we obtain

rw) = (5= 3 ) holly < tm (5 = 2 3 = R (2.16)

Next, using the fact that the mountain pass level is equal to the infimum of I on the Nehary manifold
N ={ue H\{0}: I'(u)u=0},

that is, ¢, (RY) = inf,epn I(w), and since w € N, we get ¢,(RY) < I(w). Therefore, ¢,(RY) = I(w) and we
conclude that w is a ground state solution of (P). [ |



3 Regularity and polynomial decay

In this section we shall prove some regularity and decay properties for ground state solutions of (P).

Proposition 3.1. Let v be a H—weak solution of the nonlinear boundary value problem

Av =0 in RY,
9 _ a(@)|v| v —v on RN-L (3.2)
on
with a € L°(RN~1) and 1 < ¢ < 2, — 1, that is,
VoV dz +/ vpdr = / a(x)|v| tvpde, Vo€ H. (3.3)
]Rf RN-1 RN-1

Then v € L>®(RY) and its trace v|gn-1 belongs to L>°(RN~1). In particular, any H—weak solution of (P)
enjoys the same properties.

Proof. Let v be a H—weak solution of (3.2). We can assume without lost of generality that v is nonnegative,

by changing the test function. For each k& > 0, we define ¢} = vi(ﬁfl)v and wy, = vo’ ! with B > 1 to be
determined later, where v, = min{v, k}. Note that 0 < vy, < v, < Vg, Vo >> 0 and |Vui| < |Vo|. Taking
©r as a test function in (3.3), we get

/]RN Ui(ﬂ_1)|Vv|2 dz < — _/sz_l vi(ﬂ_l)v2 dz —2(6—-1) /RN vi(ﬁ_l)_lvVUva dz
+ +
o
RN-1

Now, observing that the first and the second terms on the right—hand side of the inequality above are non
positive, we obtain

/ vi(ﬁ_l)|V1}|2 dz < C/ vq+1v2(6_1) dz = C’/ v~ w? da.
N RN-1

N-—-1
N R

This together with the trace imbedding (2.2) implies that

2/2,
(/ wi* dz)
RN-1

< C’l/ |Vwg|? dz
Y

< 02/N [Ui(ﬁ—l)‘vv|2+(ﬂ_1)2U2Ui(ﬁ—2)|vvk|2} dz
R

< 04/82/N ’Ui(ﬁ_l)|v’l)|2 dz

Ry

< Cg,ﬁz/ 09 w? da,
RN—l

where we used that 1+ (8 — 1)2 < 82 for 8 > 1. By Holder inequality we get

2/2. (g=1)/2. s /(2 ) (2. —q+1) /2.
(/ wi* dx> < B%C; (/ 02 dx) </ wy, o/ (2e—at )dac) .
RN-1 RN-1 RN-1



Using that |wg| < |v|® and the continuous embedding H — L2+ (RV~1) we have

2/2, (24—q+1)/2.
(/ |’UU£71|2* d£17> < 6266”1)”(1371 </ ,UBQQ*/(Q**qul) d£17> )
RN-1 RN-1

Choosing 8 =272, — ¢+ 1) > 1, we have 23(2, — ¢+ 1)~ = 1. Thus,

(/ |vv£71
RN-1

where a* = 2(2, — ¢+ 1)712,. By Fatou’s Lemma, we obtain

2/2,
. —1y 2
2 dx) < BCo ol ]2

lollgz. < (CoBII0ll3~)Y 2 [[vllgar- (3-4)

Taking By = (8 and inductively G110 = 2.0, for m = 1,2, ... and applying the previous processes for 1,
we have that by (3.4)

[vllg,2. < (BFCs|lvll5") 2 [l gy o
< (BECe][v]| 51221 (B2Ce0]|§ )2 vl g
< (Cél[v]|~ )1 /2P+1/28(3) B (3 )1/ B [y ..

