Properties of positive harmonic functions on the half space with a nonlinear boundary condition *

Emerson Abreu
Departamento de Matemática
Universidade Federal de Minas Gerais
CP702-30161-970 Belo Horizonte, MG, Brazil
João Marcos do Ó † and Everaldo Medeiros
Departamento de Matemática
Universidade Federal da Paraíba
58051-900 João Pessoa, PB, Brazil

May 9, 2009

Abstract

In this paper we study existence and properties of solutions of the problem $\Delta w=0$ on the half-space \mathbb{R}_{+}^{N} with nonlinear boundary condition $\partial w / \partial \eta+w=|w|^{p-2} w$ where $2<p<2(N-1) /(N-2)$ and $N \geq 3$. We obtain a ground state solution $w=w\left(x_{1}, \ldots, x_{N-1}, t\right)$ which is radial and has exponential decay in the first $N-1$ variables. Moreover, w has sharp polynomial decay in the variable t.

Key words: Minimax, critical points, moving planes, harmonic function, ground state, asymptotic behaviors. AMS Subject Classification: 35J65, 35J20, 35B40

1 Introduction

This article is concerned with the nonlinear boundary value problem

$$
\left\{\begin{array}{llrl}
\Delta w & =0 & \text { in } & \mathbb{R}_{+}^{N} \tag{P}\\
\frac{\partial w}{\partial \eta}=|w|^{p-2} w-w & & \text { on } & \partial \mathbb{R}_{+}^{N}
\end{array}\right.
$$

where $\mathbb{R}_{+}^{N}(N \geq 3)$ is the Euclidean half space, η is the unit outer normal to the boundary $\partial \mathbb{R}_{+}^{N}$ and $2<p<2_{*}=2(N-1) /(N-2)$. Recall that 2_{*} is the critical Sobolev exponent for the trace embedding

$$
H^{1}\left(\mathbb{R}_{+}^{N}\right) \hookrightarrow L^{q}\left(\partial \mathbb{R}_{+}^{N}\right), \quad 2 \leq q \leq 2_{*}
$$

[^0]Our main goal here is to study the existence, symmetry and asymptotic behavior of positive solutions of (P).

The interest in this problem comes from the fact that it appears naturally after blow up when studying solutions of the nonlinear boundary value problem

$$
\begin{cases}\Delta u=0 & \text { in } \quad \Omega_{\epsilon}, \tag{1.1}\\ \frac{\partial u}{\partial \eta}=|u|^{p-2} u-u & \text { on } \quad \partial \Omega_{\epsilon}\end{cases}
$$

where ϵ is a positive parameter, $\Omega_{\epsilon}:=\left\{\epsilon^{-1} z: z \in \Omega\right\}$ and Ω is a bounded domain in \mathbb{R}^{N} with smooth boundary $\partial \Omega$. More precisely, if we stand at a point on the boundary $\partial \Omega$ and take $\epsilon \rightarrow 0$, then the domain Ω_{ϵ} becomes a half space which, after a convenient rotation and translation, may be assumed to be \mathbb{R}_{+}^{N}. Note that $u \equiv 1$ is a positive solution of (1.1). By using an approach of [10], the authors in [1] have used (P) as a limit problem in order to obtain a nontrivial positive solution of (1.1). We note also that problem (1.1) is related to the steady state of a parabolic problem introduced by Steklov [13].

For convenience, we write $z=(x, t) \in \mathbb{R}_{+}^{N}$ with $x \in \mathbb{R}^{N-1}$ and $t>0$. Hereafter, we identify $\partial \mathbb{R}_{+}^{N}=\mathbb{R}^{N-1}$ and we use the notation $\overline{\mathbb{R}_{+}^{N}}:=\mathbb{R}_{+}^{N} \cup \mathbb{R}^{N-1}$.

In order to prove the existence of solution of (P), we shall use a minimax argument to the energy associated functional with (P),

$$
\begin{equation*}
I(u)=\frac{1}{2} \int_{\mathbb{R}_{+}^{N}}|\nabla u|^{2} \mathrm{~d} z+\frac{1}{2} \int_{\mathbb{R}^{N-1}} u^{2} \mathrm{~d} x-\frac{1}{p} \int_{\mathbb{R}^{N-1}}\left(u^{+}\right)^{p} \mathrm{~d} x \tag{1.2}
\end{equation*}
$$

defined on the natural space

$$
H=\left\{u \in \mathcal{D}^{1,2}\left(\mathbb{R}_{+}^{N}\right):\left.u\right|_{\mathbb{R}^{N-1}} \in L^{2}\left(\mathbb{R}^{N-1}\right)\right\}
$$

(where $\left.u\right|_{\mathbb{R}^{N-1}}$ is understood in the sense of trace) endowed with the inner product

$$
<u, v>=\int_{\mathbb{R}_{+}^{N}} \nabla u \nabla v \mathrm{~d} z+\int_{\mathbb{R}^{N-1}} u v \mathrm{~d} x
$$

and the corresponding norm

$$
\begin{equation*}
\|u\|_{\partial}^{2}=\int_{\mathbb{R}_{+}^{N}}|\nabla u|^{2} \mathrm{~d} z+\int_{\mathbb{R}^{N-1}} u^{2} \mathrm{~d} x \tag{1.3}
\end{equation*}
$$

One can see that H is a Hilbert space and since $C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$ is dense in $\mathcal{D}^{1,2}\left(\mathbb{R}_{+}^{N}\right)$ it follows that the restrictions to \mathbb{R}_{+}^{N} of functions in $C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$ are dense in H.

Now let us define what we mean by a solution of (P) in H. We say that $w \in H$ is a H-weak solution of (P) if, for all $\varphi \in H$,

$$
\begin{equation*}
\int_{\mathbb{R}_{+}^{N}} \nabla w \nabla \varphi \mathrm{~d} z+\int_{\mathbb{R}^{N-1}} w \varphi \mathrm{~d} x=\int_{\mathbb{R}^{N-1}}|w|^{p-2} w \varphi \mathrm{~d} x \tag{1.4}
\end{equation*}
$$

In what follows, we mention some known results on nonexistence for problem (P). Note that if w is a $H-$ weak solution of (P) with $2<p \leq 2_{*}$, for each $\alpha>0$ the function $\alpha^{1 /(p-2)} w(\alpha z)$ is a solution of:

$$
\left\{\begin{array}{lll}
\Delta w=0 & \text { in } & \mathbb{R}_{+}^{N} \tag{1.5}\\
\frac{\partial w}{\partial \eta}=|w|^{p-2} w-\alpha w & \text { on } & \mathbb{R}^{N-1}
\end{array}\right.
$$

Using a convenient sequence of cut-off functions, we can prove that the following Pohozaev's identity holds:

$$
\frac{N-2}{2} \int_{\mathbb{R}_{+}^{N}}|\nabla w|^{2} d z=(N-1) \int_{\mathbb{R}^{N-1}}\left(\frac{|w|^{p}}{p}-\alpha \frac{w^{2}}{2}\right) d x
$$

which implies that, if $\alpha>0$ and $p=2_{*}$ then problem (1.5) does not have H-weak solution. However, if $\alpha=0$ and $p=2_{*}$, then

$$
w(z)=\left(\frac{-(N-2) \bar{t}}{|z-\bar{z}|^{2}}\right)^{(N-2) / 2}
$$

is a positive solution of (1.5) for each fixed $\bar{z} \in \mathbb{R}_{-}^{N}=\left\{(x, t) \in \mathbb{R}^{N}: t<0\right\}$ (see [5]). Problem (P) is related to the Yamabe problem with boundary, namely, to find a Riemaniann metric conformal to Euclidean metric whose scalar curvature is zero and the mean curvature of the boundary is constant, see more details in Adimurthi-Yadava [2]. In the subcritical case $2<p<2_{*}, \mathrm{Hu}$ in [4] showed that if $\alpha=0$, then problem (1.5) does not admit any classical bounded positive solution. On the other hand, our result asserts that lower order terms reverse this situation. In fact, we prove that $c_{p}\left(\mathbb{R}_{+}^{N}\right)$, the least energy level of the functional I, is achieved. Moreover, we can see that

$$
c_{p}\left(\mathbb{R}_{+}^{N}\right)=\frac{p-2}{2 p} S_{p}\left(\mathbb{R}_{+}^{N}\right)^{p /(p-2)}
$$

where

$$
S_{p}\left(\mathbb{R}_{+}^{N}\right)=\inf \left\{\|\nabla u\|_{L^{2}\left(\mathbb{R}_{+}^{N}\right)}^{2}+\|u\|_{L^{2}\left(\mathbb{R}^{N-1}\right)}^{2}: u \in H,\|u\|_{L^{p}\left(\mathbb{R}^{N-1}\right)}=1\right\}
$$

Here we are interested in finding a ground state solution of (P) that is, a positive solution $w \in H$ whose energy is minimal among the energy of all nontrivial solutions of (P) in H. Let us point out that Lions prove in [9, page 275] the existence of a ground state solution of (P) in the Sobolev space $H^{1}\left(\mathbb{R}_{+}^{N}\right)$. Since $H^{1}\left(\mathbb{R}_{+}^{N}\right) \hookrightarrow H$, the solution found by Lions might not be a ground state solution in H. We shall analyze the behavior of w and prove that in fact $w \in H^{1}\left(\mathbb{R}_{+}^{N}\right)$. To our knowledge few properties about the asymptotic behavior of solution of (P) are known. Here, in order to obtain the asymptotic behavior of solutions of (P), we combine a new Harnack's inequality with a comparison argument. (see also [6] for related results).

As a consequence of [14, Theorem 0.1], all positive solution in H of (P) are radially symmetric with respect the first $N-1$ variables provided that $p \in\left[2 N /(N-1), 2_{*}\right)$. Here, we complement this result, since by our argument this result holds for all $p \in\left(2,2_{*}\right)$. We remark that this improvement was obtained thanks to the polynomial decay of w proved in Section 3. As we will see, the symmetry will allow us to improve the decay of w in the first $N-1$ variables. In fact, we will prove that all positive solutions in H have exponential decay in the first $N-1$ variables. In order to prove this fact, some non standard and sharp decay estimates are carefully obtained.

