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In this paper, the existence and qualitative properties of positive ground state solutions
for the following class of Schrödinger equations −ε2∆u + V (x)u− ε2[∆(u2)]u = f(u) in
the whole two-dimensional space are established. We develop a variational method based
on a penalization technique and Trudinger–Moser inequality, in a nonstandard Orlicz
space context, to build up a one parameter family of classical ground state solutions
which concentrates, as the parameter approaches zero, around some point at which the
solutions will be localized. The main feature of this paper is that the nonlinearity f
is allowed to enjoy the critical exponential growth and also the presence of the second
order nonhomogeneous term −ε2[∆(u2)]u which prevents us from working in a classical
Sobolev space. Our analysis shows the importance of the role played by the parameter
ε for which is motivated by mathematical models in physics. Schrödinger equations of
this type have been studied as models of several physical phenomena. The nonlinearity
here corresponds to the superfluid film equation in plasma physics.
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1. Introduction

This paper deals with the study of positive ground state solutions of the equation

−ε2∆u+ V (z)u− ε2[∆(u2)]u = f(u) in R
2

u(z) → 0 as |z| → ∞.
(Pε)
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A basic motivation for the study of this equation comes from the fact that it is
satisfied by standing-wave solutions of the quasilinear Schrödinger equations

iε
∂ψ

∂t
= −ε2∆ψ +W (z)ψ − l(|ψ|2)ψ − ε2κ[∆h(|ψ|2)]h′(|ψ|2)ψ (1)

namely, solutions of the form ψ(t, z) = e−iξtu(z), where ξ ∈ R and u > 0 is a real
function. With this ansatz, one obtains a corresponding equation of elliptic type
like (Pε) which has a formal variational structure whose amplitude u(z) vanishes
at infinity.

Quasilinear equations of the form (1) appear naturally in mathematical physics
and have been derived as models of several physical phenomena corresponding to
various types of nonlinear term h. The superfluid film equation in plasma physics
has this structure for h(s) = s, see [23]. In the case h(s) = (1 + s)1/2, Eq. (1)
models the self-channeling of a high-power ultra short laser in matter, see [37].
Equation (1) also appears in fluid mechanics [24], in the theory of Heisenberg fer-
romagnets and magnons [42], in dissipative quantum mechanics and in condensed
matter theory [28].

Motivated by the afore-mentioned physical aspects, Eq. (1) has recently
attracted a lot of attention and some existence results have been obtained. Direct
variational methods by using constrained minimization arguments were used in [34]
and then extended in [27] to provide existence of positive solutions up to an
unknown Lagrange multiplier because of the mixed homogeneity in Eq. (1). A
Nehari manifold approach was used in [26] to establish existence of a class of
solutions, in a suitable weak sense, among which sign changing solutions are also
included. In dimension one, the existence of positive solutions via perturbation
methods are obtained in [3] and we refer to [11] for existence of multiple nodal
bound states. In [12, 25, 29, 31] a reduction method was introduced which relies on
a suitable change of variable which turns the problem into finding solutions of an
auxiliary semilinear equation. In particular, in [25] a very interesting but somehow
intricate Orlicz space framework was proposed to set up the problem. Existence
results when the nonlinearity f exhibits critical exponential growth in dimension
two are also established, under additional conditions, in [17, 31] while in [30] the
fibering method is used to obtain multiplicity results for closely related problems.

An interesting class of solutions of (Pε) are the so called semi-classical states,
which are families of solutions uε which develop a spike shape around one or more
distinguished points of the space, while vanishing asymptotically elsewhere as ε→ 0
see [2, 5, 9, 14, 15, 18, 21].

The prospect of exhibiting a unify variational framework of concentration of
single spike solutions, associated to general topology of nontrivial critical points
of the potential V for such a disparate class of equations with critical exponential
growth in R

2, is the main motivating factor to write this paper.
In recent years, the related semilinear equations for κ = 0 have been extensively

studied. See, for example, [1, 2, 5–8,14, 15, 35, 38–41] and references therein.
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Throughout this paper the following hypotheses on the potential V : R
2 → R

will be assumed:

(V0) V is locally Hölder continuous and uniformly positive, that is,

V (z) ≥ β0 > 0 for all z ∈ R
2;

(V1) There exists a bounded smooth domain Λ ⊂ R
2 such that

inf
z∈∂Λ

V (z) > inf
z∈Λ

V (z) =: β1.