Observing that 8, = x™8 where x = 2,./a*, we obtain by iteration

[0, < (Collolls™ )2 Tiox™" GUBTLox /B iy

2,
Since xy > 1 and
lim iix_i = b
m—><x>2ﬁi:0 2, —q—1’
we can take the limit as m — oo to get
lolloo < Ca(llolly™)" =4~V lu]lo.

Thus, we concluded that v € L>®(RV~1).
Now, for each k € N define

Qk) = {z = (z,t) €RY : v(2) > k}.
Note that Q(k) has finite Lebesgue measure because v € LQ*(Rf) and its trace v|gnv—1 belongs L2(RN~1).

Thus, the function
(v—k)(z), if zeQk),
p(z) = . N
0, if ze RY\Q(k),
belongs to the space H and Vi = Vv in Q(k).
Since v € L>(RN~1), there exist a constant M > 0 such that [[v||pec@y-1y < M. Therefore, taking
k > M we obtain that o(x,0) = 0 for all z € R¥~!. Hence, choosing ¢ as a testing function in (3.3) we get

/ |Vol2dz =0 (3.5)
Q(k)

which implies that v is constant in Q(k) or [Q(k)| = 0. In any case, we have v € L>(RY) and the proof is
complete. m



Remark 3.6. 1) As a consequence of Lemma 3.1 and Harnack inequality (see [11] or [16, Theorem 1.1]),
we obtain that nonnegative H—weak solutions of (P) are indeed positive in Rf.

2) From Lemma 8.1 and regularity results proved in [7, 15], we obtain that H—weak solutions of (P)

belong to Cl’o‘(Rf). By a mazimum principle due to Vazquez [17] we obtain in fact that w > 0 in RY.

loc

Next, using some ideas of [16]) and [11], we prove a Harnack type inequality, which will be useful in order
to prove some decay properties of the ground state solutions of (P).

For fixed y € R¥~! and r < p, we denote Bf = Bf(y), T, = [',(y) and, let B}t C Bf, T} C T’} be
concentric balls, where

Bf(y) ={z ¢ RY 2= (y,0)| < p} and T(y) = {z e RN 1 |2 — y| < p}.

Lemma 3.7. Let w be a H—weak solution of (P) with 0 < w < M in B;p, Then there exist
C=C(N,M) >0 and 6y > 1 such that

1/0(]
~(N=1)/60 [ .1y, 1160 8o
maxw +maxw < Cp <p Il oo gy ) + IIwILeomp)) :
In particular, we have o

lim w(z) =0, VzeRY.

|z] =00

Proof. In what follows C' denote an arbitrary constant. Assume that w > € > 0 on Rf N B;’p. Let us define
the function ¢ by
o =n"w’,

where 3> 1,0 <7(z) <1, n € C'(Bs,) and supp(n) C Bf. Note that
Vo = 8w’ 'Vw + 2nuw’ V.

Taking ¢ as a test function in (1.4) we obtain

/ (8w’ [Vw]? + 2npw? (Vi - Vw)] dz = / n?w? (wP~! —w) dz. (3.8)
Bf Ty,
This yields
/ B’ Vuw|* dz < 2/ nw? | V|| Vw| dz + MP*Q/ PP de. (3.9)
B B r,

From (3.9), using Young’s inequality
1 1
cd < 56202 + Ee_QdQ,

with ¢ = nw#=1/2|Vw|, d = w+1/2|Vn|, after some straightforward calculations we get
e\
/ wP HVw|?dz < C (1 — ) gt 6_2/ w’ T Vn|? dz +/ Pl dz | . (3.10)
Bf B Bf r,
Now, choosing ( large enough and defining the function

v=w® where 2s=p0(+1,



we have

(i)Q/Bj(an)zdz <cp! (/Bi(|Vn|U)2dz—|—/Fp(m)2dx> _ (3.11)

After adding the term pr (nv)? to both side of (3.11) we obtain

1/2 3 1/2
(V0122 gy + 0l ) < O 87 (019001250 + In0lle,) - (312)