Our main result is summarized by the following theorem.
Theorem 1.6. Problem (P) has a ground state solution $w \in C^{\infty}\left(\mathbb{R}_{+}^{N}\right) \cap C^{2, \alpha}\left(\overline{\mathbb{R}_{+}^{N}}\right) \cap H$ such that
(i) w is radially symmetric with respect to the variable $x \in \mathbb{R}^{N-1}$, that is, $w(x, t)=w(r, t)$ if $r=|x|$. Moreover, $w_{r}(r, t)<0$ in $(0,+\infty) \times[0,+\infty)$.
(ii) w has exponential decay in the variable x and polynomial decay in the variable t; more precisely, there exist positive numbers c_{1} and c_{2} such that

$$
w(z) \leq c_{1} \exp \left(-c_{2}|x|\right) \frac{1}{\left(1+t^{2}\right)^{(N-2) / 2}}, \quad \forall z=(x, t) \in \overline{\mathbb{R}_{+}^{N}}
$$

Moreover, for each $x \in \mathbb{R}^{N-1}$ fixed, there exist positive numbers c_{3}, c_{4} and t_{0} such that

$$
\frac{c_{3}}{t^{N}} \leq w(x, t) \leq \frac{c_{4}}{\left(1+t^{2}\right)^{(N-2) / 2}} \quad \text { for all } \quad t \geq t_{0}
$$

2 Existence results

We note that the family of functions $w(x, t)=a t+b$, with $a, b \in \mathbb{R}$ satisfying $-a+b=b^{p-1}$, are classical solutions of (P), but not H-weak solutions. In this section we establish the existence of a ground state solution of (P). We first require several technical results.
Lemma 2.1. For each $p \in\left[2,2_{*}\right]$ we have the continuous embedding

$$
H \hookrightarrow L^{p}\left(\mathbb{R}^{N-1}\right) .
$$

Proof. From the classical trace embedding

$$
\begin{equation*}
\mathcal{D}^{1,2}\left(\mathbb{R}_{+}^{N}\right) \hookrightarrow L^{2 *}\left(\mathbb{R}^{N-1}\right), \tag{2.2}
\end{equation*}
$$

(see [8]) together with the interpolation inequality and $\theta \in(0,1)$, there exists $C>0$ such that

$$
\begin{aligned}
\int_{\mathbb{R}^{N-1}}|u|^{p} \mathrm{~d} x & \leq\left(\int_{\mathbb{R}^{N-1}}|u|^{2} \mathrm{~d} x\right)^{\theta p / 2}\left(\int_{\mathbb{R}^{N-1}}|u|^{2 *} \mathrm{~d} x\right)^{(1-\theta) p / 2_{*}} \\
& \leq C\left(\int_{\mathbb{R}^{N-1}}|u|^{2} \mathrm{~d} x\right)^{\theta p / 2}\left(\int_{\mathbb{R}_{+}^{N}}|\nabla u|^{2} \mathrm{~d} z\right)^{(1-\theta) p / 2} \\
& \leq C\|u\|_{\partial}^{\theta_{p}^{p / 2}}\|u\|_{\partial}^{(1-\theta) p / 2}
\end{aligned}
$$

which completes the proof.
It follows from Lemma 2.1 that the functional I is well defined in H and belongs to the class $C^{2}(H, \mathbb{R})$. Moreover, one can see that nonnegative H-weak solutions of (P) are critical points of I and conversely.

By using Lemma 2.1 it is standard to show that the functional I has the mountain pass structure on the space H. Thus, the minimax level

$$
c_{p}\left(\mathbb{R}_{+}^{N}\right)=\inf _{g \in \mathfrak{F}} \max _{t \in[0,1]} I(g(t))
$$

is positive, where

$$
\mathfrak{F}:=\{g \in C([0,1], H): g(0)=0 \text { and } I(g(1))<0\} .
$$

Therefore, there exists a Palais-Smale sequence (PS sequence for short) $\left(u_{m}\right) \subset H$ at the level $c_{p}\left(\mathbb{R}_{+}^{N}\right)$, that is,

$$
I\left(u_{m}\right) \rightarrow c_{p}\left(\mathbb{R}_{+}^{N}\right) \quad \text { and } \quad I^{\prime}\left(u_{m}\right) \rightarrow 0
$$

Lemma 2.3. If $\left(u_{m}\right) \subset H$ is a $(P S)$ sequence at the level $c_{p}\left(\mathbb{R}_{+}^{N}\right)$, then $\left(u_{m}\right)$ is bounded and there exists $b>0$ such that

$$
\begin{equation*}
\left\|u_{m}^{+}\right\|_{L^{p}\left(\mathbb{R}^{N-1}\right)} \geq b>0 \tag{2.4}
\end{equation*}
$$

for m suficiently large.
Proof. If $\left(u_{m}\right)$ is a (PS) sequence at level $c_{p}\left(\mathbb{R}_{+}^{N}\right)$, one can see that

$$
\left(\frac{p}{2}-1\right)\left\|u_{m}\right\|_{\partial}^{2}=p I\left(u_{m}\right)-I^{\prime}\left(u_{m}\right) u_{m} \leq p c_{p}\left(\mathbb{R}_{+}^{N}\right)+C_{1}\left\|u_{m}\right\|_{\partial}+C_{2},
$$

which implies that $\left\|u_{m}\right\|_{\partial}$ is bounded. Since $\left(u_{m}\right)$ is bounded for m sufficiently large we have

$$
\frac{c_{p}\left(\mathbb{R}_{+}^{N}\right)}{2} \leq I\left(u_{m}\right)-\frac{1}{2} I^{\prime}\left(u_{m}\right) u_{m}=\left(\frac{1}{2}-\frac{1}{p}\right)\left\|u_{m}^{+}\right\|_{L^{p}\left(\mathbb{R}^{N-1}\right)}^{p}
$$

This yields that (2.4) holds.
In order to prove the existence of a nontrivial critical point of I at the minimax level $c_{p}\left(\mathbb{R}_{+}^{N}\right)$ we establish some technical lemmata.

Lemma 2.5. For each $q \in\left[2,2_{*}\right]$ and $y \in \mathbb{R}^{N-1}$ there exists a constant $C=C(N, q)>0$ such that

$$
\begin{equation*}
\|u\|_{L^{q}(\Gamma(y))} \leq C\left(\|\nabla u\|_{L^{2}\left(B_{1}^{+}(y)\right)}^{2}+\|u\|_{L^{2}(\Gamma(y))}^{2}\right)^{1 / 2}, \quad u \in H \tag{2.6}
\end{equation*}
$$

where

$$
B_{1}^{+}(y)=\left\{x \in \mathbb{R}_{+}^{N}:|z-(y, 0)|<1\right\} \text { and } \Gamma(y)=\left\{x \in \mathbb{R}^{N-1}:|x-y|<1\right\}
$$

Proof. As a consequence of Friedrichs inequality we have

$$
\begin{equation*}
\|u\|_{L^{2}\left(B_{1}^{+}(y)\right)} \leq C\left(\|\nabla u\|_{L^{2}\left(B_{1}^{+}(y)\right)}^{2}+\|u\|_{L^{2}(\Gamma(y))}^{2}\right)^{1 / 2}, u \in H \tag{2.7}
\end{equation*}
$$

which together with the trace embedding $H^{1}\left(B_{1}^{+}(y)\right) \hookrightarrow L^{q}\left(\partial B_{1}^{+}(y)\right)$ implies that (2.6) holds.
Lemma 2.8. If $\left(u_{m}\right) \subset H$ is a $(P S)$ sequence, then there exists $C=C(N, p)>0$ such that

$$
\begin{equation*}
\sup _{y \in \mathbb{R}^{N-1}} \int_{\Gamma(y)}\left(u_{m}^{+}\right)^{2} \mathrm{~d} x \geq C>0 \tag{2.9}
\end{equation*}
$$

Proof. For $q \in\left(p, 2_{*}\right)$ fixed and by interpolation we have

$$
\begin{equation*}
\|u\|_{L^{p}(\Gamma(y))}^{p} \leq\|u\|_{L^{2}(\Gamma(y))}^{(1-\alpha) p}\|u\|_{L^{q}(\Gamma(y))}^{\alpha p}, \quad u \in H \tag{2.10}
\end{equation*}
$$

where $\alpha=p q /[(p-2)(q-2)]$. Now, we consider two cases.
Case 1: $q_{*}=4(q-1) / q \leq p$. In this case we have $\alpha p / 2 \geq 1$. Then, setting

$$
\|u\|_{B_{1}^{+}, \Gamma, y}:=\left(\|\nabla u\|_{L^{2}\left(B_{1}^{+}(y)\right)}^{2}+\|u\|_{L^{2}(\Gamma(y))}^{2}\right)^{1 / 2}
$$

and using (2.10) together with Lemma 2.5 we obtain

$$
\begin{align*}
\|u\|_{L^{p}(\Gamma(y))}^{p} & \leq C_{1}\|u\|_{L^{2}(\Gamma(y))}^{(1-\alpha) p}\|u\|_{B_{1}^{+}, \Gamma, y}^{\alpha p} \\
& \leq C_{1}\left(\sup _{y \in \mathbb{R}^{N-1}} \int_{\Gamma(y)} u^{2} \mathrm{~d} x\right)^{(1-\alpha) p / 2}\|u\|_{B_{1}^{+}, \Gamma, y}^{\alpha p-2}\|u\|_{B_{1}^{+}, \Gamma, y}^{2} \tag{2.11}\\
& \leq C_{2}\left(\sup _{y \in \mathbb{R}^{N-1}} \int_{\Gamma(y)} u^{2} \mathrm{~d} x\right)^{(1-\alpha) p / 2}\|u\|_{\partial}^{\alpha p-2}\|u\|_{B_{1}^{+}, \Gamma, y}^{2},
\end{align*}
$$

where C_{1}, C_{2} are positive constants which depend only on N and p. Now we choose a family $\left\{B_{1}^{+}(y)\right\}$ covering \mathbb{R}^{N-1} and such that each point of \mathbb{R}^{N-1} is contained in at most N such balls. Summing up inequalities (2.11) over this family, we find

$$
\begin{equation*}
\int_{\mathbb{R}^{N-1}}|u|^{p} \mathrm{~d} x \leq N C\left(\sup _{y \in \mathbb{R}^{N-1}} \int_{\Gamma(y)} u^{2} \mathrm{~d} x\right)^{(1-\alpha) p / 2}\|u\|_{\partial}^{\alpha p-2}\|u\|_{\partial}^{2} \tag{2.12}
\end{equation*}
$$

Now, setting $u=u_{m}^{+}$in (2.12) and using the fact that $\left(u_{m}\right)$ is bounded we obtain

$$
\left\|u_{m}^{+}\right\|_{L^{p}\left(\mathbb{R}^{N-1}\right)} \leq C\left\{\sup _{y \in \mathbb{R}^{N-1}} \int_{\Gamma(y)}\left(u_{m}^{+}\right)^{2} \mathrm{~d} x\right\}^{(1-\alpha) / 2}
$$

which together with Lemma 2.3 implies that (2.9) holds.
Case 2: $q_{*}=4(q-1) / q>p$. In this case we have that

$$
\|u\|_{L^{p}\left(\mathbb{R}^{N-1}\right)} \leq\|u\|_{L^{2}\left(\mathbb{R}^{N-1}\right)}^{1-\beta}\|u\|_{L^{4(q-1) / q}\left(\mathbb{R}^{N-1}\right)}^{\beta}
$$

for some $\beta \in(0,1)$. Therefore, (2.10) follows by using (2.12) with $p=q_{*}$ and $\alpha=\left[q q_{*} /[(q-2)]\left(q_{*}-2\right)\right]$.
Now we are ready to prove the existence of a nontrivial H-weak solution of (P).
Proposition 2.13. There exists a ground state solution at the level $c_{p}\left(\mathbb{R}_{+}^{N}\right)$.
Proof. By Lemma 2.8, there exits a sequence of points $\left(y_{m}\right) \subset \mathbb{R}^{N-1}$ such that

$$
\int_{\Gamma\left(y_{m}\right)}\left(u_{m}^{+}\right)^{2} \mathrm{~d} x \geq \frac{b}{2}
$$