We are interested in the case that the nonlinear term f(s) has the maximal
growth which allows us to treat the problem (Pε) variationally in a suitable function
space. In fact the Trudinger–Moser inequality is one of the main ingredients of the
present paper. We say that the function f has subcritical growth at infinity if for
all α > 0,

lim
s→+∞

f(s)
eαs4 = 0 (2)

and f has critical growth at infinity if there exists α0 > 0 such that

lim
s→+∞

f(s)
eαs4 =

{
0, if α > α0,

+∞, if α < α0.
(3)

Note that such notion is motivated by Trudinger–Moser estimates in a bounded
domain Ω ⊂ R

2 [32, 43] which provides for all α > 0,

eα|u|2 ∈ L1(Ω), u ∈ H1
0 (Ω),

and for all α ≤ 4π,

sup
‖∇u‖2≤1

∫
Ω

eα|u|2dx ≤ C,

as well as for the entire space R
2 [8, 16] which provides for all α > 0,

eα|u|2 − 1 ∈ L1(R2), u ∈ H1(R2) (4)

and also if α < 4π and ‖u‖2 ≤ C, there exists a constant C1 = C1(C,α) such that

sup
‖∇u‖2≤1

∫
R2

(eα|u|2 − 1)dx ≤ C1. (5)

We assume the following conditions on the nonlinearity f :

(f0) f : [0,∞) → R is of class C1 and f(s) = o(s) at the origin.
(f1) There exists q > 3 such that

f ′(s)s ≥ qf(s) for s > 0.

As an immediate consequence of (f1), the following version of the classical
Ambrosetti–Rabinowitz condition holds:

0 < θF (s) ≤ sf(s) for s > 0, (6)
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where θ = q + 1 > 4 and F (s) =
∫ s

0 f(t)dt. Also it follows from (f1) that f(s)/s is
increasing for s > 0.

The main results of this paper are stated as follows.

Theorem 1 (The Subcritical Case). Suppose (V0)–(V1) hold and f has subcrit-
ical growth and satisfies the conditions (f0) and (f1). Then there exists ε0 > 0 such
that when 0 < ε < ε0, the problem (Pε) possesses a positive ground state solution
uε(z) ∈ C2,α

loc (R2) for some α ∈ (0, 1) with the following properties :

(i) uε has at most one local (hence global) maximum zε in R
2 and zε ∈ Λ;

(ii) limε→0+ V (zε) = β1 = infΛ V ;
(iii) There exist positive constants C and ξ such that

uε(z) ≤ Ce−ξ|(z−zε)/ε| for z ∈ R
2.

Theorem 2 (The Critical Case). Suppose (V0)–(V1) hold and f has critical
growth and satisfies the conditions (f0) and (f1) as well as the following condition

(f2) There exist p > 2 and Cp > 0 such that f(s) ≥ Cps
p−1 for all s ≥ 0 where

Cp >

[
θ(p− 2)
p(θ − 4)

](p−2)/2

(S∞
p )p and

S∞
p := inf

u∈H1
r (R2)\{0}

[∫
R2

(|∇u|2 + β1u
2)dx+

(∫
R2
u2|∇u|2dx

)1/2
]1/2

(∫
R2

|u|pdx
)1/p

.

Then there exists ε0 > 0 such that when 0 < ε < ε0 problem (Pε) possesses a
positive ground state solution uε(z) ∈ C2,α

loc (R2) for some α ∈ (0, 1) satisfying the
properties (i)–(iii) of Theorem 1.

Our premise here is that the assumptions in Theorems 1 and 2 are prevalent in
the equations originating on the subject. Most of nonlinearities with critical growth
verify (f2) and also this condition is more general than the following one used in [17]

lim
u→∞uf(u)e−αu4 ≥ β > 0 for some constants α, β > 0. (7)

Notice that the hypotheses of Theorems 1 and 2 are, for instance, satisfied by
nonlinearities of the following two forms:

(a) Subcritical growth: f(u) = 5u4(eu3 − 1) + 3u7eu3
.

(b) Critical growth:

f(u) =


5u4 + cos(u)(e5u4 − 1) + 20(1 + sin(u))u3(e5u4 − 1), u ≥ 3π

2
,

5u4, 0 ≤ u ≤ 3π
2
.
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Note that example (b) does not verify the condition (7) for which was used in [17]
to ensure the existence of a positive solution.

1.1. The underling idea for proving Theorems 1 and 2

Motivated by the argument used in [25], we use a change of variable to reformu-
late the problem obtaining a semilinear equation which has an associated functional
well defined and Gateaux differentiable in a suitable Orlicz space. Then we consider
a reduction of the nonlinear term f outside Λ in such a way that the new func-
tional verifies the geometric hypotheses of the mountain-pass theorem. We achieve
the existence results by using a version of the mountain-pass theorem which is a
consequence of the Ekeland Variational Principle. Finally we show that these local
mountain-pass solutions indeed yield, as the parameter ε approaches zero, a solution
of the original equation and they concentrate around the minimum of the potential
V in Λ.