Taking 1(z) = 1 in B,, and 7(z) = 0 outside B,, where 1 <ry < p <r; <2, |Vn| <2/(ry —r2), 2y = 2.
and (1 + 371) < C, we obtain from (3.12) that

1/2 2sC' 1/2
2 2 2
(Vo + olEecry) < sy (Rlagsy) + IolEac,) (3.13)

Using (2.6) and (2.7) we obtain

/
Il + oy < € (1901205, + olEeqe,))

which together with (3.13) implies that

/(27) 25C /
(1520 + W) S Gy (Bl + Meliece,))

Since v = w® we get

1/(2v)
2
/ |w|2s“’dz+/ |w|**7 dz < 20 / \w|2sdz+/
B}, r (r1—72) B T,

Moreover, taking the s — th root in (3.14) and setting 6 = 2s we obtain

G(07,72) < (CO(ry —12)"1)*/P9(0,11), (3.15)

1/q
P(q,7) = (/ |w|? dz +/ |wl]? d:v) , ¢q>0, r>0.
Bl (y) T (y)

Now for some 6, > 0 let us define

A

1/2
|w|? da:) : (3.14)

T2 1

where

Op =770, TH=14+2"", m=0,1,2,... .

The choice of 8, will be such that 6,, # 1. Then, from (3.15) we get

m 2/(v™60,
¢(9m+17 Tm+1) S (C’Y +19 rm — 'm+1 ) 1) /o ) ¢(9m7 Tm)
< (C( m+1)27 /0o SO, 7m)

] 2/ ) ( )2/90)(“”1)7’m (O )

(
()7 ()" 0, (3.16)

10



Now, observing that v > 1 and taking the limit in (3.16) we obtain

max w + maxw = d(+00,1) < Cop(b,,2).

+
B 1

Taking 6, > 1, and making the change of variable Z = pz with z € By, and Z = px with z € I'y, we conclude
the proof. |

Lemma 3.17. If w is a nonnegative H—weak solution of (P), then it has polynomial decay in @, more
precisely,
w(z) =0(|z*™N) as |z| = +o0. (3.18)

Proof. Consider ¢ : @ — R defined by ¢ = (Aw — v)4 where

M (N-2)/2
v(z,t) = | ————> , >0 and z=(z,t) € RY,
0= (e g S
is a solution of problem
—Av =0 in Rﬁ,
v

— =(N-2)p*"' on RN-L

Since w(z) — 0 as |z| — oo we can take R, A > 0 such that w?=2(z,0) < 1/2if |[z| > Rand ¢ = 0if |2| < R.
Now, using that

—A(Aw—-v)=0 in RY,
Aw —
OAw = v) = APt —w) — (N = 2>~ on RN71
I
and choosing ¢ = (Aw — v) 4 as test function, we have
/ V|2 dz + (N — 2)/ v lpde =A (wP™! —w)pdr < —/ E<,0d;1: <0.
|z|=R || >R |z| >R |z|>R
Thus, ¢ =0 in @ Consequently w < ¢yv in @ This then yields the desired conclusion. |

In order to obtain the decay of Dw we need to establish some regularity result.

Lemma 3.19. If w is a nonnegative H—weak solution of (P), then for each i = 1,....N we have that
Diw e HY(RY).

Proof. Setting

w(x + he;, t) —w(x,t)
I

(Drw)(z) = , for 1<i<N-1 and heR\{0},

where {eq,...,enx_1} is the canonical base of RN~1. Taking ¢ = D_j,(Dpw) in (1.4), we obtain
/ |V(Dpw)|*dz + / |Dpw|? dz = / Dy, (wP™ " Dpw dz,
Ri RN-1 RN-1
which implies that

p—1 he. — P~ 1
/ Dy, (wP™ ) Dpwdx < / ™ (@ + hei, 0) = wh™ (2, 0)] |Dpw|dz.
RN-1 RN-1 |h|