Thus, considering the new sequence $w_{m}(\cdot)=u_{m}\left(\cdot+y_{m}\right)$, it follows from (2.14) that

$$
\begin{equation*}
\int_{\Gamma(0)}\left(w_{m}^{+}\right)^{2} \mathrm{~d} x \geq \frac{b}{2} \tag{2.14}
\end{equation*}
$$

Using the invariance by translation, it is easy to show that $I\left(w_{m}\right) \rightarrow c_{p}\left(\mathbb{R}_{+}^{N}\right)$ and $I^{\prime}\left(w_{m}\right) \rightarrow 0$. Using again Lemma 2.3 we obtain that $\left(w_{m}\right)$ is bounded. Since H is reflexive, we can take a subsequence (still denoted in the same way) such that $w_{m} \rightharpoonup w$ in H. Thus, $w_{m} \rightarrow w$ in $L_{l o c}^{2}\left(\mathbb{R}^{N-1}\right)$ and hence it follows from (2.14) that w is nontrivial.

Claim 2.15. $c_{p}\left(\mathbb{R}_{+}^{N}\right)=I(w)$ and $I^{\prime}(w)=0$.
Indeed, since $I^{\prime}\left(w_{m}\right) \rightarrow 0$ in H^{\prime} (dual space) and $w_{m} \rightharpoonup w$ in H, taking the limit we obtain $I^{\prime}(w) \varphi=0$ for all $\varphi \in H$. Thus, taking $\varphi=w^{-}$as testing function, it follows that w is a nonnegative H-weak solution of (P).

Since $I^{\prime}(w) w=0$ and the norm is weakly lower semicontinuous, we obtain

$$
\begin{equation*}
I(w)=\left(\frac{1}{2}-\frac{1}{p}\right)\|w\|_{\partial}^{2} \leq \lim \left(\frac{1}{2}-\frac{1}{p}\right)\left\|w_{m}\right\|_{\partial}^{2}=c_{p}\left(\mathbb{R}_{+}^{N}\right) \tag{2.16}
\end{equation*}
$$

Next, using the fact that the mountain pass level is equal to the infimum of I on the Nehary manifold

$$
\mathcal{N}=\left\{u \in H \backslash\{0\}: I^{\prime}(u) u=0\right\}
$$

that is, $c_{p}\left(\mathbb{R}_{+}^{N}\right)=\inf _{w \in \mathcal{N}} I(w)$, and since $w \in \mathcal{N}$, we get $c_{p}\left(\mathbb{R}_{+}^{N}\right) \leq I(w)$. Therefore, $c_{p}\left(\mathbb{R}_{+}^{N}\right)=I(w)$ and we conclude that w is a ground state solution of (P).

3 Regularity and polynomial decay

In this section we shall prove some regularity and decay properties for ground state solutions of (P).
Proposition 3.1. Let v be a H-weak solution of the nonlinear boundary value problem

$$
\left\{\begin{array}{lll}
\Delta v=0 & \text { in } & \mathbb{R}_{+}^{N} \tag{3.2}\\
\frac{\partial v}{\partial \eta}=a(x)|v|^{q-1} v-v & \text { on } & \mathbb{R}^{N-1}
\end{array}\right.
$$

with $a \in L^{\infty}\left(\mathbb{R}^{N-1}\right)$ and $1 \leq q<2_{*}-1$, that is,

$$
\begin{equation*}
\int_{\mathbb{R}_{+}^{N}} \nabla v \nabla \varphi \mathrm{~d} z+\int_{\mathbb{R}^{N-1}} v \varphi \mathrm{~d} x=\int_{\mathbb{R}^{N-1}} a(x)|v|^{q-1} v \varphi \mathrm{~d} x, \quad \forall \varphi \in H \tag{3.3}
\end{equation*}
$$

Then $v \in L^{\infty}\left(\mathbb{R}_{+}^{N}\right)$ and its trace $\left.v\right|_{\mathbb{R}^{N-1}}$ belongs to $L^{\infty}\left(\mathbb{R}^{N-1}\right)$. In particular, any H-weak solution of (P) enjoys the same properties.

Proof. Let v be a H-weak solution of (3.2). We can assume without lost of generality that v is nonnegative, by changing the test function. For each $k>0$, we define $\varphi_{k}=v_{k}^{2(\beta-1)} v$ and $w_{k}=v v_{k}^{\beta-1}$ with $\beta>1$ to be determined later, where $v_{k}=\min \{v, k\}$. Note that $0 \leq v_{k} \leq v,<\nabla v_{k}, \nabla v>\geq 0$ and $\left|\nabla v_{k}\right| \leq|\nabla v|$. Taking φ_{k} as a test function in (3.3), we get

$$
\begin{aligned}
\int_{\mathbb{R}_{+}^{N}} v_{k}^{2(\beta-1)}|\nabla v|^{2} \mathrm{~d} z & \leq-\int_{\mathbb{R}^{N-1}} v_{k}^{2(\beta-1)} v^{2} \mathrm{~d} x-2(\beta-1) \int_{\mathbb{R}_{+}^{N}} v_{k}^{2(\beta-1)-1} v \nabla v_{k} \nabla v \mathrm{~d} z \\
& +|a|_{\infty} \int_{\mathbb{R}^{N-1}} v^{q+1} v_{k}^{2(\beta-1)} \mathrm{d} x
\end{aligned}
$$

Now, observing that the first and the second terms on the right-hand side of the inequality above are non positive, we obtain

$$
\int_{\mathbb{R}_{+}^{N}} v_{k}^{2(\beta-1)}|\nabla v|^{2} \mathrm{~d} z \leq C \int_{\mathbb{R}^{N-1}} v^{q+1} v_{k}^{2(\beta-1)} \mathrm{d} x=C \int_{\mathbb{R}^{N-1}} v^{q-1} w_{k}^{2} \mathrm{~d} x
$$

This together with the trace imbedding (2.2) implies that

$$
\begin{aligned}
\left(\int_{\mathbb{R}^{N-1}} w_{k}^{2 *} \mathrm{~d} z\right)^{2 / 2_{*}} & \leq C_{1} \int_{\mathbb{R}_{+}^{N}}\left|\nabla w_{k}\right|^{2} \mathrm{~d} x \\
& \leq C_{2} \int_{\mathbb{R}_{+}^{N}}\left[v_{k}^{2(\beta-1)}|\nabla v|^{2}+(\beta-1)^{2} v^{2} v_{k}^{2(\beta-2)}\left|\nabla v_{k}\right|^{2}\right] \mathrm{d} z \\
& \leq C_{4} \beta^{2} \int_{\mathbb{R}_{+}^{N}} v_{k}^{2(\beta-1)}|\nabla v|^{2} \mathrm{~d} z \\
& \leq C_{5} \beta^{2} \int_{\mathbb{R}^{N-1}} v^{q-1} w_{k}^{2} \mathrm{~d} x
\end{aligned}
$$

where we used that $1+(\beta-1)^{2} \leq \beta^{2}$ for $\beta \geq 1$. By Hölder inequality we get

$$
\left(\int_{\mathbb{R}^{N-1}} w_{k}^{2_{*}} \mathrm{~d} x\right)^{2 / 2_{*}} \leq \beta^{2} C_{5}\left(\int_{\mathbb{R}^{N-1}} v^{2_{*}} \mathrm{~d} x\right)^{(q-1) / 2_{*}}\left(\int_{\mathbb{R}^{N-1}} w_{k}^{22_{*} /\left(2_{*}-q+1\right)} \mathrm{d} x\right)^{\left(2_{*}-q+1\right) / 2_{*}}
$$

Using that $\left|w_{k}\right| \leq|v|^{\beta}$ and the continuous embedding $H \hookrightarrow L^{2 *}\left(\mathbb{R}^{N-1}\right)$ we have

$$
\left(\int_{\mathbb{R}^{N-1}}\left|v v_{k}^{\beta-1}\right|^{2_{*}} \mathrm{~d} x\right)^{2 / 2_{*}} \leq \beta^{2} C_{6}\|v\|_{\partial}^{q-1}\left(\int_{\mathbb{R}^{N-1}} v^{\beta 22_{*} /\left(2_{*}-q+1\right)} \mathrm{d} x\right)^{\left(2_{*}-q+1\right) / 2_{*}}
$$

Choosing $\beta=2^{-1}\left(2_{*}-q+1\right)>1$, we have $2 \beta\left(2_{*}-q+1\right)^{-1}=1$. Thus,

$$
\left(\int_{\mathbb{R}^{N-1}}\left|v v_{k}^{\beta-1}\right|^{2_{*}} \mathrm{~d} x\right)^{2 / 2_{*}} \leq \beta^{2} C_{6}\|v\|_{\partial}^{q-1}\|v\|_{\beta \alpha^{*}}^{2 \beta},
$$

where $\alpha^{*}=2\left(2_{*}-q+1\right)^{-1} 2_{*}$. By Fatou's Lemma, we obtain

$$
\begin{equation*}
\|v\|_{\beta 2_{*}} \leq\left(C_{6} \beta^{2}\|v\|_{\partial}^{q-1}\right)^{1 / 2 \beta}\|v\|_{\beta \alpha^{*}} . \tag{3.4}
\end{equation*}
$$

Taking $\beta_{0}=\beta$ and inductively $\beta_{m+1} \alpha_{*}=2_{*} \beta_{m}$ for $m=1,2, \ldots$ and applying the previous processes for β_{1}, we have that by (3.4)

$$
\begin{aligned}
\|v\|_{\beta_{1} 2_{*}} & \leq\left(\beta_{1}^{2} C_{6}\|v\|_{\partial}^{q-1}\right)^{1 / 2 \beta_{1}}\|u\|_{\beta_{1} \alpha^{*}} \\
& \leq\left(\beta_{1}^{2} C_{6}\|v\|_{\partial}^{q-1}\right)^{1 / 2 \beta_{1}}\left(\beta^{2} C_{6}\|v\|_{\partial}^{q-1}\right)^{1 / 2 \beta}\|v\|_{\beta \alpha^{*}} \\
& \leq\left(C_{6}\|v\|_{\partial}^{q-1}\right)^{1 / 2 \beta_{1}+1 / 2 \beta}(\beta)^{1 / \beta}\left(\beta_{1}\right)^{1 / \beta_{1}}\|v\|_{2_{*}} .
\end{aligned}
$$

Observing that $\beta_{m}=\chi^{m} \beta$ where $\chi=2_{*} / \alpha^{*}$, we obtain by iteration

$$
\|v\|_{\beta_{m} 2_{*}} \leq\left(C_{6}\|v\|_{\partial}^{q-1}\right)^{1 / 2 \beta \sum_{i=0}^{m} \chi^{-i}} \beta^{1 / \beta \sum_{i=0}^{m} \chi^{-i}} \chi^{1 / \beta \sum_{i=0}^{m} i \chi^{-i}}\|v\|_{2_{*}} .
$$

Since $\chi>1$ and

$$
\lim _{m \rightarrow \infty} \frac{1}{2 \beta} \sum_{i=0}^{m} \chi^{-i}=\frac{1}{2_{*}-q-1}
$$

we can take the limit as $m \rightarrow \infty$ to get

$$
\|v\|_{\infty} \leq C_{7}\left(\|v\|_{\partial}^{q-1}\right)^{1 /\left(2_{*}-q-1\right)}\|v\|_{\partial}
$$

Thus, we concluded that $v \in L^{\infty}\left(\mathbb{R}^{N-1}\right)$.
Now, for each $k \in \mathbb{N}$ define

$$
\Omega(k)=\left\{z=(x, t) \in \overline{\mathbb{R}_{+}^{N}}: v(z)>k\right\} .
$$

Note that $\Omega(k)$ has finite Lebesgue measure because $v \in L^{2^{*}}\left(\mathbb{R}_{+}^{N}\right)$ and its trace $\left.v\right|_{\mathbb{R}^{N-1}}$ belongs $L^{2}\left(\mathbb{R}^{N-1}\right)$. Thus, the function

$$
\varphi(z)= \begin{cases}(v-k)(z), & \text { if } z \in \Omega(k) \\ 0, & \text { if } z \in \overline{\mathbb{R}_{+}^{N} \backslash \Omega(k)}\end{cases}
$$

belongs to the space H and $\nabla \varphi=\nabla v$ in $\Omega(k)$.
Since $v \in L^{\infty}\left(\mathbb{R}^{N-1}\right)$, there exist a constant $M>0$ such that $\|v\|_{L^{\infty}\left(\mathbb{R}^{N-1}\right)} \leq M$. Therefore, taking $k>M$ we obtain that $\varphi(x, 0)=0$ for all $x \in \mathbb{R}^{N-1}$. Hence, choosing φ as a testing function in (3.3) we get

$$
\begin{equation*}
\int_{\Omega(k)}|\nabla v|^{2} \mathrm{~d} z=0 \tag{3.5}
\end{equation*}
$$

which implies that v is constant in $\Omega(k)$ or $|\Omega(k)|=0$. In any case, we have $v \in L^{\infty}\left(\mathbb{R}_{+}^{N}\right)$ and the proof is complete.

Remark 3.6. 1) As a consequence of Lemma 3.1 and Harnack inequality (see [11] or [16, Theorem 1.1]), we obtain that nonnegative H-weak solutions of (P) are indeed positive in \mathbb{R}_{+}^{N}.
2) From Lemma 3.1 and regularity results proved in [7, 15], we obtain that H-weak solutions of (P) belong to $C_{l o c}^{1, \alpha}\left(\overline{\mathbb{R}_{+}^{N}}\right)$. By a maximum principle due to Vazquez [17] we obtain in fact that $w>0$ in $\overline{\mathbb{R}_{+}^{N}}$.
Next, using some ideas of [16]) and [11], we prove a Harnack type inequality, which will be useful in order to prove some decay properties of the ground state solutions of (P).

For fixed $y \in \mathbb{R}^{N-1}$ and $r<\rho$, we denote $B_{\rho}^{+}=B_{\rho}^{+}(y), \Gamma_{\rho}=\Gamma_{\rho}(y)$ and, let $B_{r}^{+} \subset B_{\rho}^{+}, \Gamma_{r}^{+} \subset \Gamma_{\rho}^{+}$be concentric balls, where

$$
B_{\rho}^{+}(y)=\left\{z \in \mathbb{R}_{+}^{N}:|z-(y, 0)|<\rho\right\} \text { and } \Gamma_{\rho}(y)=\left\{x \in \mathbb{R}^{N-1}:|x-y|<\rho\right\}
$$

Lemma 3.7. Let w be a H-weak solution of (P) with $0<w \leq M$ in $B_{3 \rho}^{+}$. Then there exist $C=C(N, M)>0$ and $\theta_{0}>1$ such that

$$
\max _{B_{\rho}^{+}} w+\max _{\Gamma_{\rho}} w \leq C \rho^{-(N-1) / \theta_{0}}\left(\rho^{-1}\|w\|_{L^{\theta_{0}}\left(B_{2 \rho}^{+}\right)}^{\theta_{0}}+\|w\|_{L^{\theta_{0}\left(\Gamma_{2 \rho}\right)}}^{\theta_{0}}\right)^{1 / \theta_{0}} .
$$

In particular, we have

$$
\lim _{|z| \rightarrow+\infty} w(z)=0, \quad \forall z \in \overline{\mathbb{R}_{+}^{N}}
$$

Proof. In what follows C denote an arbitrary constant. Assume that $w \geq \epsilon>0$ on $\overline{\mathbb{R}_{+}^{N} \cap B_{3 \rho}^{+}}$. Let us define the function φ by

$$
\varphi=\eta^{2} w^{\beta}
$$

where $\beta>1,0 \leq \eta(z) \leq 1, \eta \in C^{1}\left(B_{3 \rho}\right)$ and $\operatorname{supp}(\eta) \subset B_{\rho}^{+}$. Note that

$$
\nabla \varphi=\beta \eta^{2} w^{\beta-1} \nabla w+2 \eta w^{\beta} \nabla \eta
$$

Taking φ as a test function in (1.4) we obtain

$$
\begin{equation*}
\int_{B_{\rho}^{+}}\left[\beta \eta^{2} w^{\beta-1}|\nabla w|^{2}+2 \eta w^{\beta}(\nabla \eta \cdot \nabla w)\right] \mathrm{d} z=\int_{\Gamma_{\rho}} \eta^{2} w^{\beta}\left(w^{p-1}-w\right) \mathrm{d} x \tag{3.8}
\end{equation*}
$$

This yields

$$
\begin{equation*}
\int_{B_{\rho}^{+}} \beta \eta^{2} w^{\beta-1}|\nabla w|^{2} \mathrm{~d} z \leq 2 \int_{B_{\rho}^{+}} \eta w^{\beta}|\nabla \eta||\nabla w| \mathrm{d} z+M^{p-2} \int_{\Gamma_{\rho}} \eta^{2} w^{\beta+1} \mathrm{~d} x \tag{3.9}
\end{equation*}
$$

From (3.9), using Young's inequality

$$
c d \leq \frac{1}{2} \epsilon^{2} c^{2}+\frac{1}{2} \epsilon^{-2} d^{2}
$$

with $c=\eta w^{(\beta-1) / 2}|\nabla w|, d=w^{(\beta+1) / 2}|\nabla \eta|$, after some straightforward calculations we get

$$
\begin{equation*}
\int_{B_{\rho}^{+}} \eta^{2} w^{\beta-1}|\nabla w|^{2} \mathrm{~d} z \leq C\left(1-\frac{\epsilon^{2}}{\beta}\right)^{-1} \beta^{-1}\left(\epsilon^{-2} \int_{B_{\rho}^{+}} w^{\beta+1}|\nabla \eta|^{2} \mathrm{~d} z+\int_{\Gamma_{\rho}} \eta^{2} w^{\beta+1} \mathrm{~d} x\right) \tag{3.10}
\end{equation*}
$$

Now, choosing β large enough and defining the function

$$
v=w^{s}, \quad \text { where } \quad 2 s=\beta+1
$$

we have

$$
\begin{equation*}
\left(\frac{1}{s}\right)^{2} \int_{B_{\rho}^{+}}(\eta|\nabla v|)^{2} \mathrm{~d} z \leq C \beta^{-1}\left(\int_{B_{\rho}^{+}}(|\nabla \eta| v)^{2} \mathrm{~d} z+\int_{\Gamma_{\rho}}(\eta v)^{2} \mathrm{~d} x\right) \tag{3.11}
\end{equation*}
$$

After adding the term $\int_{\Gamma_{\rho}}(\eta v)^{2}$ to both side of (3.11) we obtain

$$
\begin{equation*}
\left(\|\eta|\nabla v|\|_{L^{2}\left(B_{\rho}^{+}\right)}^{2}+\|\eta v\|_{L^{2}\left(\Gamma_{\rho}\right)}^{2}\right)^{1 / 2} \leq C s\left(1+\beta^{-1}\right)\left(\|v \mid \nabla \eta\|_{L^{2}\left(B_{\rho}^{+}\right)}^{2}+\|\eta v\|_{L^{2}\left(\Gamma_{\rho}\right)}^{2}\right)^{1 / 2} \tag{3.12}
\end{equation*}
$$

Taking $\eta(z)=1$ in $B_{r_{2}}$ and $\eta(z)=0$ outside $B_{r_{1}}$ where $1 \leq r_{2}<\rho \leq r_{1} \leq 2,|\nabla \eta| \leq 2 /\left(r_{1}-r_{2}\right), 2 \gamma=2_{*}$ and $\left(1+\beta^{-1}\right)<C$, we obtain from (3.12) that

$$
\begin{equation*}
\left(\|\nabla v\|_{L^{2}\left(B_{r_{2}}^{+}\right)}^{2}+\|v\|_{L^{2}\left(\Gamma_{r_{2}}\right)}^{2}\right)^{1 / 2} \leq \frac{2 s C}{\left(r_{1}-r_{2}\right)}\left(\|v\|_{L^{2}\left(B_{r_{1}}^{+}\right)}^{2}+\|v\|_{L^{2}\left(\Gamma_{r_{1}}\right)}^{2}\right)^{1 / 2} \tag{3.13}
\end{equation*}
$$

Using (2.6) and (2.7) we obtain

$$
\|v\|_{L^{2 \gamma}\left(B_{r_{2}}^{+}\right)}+\|v\|_{L^{2 \gamma}\left(\Gamma_{r_{2}}\right)} \leq C\left(\|\nabla v\|_{L^{2}\left(B_{r_{2}}^{+}\right)}^{2}+\|v\|_{L^{2}\left(\Gamma_{r_{2}}\right)}^{2}\right)^{1 / 2}
$$

which together with (3.13) implies that

$$
\left(\|v\|_{L^{2 \gamma}\left(B_{r_{2}}\right)}^{2 \gamma}+\|v\|_{L^{2 \gamma}\left(\Gamma_{r_{2}}\right)}^{2 \gamma}\right)^{1 /(2 \gamma)} \leq \frac{2 s C}{\left(r_{1}-r_{2}\right)}\left(\|v\|_{L^{2}\left(B_{\left.r_{1}\right)}^{+}\right.}^{2}+\|v\|_{L^{2}\left(\Gamma_{r_{1}}\right)}^{2}\right)^{1 / 2}
$$