11



Using that for each a,b € (0,400) fixed there exists 6 € (0,1) such that
la?~t =P = (p—1)(Ba+ (1 — 0)b)"*|a — b

we get

1Dwwl? < (p— 1)/ (Ow(z + hes, 0) + (1 — B)w(x,0))"~2| Dpw|® da. (3.20)

RN-1

For fixed I' := T'g(0) C RN~! we have

/ (Ow(x + hei, 0)+(1 — O)w(x,0))P | Dyw|? da
RN-—1

<or~? [||w|§03® / |Dpw|* dz + ||w||§;2(RN_1\F)/ |Dpw|? dx]
r RN-I\T
<op~? {|w||’;:3(RN1)/ |th\2dx+\|w||§;3(RN,1\F)/ th|2dx}.
r RN-1
Now, by Lemma 3.7 we can choose I" such that

9 1
ol @v-1\r) < p—1)2r1°

This, together with (3.20) implies that

J

Since w € C1*(T") we obtain

|V(th)|2dz+/RN71 \th|2dxSC(p,HwHLoo(p))/F|th|2dx.

N
+

/ |V(th)|2dz+/ \Dpw|2dz < C. (3.21)
RN RN*I

+

For 1 < j < N we denote D7 = §/0z;. For each ¢ € C§°(RY), and the definition of weak derivative together
with (3.21) we have

Dy (Diw)pdz

N
RJr

/N wD_p, (D7) dz
R

+

IN

||Dh(Djw)HL2(Rf)||<P||L2(Rf) < CH@”L%Rf)-

Taking the limit when |h| — 0 we obtain

/ wD%pdz
RY

forall1 <i< N—1and 1< j<N. To conclude, taking ¢ € C§° (R_‘A_’) as a test function in (1.4) and using
(3.22) we get

< C”SD”L?(R_I'\_’)a (3.22)

DNw DNpdz

N
R+

N-1
<
i=1

/ wDN Ny dz
R

N
+

< CH@”L%Rf)-

/ wD%pdz
RY

12



Therefore,

< C”(p”LZ(Rf)y

/]RN wD o dz

+

forall 1 <i¢i < N and 1 < j < N. This, together with Hanh-Banach Theorem and Riesz representation
theorem implies that D'w € H*(RY) for all 1 <4 < N. Using the trace embedding, we conclude the proof
of the lemma. [ |

Lemma 3.23. If w € H is a nonnegative H—weak solution of (P), then for each 1 < i < N, we have

lim |[D'w(z)|=0, =z¢€ @

|z] =00

Proof. To prove the lemma, first we consider 1 <47 < N — 1. Then for each ¢ € C5°(RY), if we take D'y as
a test function in (1.4) we get

/ VwV (D) dz + / wD'pdx = / wP~ Dl d.
R$ RN-1 RN-1
Thus,
V(D'w)Vpdz + / Diwpdr = / (p — DwP~2D'wyp dz,
]Ri’ RN-1 RN-1

that is, v = D'w is a weak solution of (3.2) with ¢ = 1 and a = (p — 1)wP~2. By Lemma 3.1 we conclude
that Diw € L*°(RY) and its trace belongs to L>*(RN~1). Now, taking ¢ = n(Diw)? as a test function in
(1.4) (where n € C°(RY), 3 > 1), and arguing as in the proof of Lemma 3.7, one can complete the case
1<:<N-—-1.

For the case i = N, it is sufficient to observe that w; = w—wP~! on R¥N~! and w; is a harmonic function
in RY. ]

Corollary 3.24. If w is a nonnegative H—weak solution of (P), then w € C*°(RY) N CQ’O‘(@),

loc

Proof. Since w is a harmonic function we have that w € C*°(RY). From Lemma 3.1 and regularity results
proved in [7], we obtain that H—weak solutions of (P) belongs to Cl’a(Rf). By Lemma 3.19, v = D'w

loc
i=1,..,N —1is a H—weak solution of (3.2) with a = (p — )wP=? € L®(R¥"!) and ¢ = 1. Thus,
Diw € L>®(RY) and its trace belongs to L>(RV~1). The case i = N follows as in the prove of Lemma 3.19.