Since $v=w^{s}$ we get

$$
\begin{equation*}
\left(\int_{B_{r_{2}}^{+}}|w|^{2 s \gamma} \mathrm{~d} z+\int_{\Gamma_{r_{2}}}|w|^{2 s \gamma} \mathrm{~d} x\right)^{1 /(2 \gamma)} \leq \frac{2 s C}{\left(r_{1}-r_{2}\right)}\left(\int_{B_{r_{1}}^{+}}|w|^{2 s} \mathrm{~d} z+\int_{\Gamma_{r_{1}}}|w|^{2 s} \mathrm{~d} x\right)^{1 / 2} \tag{3.14}
\end{equation*}
$$

Moreover, taking the $s-t h$ root in (3.14) and setting $\theta=2 s$ we obtain

$$
\begin{equation*}
\phi\left(\theta \gamma, r_{2}\right) \leq\left(C \theta\left(r_{1}-r_{2}\right)^{-1}\right)^{2 / \theta} \phi\left(\theta, r_{1}\right) \tag{3.15}
\end{equation*}
$$

where

$$
\phi(q, r)=\left(\int_{B_{r}^{+}(y)}|w|^{q} \mathrm{~d} z+\int_{\Gamma_{r}(y)}|w|^{q} \mathrm{~d} x\right)^{1 / q}, \quad q>0, r>0
$$

Now for some $\theta_{o}>0$ let us define

$$
\theta_{m}=\gamma^{m} \theta_{o}, \quad r_{m}=1+2^{-m}, \quad m=0,1,2, \ldots .
$$

The choice of θ_{o} will be such that $\theta_{m} \neq 1$. Then, from (3.15) we get

$$
\begin{align*}
\phi\left(\theta_{m+1}, r_{m+1}\right) & \leq\left(C \gamma^{m+1} \theta_{o}\left(r_{m}-r_{m+1}\right)^{-1}\right)^{2 /\left(\gamma^{m} \theta_{o}\right)} \phi\left(\theta_{m}, r_{m}\right) \\
& \leq\left(C(2 \gamma)^{m+1}\right)^{2 \gamma-m} / \theta_{o} \phi\left(\theta_{m}, r_{m}\right) \\
& =\left(C^{2 / \theta_{o}}\right)^{\gamma^{-m}}\left((2 \gamma)^{2 / \theta_{o}}\right)^{(m+1) \gamma^{-m}} \phi\left(\theta_{m}, r_{m}\right) \\
& \leq\left(C^{2 / \theta_{o}}\right)^{\sum \gamma^{-m}}\left((2 \gamma)^{2 / \theta_{o}}\right)^{\sum(m+1) \gamma^{-m}} \phi\left(\theta_{o}, 2\right) \tag{3.16}
\end{align*}
$$

Now, observing that $\gamma>1$ and taking the limit in (3.16) we obtain

$$
\max _{B_{1}^{+}} w+\max _{\Gamma_{1}} w=\phi(+\infty, 1) \leq C \phi\left(\theta_{o}, 2\right)
$$

Taking $\theta_{o}>1$, and making the change of variable $\bar{z}=\rho z$ with $z \in B_{2}^{+}$, and $\bar{z}=\rho x$ with $x \in \Gamma_{2}$, we conclude the proof.

Lemma 3.17. If w is a nonnegative H-weak solution of (P), then it has polynomial decay in $\overline{\mathbb{R}_{+}^{N}}$, more precisely,

$$
\begin{equation*}
w(z)=O\left(|z|^{2-N}\right) \quad \text { as } \quad|z| \rightarrow+\infty . \tag{3.18}
\end{equation*}
$$

Proof. Consider $\varphi: \overline{\mathbb{R}_{+}^{N}} \rightarrow \mathbb{R}$ defined by $\varphi=(A w-v)_{+}$where

$$
v(x, t)=\left(\frac{\mu}{(\mu+t)^{2}+|x|^{2}}\right)^{(N-2) / 2}, \quad \mu>0 \quad \text { and } \quad z=(x, t) \in \mathbb{R}_{+}^{N}
$$

is a solution of problem

$$
\left\{\begin{array}{lll}
-\Delta v=0 & \text { in } & \mathbb{R}_{+}^{N} \\
\frac{\partial v}{\partial \eta}=(N-2) v^{2_{*}-1} & \text { on } & \mathbb{R}^{N-1}
\end{array}\right.
$$

Since $w(z) \rightarrow 0$ as $|z| \rightarrow \infty$ we can take $R, A>0$ such that $w^{p-2}(x, 0)<1 / 2$ if $|x| \geq R$ and $\varphi \equiv 0$ if $|z| \leq R$. Now, using that

$$
\left\{\begin{array}{lll}
-\Delta(A w-v)=0 & \text { in } & \mathbb{R}_{+}^{N} \\
\frac{\partial(A w-v)}{\partial \eta}=A\left(w^{p-1}-w\right)-(N-2) v^{2 *-1} & \text { on } \mathbb{R}^{N-1}
\end{array}\right.
$$

and choosing $\varphi=(A w-v)_{+}$as test function, we have

$$
\int_{|z| \geq R}|\nabla \varphi|^{2} \mathrm{~d} z+(N-2) \int_{|x| \geq R} v^{2_{*}-1} \varphi \mathrm{~d} x=A \int_{|x| \geq R}\left(w^{p-1}-w\right) \varphi \mathrm{d} x \leq-\int_{|x| \geq R} \frac{w}{2} \varphi \mathrm{~d} x \leq 0 .
$$

Thus, $\varphi \equiv 0$ in $\overline{\mathbb{R}_{+}^{N}}$. Consequently $w \leq c_{1} v$ in $\overline{\mathbb{R}_{+}^{N}}$. This then yields the desired conclusion.
In order to obtain the decay of $D w$ we need to establish some regularity result.
Lemma 3.19. If w is a nonnegative H-weak solution of (P), then for each $i=1, \ldots, N$ we have that $D^{i} w \in H^{1}\left(\mathbb{R}_{+}^{N}\right)$.

Proof. Setting

$$
\left(D_{h} w\right)(z)=\frac{w\left(x+h e_{i}, t\right)-w(x, t)}{|h|}, \quad \text { for } \quad 1 \leq i<N-1 \quad \text { and } \quad h \in \mathbb{R} \backslash\{0\}
$$

where $\left\{e_{1}, \ldots, e_{N-1}\right\}$ is the canonical base of \mathbb{R}^{N-1}. Taking $\varphi=D_{-h}\left(D_{h} w\right)$ in (1.4), we obtain

$$
\int_{\mathbb{R}_{+}^{N}}\left|\nabla\left(D_{h} w\right)\right|^{2} \mathrm{~d} z+\int_{\mathbb{R}^{N-1}}\left|D_{h} w\right|^{2} \mathrm{~d} x=\int_{\mathbb{R}^{N-1}} D_{h}\left(w^{p-1}\right) D_{h} w \mathrm{~d} x
$$

which implies that

$$
\int_{\mathbb{R}^{N-1}} D_{h}\left(w^{p-1}\right) D_{h} w \mathrm{~d} x \leq \int_{\mathbb{R}^{N-1}} \frac{\left|w^{p-1}\left(x+h e_{i}, 0\right)-w^{p-1}(x, 0)\right|}{|h|}\left|D_{h} w\right| \mathrm{d} x .
$$

Using that for each $a, b \in(0,+\infty)$ fixed there exists $\theta \in(0,1)$ such that

$$
\left|a^{p-1}-b^{p-1}\right|=(p-1)(\theta a+(1-\theta) b)^{p-2}|a-b|
$$

we get

$$
\begin{equation*}
\left\|D_{h} w\right\|_{\partial}^{2} \leq(p-1) \int_{\mathbb{R}^{N-1}}\left(\theta w\left(x+h e_{i}, 0\right)+(1-\theta) w(x, 0)\right)^{p-2}\left|D_{h} w\right|^{2} \mathrm{~d} x \tag{3.20}
\end{equation*}
$$

For fixed $\Gamma:=\Gamma_{R}(0) \subset \mathbb{R}^{N-1}$ we have

$$
\begin{aligned}
\int_{\mathbb{R}^{N-1}}\left(\theta w\left(x+h e_{i}, 0\right)\right. & +(1-\theta) w(x, 0))^{p-2}\left|D_{h} w\right|^{2} \mathrm{~d} x \\
& \leq 2^{p-2}\left[\|w\|_{L^{\infty}(\Gamma)}^{p-2} \int_{\Gamma}\left|D_{h} w\right|^{2} \mathrm{~d} x+\|w\|_{L^{\infty}\left(\mathbb{R}^{N-1} \backslash \Gamma\right)}^{p-2} \int_{\mathbb{R}^{N-1} \backslash \Gamma}\left|D_{h} w\right|^{2} \mathrm{~d} x\right] \\
& \leq 2^{p-2}\left[\|w\|_{L^{\infty}\left(\mathbb{R}^{N-1}\right)}^{p-2} \int_{\Gamma}\left|D_{h} w\right|^{2} \mathrm{~d} x+\|w\|_{L^{\infty}\left(\mathbb{R}^{N-1} \backslash \Gamma\right)}^{p-2} \int_{\mathbb{R}^{N-1}}\left|D_{h} w\right|^{2} \mathrm{~d} x\right]
\end{aligned}
$$

Now, by Lemma 3.7 we can choose Γ such that

$$
\|w\|_{L^{\infty}\left(\mathbb{R}^{N-1} \backslash \Gamma\right)}^{p-2}<\frac{1}{(p-1) 2^{p-1}}
$$

This, together with (3.20) implies that

$$
\int_{\mathbb{R}_{+}^{N}}\left|\nabla\left(D_{h} w\right)\right|^{2} \mathrm{~d} z+\int_{\mathbb{R}^{N-1}}\left|D_{h} w\right|^{2} \mathrm{~d} x \leq C\left(p,\|w\|_{L^{\infty}(\Gamma)}\right) \int_{\Gamma}\left|D_{h} w\right|^{2} \mathrm{~d} x .
$$

Since $w \in C^{1, \alpha}(\Gamma)$ we obtain

$$
\begin{equation*}
\int_{\mathbb{R}_{+}^{N}}\left|\nabla\left(D_{h} w\right)\right|^{2} \mathrm{~d} z+\int_{\mathbb{R}^{N-1}}\left|D_{h} w\right|^{2} \mathrm{~d} x \leq C \tag{3.21}
\end{equation*}
$$