By results of Lieberman [7], we get that Diw € C°°(RY) which concludes the proof. |

4 Symmetry and exponential decay

Next, we will prove that nonnegative H—weak solutions of (P) are radially symmetric with respect to the
first N — 1 variables, by using the regularity and decay obtained in Section 3 (see [14] for a related result).
The proof relies on the so-called moving planes technique due to Serrin [12], see also the celebrated paper
[3] by Gidas-Ni-Nirenberg.

We point out that the next result will be used to prove the exponential decay in the first N — 1 variables
for nonnegative H—weak solutions of (P).

Proposition 4.1. Ifw is a nonnegative H—weak solution of (P), then w is radially symmetric with respect
to the variable x, that is, w(x,t) = w(r,t) if r = |x|. Moreover, w,(r,t) <0 in (0,+00) X [0, +00).
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Proof. For A > 0 we consider the reflection
2= (x1,20,...,t) = 2 = 2\ — 21,20, ..., 1)
where z € E) = {z € @ ;21 > A}, and we put
uM(2) = w(z) — w(z).

Note that
w(z)) =w(z) for zeTy={zeRY :z =}

Stepl. We claim that there exists A > 0 such that
ut(z) >0 forall ze Ey. (4.2)
Indeed, since w(z) — 0 as |z| — oo, we can choose A sufficiently large such that
u 2\, g, ...y t) = w(0, Ta, ..., 1) — w(2X, 2o, ..., 1) > 0. (4.3)

Next, we prove that (4.2) holds for this choice of A\. Arguing by contradiction, let us assume that there exists
zx € E) such that u*(zy) < 0. In particular, we can take

u*(2y) = inf {u?(2) 1 z € E\} <0.

We claim that zy € RV~ N Ey. Otherwise, we have z) € Rf N E), and thus B(zy,26) C Rf N E) for some
§ > 0 sufficiently small. Using that v*(z) = u*(2) — u*(2)) we have v*(z,) = 0 and

Avr =0 in B(zy,0)
{ v >0 in  B(zy,9).
In view of Harnack inequality and unique continuation methods for elliptic equations, we conclude that
v* = 0 in E). Consequently, u” is a non positive constant in Ej, which contradicts (4.3). Thus, we
conclude that u*(z) > 0 for all z € Ey N RY, which implies that u*(z) > 0 for all z € Ex NRY~1. Hence,
2y € ExNRY~! and u?(z)) = inf {u)‘(z) 1z € EA} = 0. Taking a ball B C E) ﬂRf such that z) € 0B we
have
Au*=0 in B
{ v*>0 in B,

which together with Hopf’s lemma implies that (9u*/dv)(zy) < 0, in contradiction with

ou? ow  Ow \ Mpel A o1
T V=G, Ty T W T = ()T e =0

Step2. Set
Ao := inf{\ > 0 such that (4.2) holds}. (4.4)

We will prove that A9 = 0. Assume instead that \g > 0. Since u* = 0 on Ty, and

Aur =0 in Ej,
u >0 in B,

it follows by Hopf’s lemma that
2wy, (Mo, T) = —u)? (Mo, T) < 0, (4.5)
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where T = (2, ...,t). Thus, there exist € > 0 such that 2(Ag —€) —z1 < Ag —e < 21 < Ap and
u " (x1,T) = w(2(\o — €) — 21,T) — w(x1,T) > 0. (4.6)
Consequently, for each (\g,Z) € T there exist § > 0 such that
w7 (z) >0 forall z€ B((\,T),8) N (RY\ Ey,). (4.7)
We claim that there exist € > 0 such that
u"(2) >0 forall z€ Ey, .. (4.8)

Otherwise, there exists a sequence satisfying A\x — Ao, A\x < Ao and a sequence (z,) C E* such that
uM(z) < 0 and dist(z, T2°) — 0. We have two cases to consider: either there exists a subsequence such
that zy, — 20 € T, which is impossible, in view of (4.7), or else ||zx|| — oo. In the latter case, using (4.7)
we may assume without loss of generality that

uM (z,) = inf{u(2) : z € B,
Since v (z) 1= uMr(2) — u* (21,) we have v (z;) = 0 and

AvM =0 in Bs, (2)
v >0 in  Bjs, (21)-

Using Hanark inequality, we obtain that v** = 0 in Bs, (z1), which together with unique continuation
methods for elliptic equations implies that u** is constant in Ej,, in contradiction with u** € H. Thus, the
assertion (4.8) contradicts our choice of Ay, if Ag > 0.

Since Ao = 0, we see that w(—z1,...,xx-1,t) > w(z1,...,xn_1,t) in RY. A similar argument shows that
w(—z1,...,xn_1,t) < w(xy,...,xn_1,t). Thus w is symmetric in the plane Ty and w,, = 0 on Ty. This
argument applies as well after any rotation of coordinate axes in the variables zs,...,xn_1.

Finally, setting w(x,t) = wv(r,t) where r = |z|, we will prove that v.(r,t) < 0 for all (r,t) €
(0,+00) x [0,4+00). For this, since that w is symmetric in RV~1 the same argument used to get (4.5)
holds for xa,...,xny_1 and all A > 0. Therefore, it is sufficient to choose any point 2o € RY¥~! such that
xo = (21,0, ..., &N—1) With x; 0 > 0 and note that

= w T
.0
vr(’f’o,t) = Z 8331‘ (ant) ! |-'I;LO| < Oa To = |$0|
=1

Again, by the symmetry of w we conclude v,.(r,t) < 0, for all (r,t) € (0,4+00) x (0,+00). To conclude, we
need to prove that v,.(r,0) < 0 for all » > 0. Arguing by contradiction suppose that v,(rg,0) = 0 for some
ro > 0. Since w € CLY(RY) N O=(RY) we get

loc

Av, =0 in BT(rg)
v, <0 in BT(rg),

where BT (rq) = Bs(rg,0) N @ for some 6 > 0. By applying Hopf’s lemma we conclude that
0 < 0v,(r9,0)/0n = —(v,)¢(10,0) = —(v¢)r(70,0) = v,(r, 0)[(p — 1)vP~2 — 1] = 0,

which is impossible. [ ]

In order to obtain the exponential decay of w we will use the follow result.

15



Lemma 4.9. Let w be a nonnegative H—weak solution of (P). Then for each v > 0 there exists
¢i = ¢;(v) > 0 such that for eachi=1,..., N — 1 we have

WL,y ey Ty ooy ) < | DAw (w1, ey g, ooy B)], 2] > 0 (4.10)
Proof. Fixed i € {1,...,N — 1} and v > 0, for each = € @ define
(2) = D’:w(xl,...,xiJrl/,...,t), if ;>0
| Dw(wy,...,—x; + v, ..., 1), if a; <0.
Note that, by Proposition 4.1, Diw = w,x;/r < 0 for all ; > 0, which together with Lemma 3.17, implies
that we may choose R > 0 and A;, := A;, (R,v) > 0 such that

wP=2(z2) < forall ze€ @ with |z] > R

1
2(p-1) _
¢i = (Ayw+Diw)y =0 forall zeRY with |z|<R.
Taking ¢; as a test function in the problem
~A(Aj,w+Diw) = 0 in RY,
A(A;,w + Diw)

—m = Agw? T (p- D Djw — (Ayw+ Djw) on RN

we obtain

/ |V<pi|2 dz +/ pide = / (Ailw”_l +(p— 1)w”_2Df,w) o; dz
RY RN-1 RN-1

IN

_ . 1
(p—l)/N lwp 2(Ai1w+DVw)<pidz§§/N @7 da.
RN—

Thus, ¢; =0 in @, which yields
W(L, ey Ty ey t) < Ai_ll(—Diw(asl, ey T F Uy 1)),
Since Diw(xy, ..., T, ...,t) < 0 for z; > 0 we obtain
W(L1,y ooy T F Vy oy B) < W(X1, ey Ty ooy B) < A;ll(—Diw(xl, oy Ty Uy ). (4.11)
Now, define for all z € @, the function

i o Diw(xy, .., xi — vy .o t), if x; <0
DZyw(z) = { Diw(zy, ..., —x; — vy ..., 1), if  x;>0.