For $1 \leq j \leq N$ we denote $D^{j}=\partial / \partial z_{j}$. For each $\varphi \in C_{0}^{\infty}\left(\mathbb{R}_{+}^{N}\right)$, and the definition of weak derivative together with (3.21) we have

$$
\begin{aligned}
\left|\int_{\mathbb{R}_{+}^{N}} w D_{-h}\left(D^{j} \varphi\right) \mathrm{d} z\right| & =\left|\int_{\mathbb{R}_{+}^{N}} D_{h}\left(D^{j} w\right) \varphi \mathrm{d} z\right| \\
& \leq\left\|D_{h}\left(D^{j} w\right)\right\|_{L^{2}\left(\mathbb{R}_{+}^{N}\right)}\|\varphi\|_{L^{2}\left(\mathbb{R}_{+}^{N}\right)} \leq C\|\varphi\|_{L^{2}\left(\mathbb{R}_{+}^{N}\right)} .
\end{aligned}
$$

Taking the limit when $|h| \rightarrow 0$ we obtain

$$
\begin{equation*}
\left|\int_{\mathbb{R}_{+}^{N}} w D^{i, j} \varphi \mathrm{~d} z\right| \leq C\|\varphi\|_{L^{2}\left(\mathbb{R}_{+}^{N}\right)} \tag{3.22}
\end{equation*}
$$

for all $1 \leq i \leq N-1$ and $1 \leq j \leq N$. To conclude, taking $\varphi \in C_{0}^{\infty}\left(\mathbb{R}_{+}^{N}\right)$ as a test function in (1.4) and using (3.22) we get

$$
\begin{aligned}
\left|\int_{\mathbb{R}_{+}^{N}} w D^{N, N} \varphi \mathrm{~d} z\right| & =\left|\int_{\mathbb{R}_{+}^{N}} D^{N} w D^{N} \varphi \mathrm{~d} z\right| \\
& \leq \sum_{i=1}^{N-1}\left|\int_{\mathbb{R}_{+}^{N}} w D^{i, i} \varphi \mathrm{~d} z\right| \leq C\|\varphi\|_{L^{2}\left(\mathbb{R}_{+}^{N}\right)} .
\end{aligned}
$$

Therefore,

$$
\left|\int_{\mathbb{R}_{+}^{N}} w D^{i, j} \varphi \mathrm{~d} x\right| \leq C\|\varphi\|_{L^{2}\left(\mathbb{R}_{+}^{N}\right)},
$$

for all $1 \leq i \leq N$ and $1 \leq j \leq N$. This, together with Hanh-Banach Theorem and Riesz representation theorem implies that $D^{i} w \in H^{1}\left(\mathbb{R}_{+}^{N}\right)$ for all $1 \leq i \leq N$. Using the trace embedding, we conclude the proof of the lemma.

Lemma 3.23. If $w \in H$ is a nonnegative H-weak solution of (P), then for each $1 \leq i \leq N$, we have

$$
\lim _{|z| \rightarrow \infty}\left|D^{i} w(z)\right|=0, \quad z \in \overline{\mathbb{R}_{+}^{N}}
$$

Proof. To prove the lemma, first we consider $1 \leq i \leq N-1$. Then for each $\varphi \in C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$, if we take $D^{i} \varphi$ as a test function in (1.4) we get

$$
\int_{\mathbb{R}_{+}^{N}} \nabla w \nabla\left(D^{i} \varphi\right) \mathrm{d} z+\int_{\mathbb{R}^{N-1}} w D^{i} \varphi \mathrm{~d} x=\int_{\mathbb{R}^{N-1}} w^{p-1} D^{i} \varphi \mathrm{~d} x
$$

Thus,

$$
\int_{\mathbb{R}_{+}^{N}} \nabla\left(D^{i} w\right) \nabla \varphi \mathrm{d} z+\int_{\mathbb{R}^{N-1}} D^{i} w \varphi \mathrm{~d} x=\int_{\mathbb{R}^{N-1}}(p-1) w^{p-2} D^{i} w \varphi \mathrm{~d} x
$$

that is, $v=D^{i} w$ is a weak solution of (3.2) with $q=1$ and $a=(p-1) w^{p-2}$. By Lemma 3.1 we conclude that $D^{i} w \in L^{\infty}\left(\mathbb{R}_{+}^{N}\right)$ and its trace belongs to $L^{\infty}\left(\mathbb{R}^{N-1}\right)$. Now, taking $\varphi=\eta\left(D^{i} w\right)_{ \pm}^{\beta}$ as a test function in (1.4) (where $\eta \in C_{0}^{\infty}\left(\mathbb{R}^{N}\right), \beta>1$), and arguing as in the proof of Lemma 3.7, one can complete the case $1 \leq i \leq N-1$.

For the case $i=N$, it is sufficient to observe that $w_{t}=w-w^{p-1}$ on \mathbb{R}^{N-1} and w_{t} is a harmonic function in \mathbb{R}_{+}^{N}.

Corollary 3.24. If w is a nonnegative H-weak solution of (P), then $w \in C^{\infty}\left(\mathbb{R}_{+}^{N}\right) \cap C_{l o c}^{2, \alpha}\left(\overline{\mathbb{R}_{+}^{N}}\right)$.
Proof. Since w is a harmonic function we have that $w \in C^{\infty}\left(\mathbb{R}_{+}^{N}\right)$. From Lemma 3.1 and regularity results proved in [7], we obtain that H-weak solutions of (P) belongs to $C_{l o c}^{1, \alpha}\left(\overline{\mathbb{R}_{+}^{N}}\right)$. By Lemma $3.19, v=D^{i} w$ $i=1, \ldots, N-1$ is a H-weak solution of (3.2) with $a=(p-1) w^{p-2} \in L^{\infty}\left(\mathbb{R}^{N-1}\right)$ and $q=1$. Thus, $D^{i} w \in L^{\infty}\left(\mathbb{R}_{+}^{N}\right)$ and its trace belongs to $L^{\infty}\left(\mathbb{R}^{N-1}\right)$. The case $i=N$ follows as in the prove of Lemma 3.19. By results of Lieberman [7], we get that $D^{i} w \in C^{\infty}\left(\mathbb{R}_{+}^{N}\right)$ which concludes the proof.

4 Symmetry and exponential decay

Next, we will prove that nonnegative H-weak solutions of (P) are radially symmetric with respect to the first $N-1$ variables, by using the regularity and decay obtained in Section 3 (see [14] for a related result). The proof relies on the so-called moving planes technique due to Serrin [12], see also the celebrated paper [3] by Gidas-Ni-Nirenberg.

We point out that the next result will be used to prove the exponential decay in the first $N-1$ variables for nonnegative H-weak solutions of (P).

Proposition 4.1. If w is a nonnegative H-weak solution of (P), then w is radially symmetric with respect to the variable x, that is, $w(x, t)=w(r, t)$ if $r=|x|$. Moreover, $w_{r}(r, t)<0$ in $(0,+\infty) \times[0,+\infty)$.

Proof. For $\lambda>0$ we consider the reflection

$$
z=\left(x_{1}, x_{2}, \ldots, t\right) \mapsto z^{\lambda}=\left(2 \lambda-x_{1}, x_{2}, \ldots, t\right)
$$

where $z \in E_{\lambda}=\left\{z \in \overline{\mathbb{R}_{+}^{N}}: x_{1}>\lambda\right\}$, and we put

$$
u^{\lambda}(z)=w\left(z^{\lambda}\right)-w(z)
$$

Note that

$$
w\left(z^{\lambda}\right)=w(z) \quad \text { for } \quad z \in T_{\lambda}=\left\{z \in \mathbb{R}_{+}^{N}: x_{1}=\lambda\right\}
$$

Step1. We claim that there exists $\lambda>0$ such that

$$
\begin{equation*}
u^{\lambda}(z)>0 \quad \text { for all } \quad z \in E_{\lambda} \tag{4.2}
\end{equation*}
$$

Indeed, since $w(z) \rightarrow 0$ as $|z| \rightarrow \infty$, we can choose λ sufficiently large such that

$$
\begin{equation*}
u^{\lambda}\left(2 \lambda, x_{2}, \ldots, t\right)=w\left(0, x_{2}, \ldots, t\right)-w\left(2 \lambda, x_{2}, \ldots, t\right)>0 \tag{4.3}
\end{equation*}
$$

Next, we prove that (4.2) holds for this choice of λ. Arguing by contradiction, let us assume that there exists $z_{\lambda} \in E_{\lambda}$ such that $u^{\lambda}\left(z_{\lambda}\right) \leq 0$. In particular, we can take

$$
u^{\lambda}\left(z_{\lambda}\right)=\inf \left\{u^{\lambda}(z): z \in E_{\lambda}\right\} \leq 0
$$

We claim that $z_{\lambda} \in \mathbb{R}^{N-1} \cap E_{\lambda}$. Otherwise, we have $z_{\lambda} \in \mathbb{R}_{+}^{N} \cap E_{\lambda}$, and thus $B\left(z_{\lambda}, 2 \delta\right) \subset \mathbb{R}_{+}^{N} \cap E_{\lambda}$ for some $\delta>0$ sufficiently small. Using that $v^{\lambda}(z)=u^{\lambda}(z)-u^{\lambda}\left(z_{\lambda}\right)$ we have $v^{\lambda}\left(z_{\lambda}\right)=0$ and

$$
\left\{\begin{aligned}
\Delta v^{\lambda}=0 & \text { in } \quad B\left(z_{\lambda}, \delta\right) \\
v^{\lambda} \geq 0 \quad & \text { in } \quad B\left(z_{\lambda}, \delta\right)
\end{aligned}\right.
$$

In view of Harnack inequality and unique continuation methods for elliptic equations, we conclude that $v^{\lambda} \equiv 0$ in E_{λ}. Consequently, u^{λ} is a non positive constant in E_{λ}, which contradicts (4.3). Thus, we conclude that $u^{\lambda}(z)>0$ for all $z \in E_{\lambda} \cap \mathbb{R}_{+}^{N}$, which implies that $u^{\lambda}(z) \geq 0$ for all $z \in E_{\lambda} \cap \mathbb{R}^{N-1}$. Hence, $z_{\lambda} \in E_{\lambda} \cap \mathbb{R}^{N-1}$ and $u^{\lambda}\left(z_{\lambda}\right)=\inf \left\{u^{\lambda}(z): z \in E_{\lambda}\right\}=0$. Taking a ball $B \subset E_{\lambda} \cap \mathbb{R}_{+}^{N}$ such that $z_{\lambda} \in \partial B$ we have

$$
\left\{\begin{aligned}
\Delta u^{\lambda}=0 & \text { in } \quad B \\
u^{\lambda}>0 & \text { in } \quad B
\end{aligned}\right.
$$

which together with Hopf's lemma implies that $\left(\partial u^{\lambda} / \partial \nu\right)\left(z_{\lambda}\right)<0$, in contradiction with

$$
\frac{\partial u^{\lambda}}{\partial \nu}\left(z_{\lambda}\right)=\frac{\partial w^{\lambda}}{\partial \nu}-\frac{\partial w}{\partial \nu}=-w_{t}^{\lambda}+w_{t}=\left[\left(w^{\lambda}\right)^{p-1}-w^{\lambda}\right]+w-w^{p-1}=0
$$

Step2. Set

$$
\begin{equation*}
\lambda_{0}:=\inf \{\lambda>0 \text { such that (4.2) holds }\} . \tag{4.4}
\end{equation*}
$$

We will prove that $\lambda_{0}=0$. Assume instead that $\lambda_{0}>0$. Since $u^{\lambda_{0}} \equiv 0$ on $T_{\lambda_{0}}$ and

$$
\left\{\begin{aligned}
\Delta u^{\lambda_{0}}=0 & \text { in } \quad E_{\lambda_{0}} \\
u^{\lambda_{0}}>0 & \text { in } E_{\lambda_{0}}
\end{aligned}\right.
$$

it follows by Hopf's lemma that

$$
\begin{equation*}
2 w_{x_{1}}\left(\lambda_{0}, \bar{x}\right)=-u_{x_{1}}^{\lambda_{0}}\left(\lambda_{0}, \bar{x}\right)<0 \tag{4.5}
\end{equation*}
$$

where $\bar{x}=\left(x_{2}, \ldots, t\right)$. Thus, there exist $\epsilon>0$ such that $2\left(\lambda_{0}-\epsilon\right)-x_{1}<\lambda_{0}-\epsilon<x_{1}<\lambda_{0}$ and

$$
\begin{equation*}
u^{\lambda_{0}-\epsilon}\left(x_{1}, \bar{x}\right)=w\left(2\left(\lambda_{0}-\epsilon\right)-x_{1}, \bar{x}\right)-w\left(x_{1}, \bar{x}\right)>0 \tag{4.6}
\end{equation*}
$$

Consequently, for each $\left(\lambda_{0}, \bar{x}\right) \in T^{\lambda_{0}}$ there exist $\delta>0$ such that

$$
\begin{equation*}
u^{\lambda_{0}-\epsilon}(z)>0 \quad \text { for all } \quad z \in B\left(\left(\lambda_{0}, \bar{x}\right), \delta\right) \cap\left(\mathbb{R}_{+}^{N} \backslash E_{\lambda_{0}}\right) \tag{4.7}
\end{equation*}
$$

We claim that there exist $\epsilon>0$ such that

$$
\begin{equation*}
u^{\lambda_{0}-\epsilon}(z)>0 \quad \text { for all } \quad z \in E_{\lambda_{0}-\epsilon} \tag{4.8}
\end{equation*}
$$

Otherwise, there exists a sequence satisfying $\lambda_{k} \rightarrow \lambda_{0}, \lambda_{k}<\lambda_{0}$ and a sequence $\left(z_{k}\right) \subset E^{\lambda_{k}}$ such that $u^{\lambda_{k}}\left(z_{k}\right)<0$ and $\operatorname{dist}\left(z_{k}, T^{\lambda_{0}}\right) \rightarrow 0$. We have two cases to consider: either there exists a subsequence such that $z_{k_{l}} \rightarrow z_{0} \in T^{\lambda_{0}}$, which is impossible, in view of (4.7), or else $\left\|z_{k}\right\| \rightarrow \infty$. In the latter case, using (4.7) we may assume without loss of generality that

$$
u^{\lambda_{k}}\left(z_{k}\right)=\inf \left\{u^{\lambda_{k}}(z): z \in E^{\lambda_{k}}\right\}
$$

Since $v^{\lambda_{k}}(z):=u^{\lambda_{k}}(z)-u^{\lambda_{k}}\left(z_{k}\right)$ we have $v^{\lambda_{k}}\left(z_{k}\right)=0$ and

$$
\left\{\begin{array}{rll}
\Delta v^{\lambda_{k}}=0 & \text { in } & B_{\delta_{k}}\left(z_{k}\right) \\
v^{\lambda_{k}}>0 & \text { in } & B_{\delta_{k}}\left(z_{k}\right)
\end{array}\right.
$$

Using Hanark inequality, we obtain that $v^{\lambda_{k}} \equiv 0$ in $B_{\delta_{k}}\left(z_{k}\right)$, which together with unique continuation methods for elliptic equations implies that $u^{\lambda_{k}}$ is constant in $E_{\lambda_{k}}$, in contradiction with $u^{\lambda_{k}} \in H$. Thus, the assertion (4.8) contradicts our choice of λ_{0}, if $\lambda_{0}>0$.

Since $\lambda_{0}=0$, we see that $w\left(-x_{1}, \ldots, x_{N-1}, t\right) \geq w\left(x_{1}, \ldots, x_{N-1}, t\right)$ in $\overline{\mathbb{R}_{+}^{N}}$. A similar argument shows that $w\left(-x_{1}, \ldots, x_{N-1}, t\right) \leq w\left(x_{1}, \ldots, x_{N-1}, t\right)$. Thus w is symmetric in the plane T_{0} and $w_{x_{1}}=0$ on T_{0}. This argument applies as well after any rotation of coordinate axes in the variables x_{2}, \ldots, x_{N-1}.

Finally, setting $w(x, t)=v(r, t)$ where $r=|x|$, we will prove that $v_{r}(r, t)<0$ for all $(r, t) \in$ $(0,+\infty) \times[0,+\infty)$. For this, since that w is symmetric in \mathbb{R}^{N-1}, the same argument used to get (4.5) holds for x_{2}, \ldots, x_{N-1} and all $\lambda>0$. Therefore, it is sufficient to choose any point $x_{0} \in \mathbb{R}^{N-1}$ such that $x_{0}=\left(x_{1,0}, \ldots, x_{N-1}\right)$ with $x_{i, 0}>0$ and note that

$$
v_{r}\left(r_{0}, t\right)=\sum_{i=1}^{N-1} \frac{\partial w}{\partial x_{i}}\left(x_{0}, t\right) \cdot \frac{x_{i, 0}}{\left|x_{0}\right|}<0, \quad r_{0}=\left|x_{0}\right|
$$

Again, by the symmetry of w we conclude $v_{r}(r, t)<0$, for all $(r, t) \in(0,+\infty) \times(0,+\infty)$. To conclude, we need to prove that $v_{r}(r, 0)<0$ for all $r>0$. Arguing by contradiction suppose that $v_{r}\left(r_{0}, 0\right)=0$ for some $r_{0}>0$. Since $w \in C_{l o c}^{2, \alpha}\left(\overline{\mathbb{R}_{+}^{N}}\right) \cap C^{\infty}\left(\mathbb{R}_{+}^{N}\right)$ we get

$$
\left\{\begin{array}{rll}
\Delta v_{r}=0 & \text { in } \quad B^{+}\left(r_{0}\right) \\
v_{r}<0 & \text { in } & B^{+}\left(r_{0}\right)
\end{array}\right.
$$

where $B^{+}\left(r_{0}\right)=B_{\delta}\left(r_{0}, 0\right) \cap \overline{\mathbb{R}_{+}^{2}}$ for some $\delta>0$. By applying Hopf's lemma we conclude that

$$
0<\partial v_{r}\left(r_{0}, 0\right) / \partial \eta=-\left(v_{r}\right)_{t}\left(r_{0}, 0\right)=-\left(v_{t}\right)_{r}\left(r_{0}, 0\right)=v_{r}\left(r_{0}, 0\right)\left[(p-1) v^{p-2}-1\right]=0
$$

which is impossible.
In order to obtain the exponential decay of w we will use the follow result.

Lemma 4.9. Let w be a nonnegative H-weak solution of (P). Then for each $\nu>0$ there exists $c_{i}=c_{i}(\nu)>0$ such that for each $i=1, \ldots, N-1$ we have

$$
\begin{equation*}
w\left(x_{1}, \ldots, x_{i}, \ldots, t\right) \leq c_{i}\left|D^{i} w\left(x_{1}, \ldots, x_{i}, \ldots, t\right)\right|, \quad\left|x_{i}\right| \geq \nu \tag{4.10}
\end{equation*}
$$

Proof. Fixed $i \in\{1, \ldots, N-1\}$ and $\nu>0$, for each $x \in \overline{\mathbb{R}_{+}^{N}}$ define

$$
D_{\nu}^{i} w(z):= \begin{cases}D^{i} w\left(x_{1}, \ldots, x_{i}+\nu, \ldots, t\right), & \text { if } \quad x_{i}>0 \\ D^{i} w\left(x_{1}, \ldots,-x_{i}+\nu, \ldots, t\right), & \text { if } \quad x_{i} \leq 0\end{cases}
$$

Note that, by Proposition 4.1, $D^{i} w=w_{r} x_{i} / r<0$ for all $x_{i}>0$, which together with Lemma 3.17, implies that we may choose $R>0$ and $A_{i_{1}}:=A_{i_{1}}(R, \nu)>0$ such that

$$
\begin{array}{rllll}
w^{p-2}(z) \leq \frac{1}{2(p-1)} & \text { for all } & z \in \overline{\mathbb{R}_{+}^{N}} & \text { with } & |z| \geq R \\
\varphi_{i}:=\left(A_{i_{1}} w+D_{\nu}^{i} w\right)_{+} \equiv 0 & \text { for all } & z \in \overline{\mathbb{R}_{+}^{N}} & \text { with } & |z| \leq R
\end{array}
$$

Taking φ_{i} as a test function in the problem

$$
\left\{\begin{array}{rlll}
-\Delta\left(A_{i_{1}} w+D_{\nu}^{i} w\right) & =0 & \text { in } & \mathbb{R}_{+}^{N} \\
-\frac{\partial\left(A_{i_{1}} w+D_{\nu}^{i} w\right)}{\partial x_{n}} & =A_{i_{1}} w^{p-1}+(p-1) w^{p-2} D_{\nu}^{i} w-\left(A_{i_{1}} w+D_{\nu}^{i} w\right) & \text { on } & \mathbb{R}^{N-1}
\end{array}\right.
$$

we obtain

$$
\begin{aligned}
\int_{\mathbb{R}_{+}^{N}}\left|\nabla \varphi_{i}\right|^{2} \mathrm{~d} z+\int_{\mathbb{R}^{N-1}} \varphi_{i}^{2} \mathrm{~d} x & =\int_{\mathbb{R}^{N-1}}\left(A_{i_{1}} w^{p-1}+(p-1) w^{p-2} D_{\nu}^{i} w\right) \varphi_{i} \mathrm{~d} x \\
& \leq(p-1) \int_{\mathbb{R}^{N-1}} w^{p-2}\left(A_{i_{1}} w+D_{\nu}^{i} w\right) \varphi_{i} \mathrm{~d} x \leq \frac{1}{2} \int_{\mathbb{R}^{N-1}} \varphi_{i}^{2} \mathrm{~d} x
\end{aligned}
$$