Note that, by Proposition 4.1, Dw = w,z;/r > 0 for all 2; < 0, which together with Lemma 3.17 implies
that there exist R > 0 and A;, := A;,(R,v) > 0 such that

1 -
wP™2(z) < m forall zeRY with [2]/>R
¢ = (Ai,w — D' jw); =0 forall zeRY with [2] <R.

Taking ¢; as a test function in the problem

—A(Aj,w— D" jw)=0 in RY,
O(A;, w — D% A .
— ( Qwﬁx ,) = A,wP™! — (p— DwP2D" jw— (Aj,w — D’ ,w) on RN-!
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and arguing as above, we get ¢; = 0 in @, which yields
W(L1y ey Ty ooy t) < A;l(Diuw) = A;Diw(xl, ey T — Uy ooy b).
Since Diw(xy, ..., 74, ...,t) > 0 for 2; < 0 we have
W(T1,y ey T — Vy oy t) < WXL, eey Ty ooy t) < A;lDiw(xl, ey Ty — Uy t), x; < 0. (4.12)
The desired conclusion follows easily from (4.11)-(4.12). [ |

Now, we summarize our results about the decay estimate from above.

Proposition 4.13. Let w be a nonnegative H—weak solution of (P). Then, there exist c1,co > 0 such that

1 R
w(a,t) < crexp(—cola]) ——x=, VzeRY.
(1 +t2)T
Proof. If z; >0 (1 <i < N — 1), by inequality (4.10) we get
0 _ Diw(zy,...,x; + v, ..., 1)

< —ch

7

oz, (In(w(x1,....,x; +v,...,1)))

By integration, we get

W(T1,y ooy Ty + 1y oy t)

In(w(x1, ey @i + Uy oy t)) — In(w(21, oy vy oy 1)) < —c; g,

that is,
W(T1y oy T+ Vy ooy t) W (1,0 vy s t) exp(—c; Hagl), 2 > 0. (4.14)

Using again (4.10), we obtain

_ Diw(xq, ooy Ty — Vy .y t) 0
-1 < U Nt LML l ey Ty — Uy 1))
i W(T1y ey T — Vy ooy t) 8mi( (@@, i = 1, 1))

Analogously if z; < 0, using (4.10) we get

0;1(0 —z;) <In(w(xy,..,—v, .., 1)) = In(w(xy, ..., 2; — v, ..., 1)),
which implies that,
WLy ooy Ty — Uy ooy t) SW(TY, eny =1, ooy ) exp(—(c; V) |i]), x5 < 0. (4.15)
It follows from (4.14)-(4.15) and Lemma 3.17 that
1

U)(.’l?]_, ceey Ly ,t) < Clm eXp(—02|xi|), |.’L'»L| >v> 0,
which implies the desired result. |

To complete the proof of Theorem 1.6 we only need to obtain the lower polynomial decay on the variable
t. Using the mean value theorem for harmonic functions, we have

1

wNBY Jp((et),R)

u(z,t) = u(z)dz, ¥V B((z,t),R) CRY,

where wy denotes the volume of the unit ball in RY. We may assume that ¢ > 1. Now, taking R = t we get

1 N 1 . Cz)
u(zx,t) = u(z)dz > / u(z)dz = , 4.16
0= o /B«z,t),t) BV E2 0 Joonn "? ty 119

for all ¢ > 1. The proof of Theorem1.6 is complete.
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