Thus, $\varphi_{i} \equiv 0$ in $\overline{\mathbb{R}_{+}^{N}}$, which yields

$$
w\left(x_{1}, \ldots, x_{i}, \ldots, t\right) \leq A_{i_{1}}^{-1}\left(-D^{i} w\left(x_{1}, \ldots, x_{i}+\nu, \ldots, t\right)\right)
$$

Since $D^{i} w\left(x_{1}, \ldots, x_{i}, \ldots, t\right)<0$ for $x_{i}>0$ we obtain

$$
\begin{equation*}
w\left(x_{1}, \ldots, x_{i}+\nu, \ldots, t\right)<w\left(x_{1}, \ldots, x_{i}, \ldots, t\right) \leq A_{i_{1}}^{-1}\left(-D^{i} w\left(x_{1}, \ldots, x_{i}+\nu, \ldots, t\right)\right) \tag{4.11}
\end{equation*}
$$

Now, define for all $z \in \overline{\mathbb{R}_{+}^{N}}$, the function

$$
D_{-\nu}^{i} w(z):=\left\{\begin{array}{rll}
D^{i} w\left(x_{1}, \ldots, x_{i}-\nu, \ldots, t\right), & \text { if } & x_{i}<0 \\
D^{i} w\left(x_{1}, \ldots,-x_{i}-\nu, \ldots, t\right), & \text { if } & x_{i} \geq 0
\end{array}\right.
$$

Note that, by Proposition 4.1, $D^{i} w=w_{r} x_{i} / r>0$ for all $x_{i}<0$, which together with Lemma 3.17 implies that there exist $R>0$ and $A_{i_{2}}:=A_{i_{2}}(R, \nu)>0$ such that

$$
\begin{array}{rllll}
w^{p-2}(z) \leq \frac{1}{2(p-1)} & \text { for all } & z \in \overline{\mathbb{R}_{+}^{N}} & \text { with } & |z| \geq R \\
\phi_{i}:=\left(A_{i_{2}} w-D_{-\nu}^{i} w\right)_{+} \equiv 0 & \text { for all } & z \in \overline{\mathbb{R}_{+}^{N}} & \text { with } & |z| \leq R
\end{array}
$$

Taking ϕ_{i} as a test function in the problem

$$
\left\{\begin{aligned}
-\Delta\left(A_{i_{2}} w-D_{-\nu}^{i} w\right) & =0 & \text { in } & \mathbb{R}_{+}^{N} \\
-\frac{\partial\left(A_{i_{2}} w-D_{-\nu}^{i} w\right)}{\partial x_{n}} & =A_{i_{2}} w^{p-1}-(p-1) w^{p-2} D_{-\nu}^{i} w-\left(A_{i_{2}} w-D_{-\nu}^{i} w\right) & & \text { on }
\end{aligned} \mathbb{R}^{N-1}\right.
$$

and arguing as above, we get $\phi_{i} \equiv 0$ in $\overline{\mathbb{R}_{+}^{N}}$, which yields

$$
w\left(x_{1}, \ldots, x_{i}, \ldots, t\right) \leq A_{i_{2}}^{-1}\left(D_{-\nu}^{i} w\right)=A_{i_{2}}^{-1} D^{i} w\left(x_{1}, \ldots, x_{i}-\nu, \ldots, t\right)
$$

Since $D^{i} w\left(x_{1}, \ldots, x_{i}, \ldots, t\right)>0$ for $x_{i}<0$ we have

$$
\begin{equation*}
w\left(x_{1}, \ldots, x_{i}-\nu, \ldots, t\right)<w\left(x_{1}, \ldots, x_{i}, \ldots, t\right) \leq A_{i_{2}}^{-1} D^{i} w\left(x_{1}, \ldots, x_{i}-\nu, \ldots, t\right), \quad x_{i}<0 \tag{4.12}
\end{equation*}
$$

The desired conclusion follows easily from (4.11)-(4.12).
Now, we summarize our results about the decay estimate from above.
Proposition 4.13. Let w be a nonnegative H-weak solution of (P). Then, there exist $c_{1}, c_{2}>0$ such that

$$
w(x, t) \leq c_{1} \exp \left(-c_{2}|x|\right) \frac{1}{\left(1+t^{2}\right)^{\frac{N-2}{2}}}, \quad \forall z \in \overline{\mathbb{R}_{+}^{N}}
$$

Proof. If $x_{i}>0(1 \leq i \leq N-1)$, by inequality (4.10) we get

$$
\frac{\partial}{\partial x_{i}}\left(\ln \left(w\left(x_{1}, \ldots, x_{i}+\nu, \ldots, t\right)\right)\right)=\frac{D^{i} w\left(x_{1}, \ldots, x_{i}+\nu, \ldots, t\right)}{w\left(x_{1}, \ldots, x_{i}+\nu, \ldots, t\right)} \leq-c_{i}^{-1}
$$

By integration, we get

$$
\ln \left(w\left(x_{1}, \ldots, x_{i}+\nu, \ldots, t\right)\right)-\ln \left(w\left(x_{1}, \ldots, \nu, \ldots, t\right)\right) \leq-c_{i}^{-1} x_{i}
$$

that is,

$$
\begin{equation*}
w\left(x_{1}, \ldots, x_{i}+\nu, \ldots, t\right) \leq w\left(x_{1}, \ldots, \nu, \ldots, t\right) \exp \left(-c_{i}^{-1}\left|x_{i}\right|\right), \quad x_{i}>0 \tag{4.14}
\end{equation*}
$$

Using again (4.10), we obtain

$$
c_{i}^{-1} \leq \frac{D^{i} w\left(x_{1}, \ldots, x_{i}-\nu, \ldots, t\right)}{w\left(x_{1}, \ldots, x_{i}-\nu, \ldots, t\right)}=\frac{\partial}{\partial x_{i}}\left(\ln \left(w\left(x_{1}, \ldots, x_{i}-\nu, \ldots, t\right)\right)\right)
$$

Analogously if $x_{i}<0$, using (4.10) we get

$$
c_{i}^{-1}\left(0-x_{i}\right) \leq \ln \left(w\left(x_{1}, \ldots,-\nu, \ldots, t\right)\right)-\ln \left(w\left(x_{1}, \ldots, x_{i}-\nu, \ldots, t\right)\right)
$$

which implies that,

$$
\begin{equation*}
w\left(x_{1}, \ldots, x_{i}-\nu, \ldots, t\right) \leq w\left(x_{1}, \ldots,-\nu, \ldots, t\right) \exp \left(-\left(c_{i}^{-1}\right)\left|x_{i}\right|\right), \quad x_{i}<0 \tag{4.15}
\end{equation*}
$$

It follows from (4.14)-(4.15) and Lemma 3.17 that

$$
w\left(x_{1}, \ldots, x_{i}, \ldots, t\right) \leq c_{1} \frac{1}{\left(1+t^{2}\right)^{(N-2) / 2}} \exp \left(-c_{2}\left|x_{i}\right|\right), \quad\left|x_{i}\right| \geq \nu>0
$$

which implies the desired result.

To complete the proof of Theorem 1.6 we only need to obtain the lower polynomial decay on the variable t. Using the mean value theorem for harmonic functions, we have

$$
u(x, t)=\frac{1}{\omega_{N} R^{N}} \int_{B((x, t), R)} u(\bar{z}) \mathrm{d} \bar{z}, \quad \forall B((x, t), R) \subset \mathbb{R}_{+}^{N}
$$

where ω_{N} denotes the volume of the unit ball in \mathbb{R}^{N}. We may assume that $t>1$. Now, taking $R=t$ we get

$$
\begin{equation*}
u(x, t)=\frac{1}{\omega_{N} t^{N}} \int_{B((x, t), t)} u(\bar{z}) \mathrm{d} \bar{z} \geq \frac{1}{\omega_{N} t^{N}} \int_{B((x, 1), 1)} u(\bar{z}) \mathrm{d} \bar{z}=\frac{C(x)}{t^{N}} \tag{4.16}
\end{equation*}
$$

for all $t \geq 1$. The proof of Theorem1.6 is complete.

References

[1] E. Abreu, J. M. do Ó, E. S. Medeiros, Least energy solutions for a semilinear elliptic problem with nonlinear boundary condition (in preparation).
[2] Adimurthi; S. L. Yadava, Positive solution for Neumann problem with critical nonlinearity on boundary, Comm. Partial Differential Equations 16 (1991),1733-1760.
[3] G. Gidas, W. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Physics 68 (1979), 209-243.
[4] B. Hu, Nonexistence of a positive solution of the Laplace equation with a nonlinear boundary condition, Differential Integral Equations 7 (1994), 301-313.
[5] B. Hu and H. -M. Yin, The profile near blowup time for solution of the heat equation with a nonlinear boundary condition, Trans. Amer. Math. Soc. 346 (1994), 117-135.
[6] Y. Li, L. Zhang, Liouville-type theorems and Harnack-type inequalities for semilinear elliptic equations, Journal d'Analyse Mathmatique, 90 (2003), 27-87.
[7] G. M. Lieberman, Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal. 12 (1988), 1203-1219.
[8] J. L. Lions, Theorèmes de trace et d'interpolation (IV), Math. Ann. 151 (1963), 42-56.
[9] P. L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case, Part II, Ann. Inst. H. Poincaré Anal. Non Linéare 1, (1984) 223-283.
[10] W. M. Ni and I. Takagi, On the shape of least-energy solutions to a semilinear Neumann problem, Comm. Pure Appl. Math. 44 (1991), 819-851.
[11] J. Serrin, Local Behavior of solutions of quasilinear equations, Acta. Math., 111 (1964), 247-302.
[12] J. Serrin, A symmetry theorem in potential theory, Arch. Rational Mech. Anal. 43 (1971), 304-318.
[13] M. V. Steklov, Sur les problèmes fondamentaux de la physique mathemátique, Ann. Sci. Ecole Norm. Sup., 19 (1902), 455-490.
[14] S. Terracini, Symmetry properties of positive solutions to some elliptic equations with nonlinear boundary conditions, Differential Integral Equations 8 (1995), 1911-1922.
[15] P. Tolksdorff, Regularity for a more general class of quasilinear elliptic equations, J.Differential Equations, 51 (1984), 126-150.
[16] N. S. Trudinger, On harnack type inequalities and their application to quasilinear elliptic equations, Comm. Pure Appl. Math 20 (1967), 721-747.
[17] J. L. Vazquez, A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim. 12 (1984) 191-202.

[^0]: *Research partially supported by the National Institute of Science and Technology of Mathematics, CAPES and CNPq/Brazil.
 ${ }^{\dagger}$ Corresponding author, E-mail Address: jmbo@pq.cnpq.br