1.2. The outline of the paper

In the forthcoming section a reformulation of the problem and also some preliminary
results including the Orlicz space setting suitable to study this class of problems are
given. In Sec. 3, we use a penalization technique to obtain a one parameter family of
mountain-pass critical points for a modified energy functional. Section 4 is devoted
to obtain required estimates on the family of critical points of the modified energy
functional. In Sec. 5, we show that these local mountain-pass solutions actually
yield, as the parameter goes to zero, a solution of the original equation whose
qualitative properties and in particular the developing of concentration around a
point, which is localized by the critical points of the potential, are established
in Sec. 6.

1.3. Notation

In this paper we make use of the following notation:

• C,C0, C1, C2, . . . denote positive (possibly different) constants.
• BR denotes the open ball centered at the origin and radius R > 0.
• For 1 ≤ p ≤ ∞, Lp(RN ) denotes the usual Lebesgue spaces with norms

‖u‖p =
(∫

R2
|u|pdx

)1/p

, 1 ≤ p <∞,

‖u‖∞ = inf{C > 0 : |u(z)| ≤ C almost everywhere in R
2}.

• H1(R2) denotes the Sobolev spaces modeled in L2(R2) with norm

‖u‖H1 =
[∫

R2
(|∇u|2 + |u|2)dx

]1/2

and H1
r (R2) is the space of radially symmetric functions in H1(R2).



August 19, 2009 11:12 WSPC/152-CCM 00348
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• C∞
0 (R2) denotes the space of infinitely differentiable functions with compact

support.
• X∗ is the topological dual of the Banach space X .
• By 〈·, ·〉 we denote the duality pairing between X∗ and X .

2. The Variational Framework

In this section we first have the reformulation of the problem. Then some prelimi-
nary results including a delicate Orlicz space setting suitable to deal with this class
of problems involving the quasilinear term are proposed.

2.1. Reformulation of the problem and preliminaries

First, since we look for positive solutions of (Pε) we assume that f(s) = 0 for all
s ∈ (−∞, 0].

Observe that formally (Pε) is the Euler–Lagrange equation associated to the
following functional

Jε(u) =
ε2

2

∫
R2

(1 + u2)|∇u|2dz +
1
2

∫
R2
V (z)u2dz −

∫
R2
F (u)dz.

From the variational point of view, the first difficulty that we have to deal with
is to find an appropriate variational setting in order to apply minimax methods to
study the existence of nontrivial solution of (Pε). However, it should be pointed out
that we may not apply directly such methods since the natural associated functional
Jε is not well defined in the usual Sobolev space. To overcome this difficult, we follow
the idea introduced in [25] (see also [12]) and the approach used in [9] to reformulate
the problem by means of the following change of variable:

dv =
√

1 + u2du, thereby giving

v = l(u) :=
1
2
u
√

1 + u2 +
1
2

ln(u+
√

1 + u2)

and since l(0) = 0 and l is strictly monotone on R+, the inverse function g := l−1

is well defined on R+ and

g′(t) =
1

(1 + g2(t))1/2
on [0,+∞),

g(t) = −g(−t) on (−∞, 0].

We shall make frequent use of the following lemma in which we summarize some
properties of the function g.

Proposition 3. The following properties involving g(t) and its derivative hold :

(1) g is uniquely defined C∞ function and invertible.
(2) |g′(t)| ≤ 1 for all t ∈ R.
(3) |g(t)| ≤ |t| for all t ∈ R.
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(4) g(t)/t→ 1 as t→ 0.
(5) g(t)/

√
t→ √

2 as t→ +∞.
(6) g(t)/2 ≤ tg′(t) ≤ g(t) for all t ≥ 0.
(7) |g(t)| ≤ C|t|1/2 for all t ∈ R.
(8) the function g2(t) is a strictly convex.
(9) there exists a positive constant C such that

|g(t)| ≥
{
C|t|, |t| ≤ 1

C|t|1/2, |t| ≥ 1.

(10) |t| ≤ C1|g(t)| + C2|g(t)|2 for all t ∈ R.
(11) |g(t)g′(t)| ≤ 1 for all t ∈ R.

Proof. It is elementary and will be omitted.

Setting

G(t) := g2(t)

we have that

G′(v) =
2g(v)√

1 + g2(v)
, G′′(v) =

2
(1 + g2(v))2

By exploiting this change of variable, we can rewrite the functional Jε in the fol-
lowing form

Ĩε(v) := Jε(g(v)) =
ε2

2

∫
R2

|∇v|2dz +
1
2

∫
R2
V (z)G(v)dz −

∫
R2
F (g(v))dz (8)

which has finite energy provided that∫
R2

|∇v|2dz <∞ and
∫

R2
V (z)G(v)dz <∞.

Observe that G is convex, G(0) = 0, G(s)↗∞ as s→ ∞ and G is even so that it is
a Young function and one can consider the Orlicz class (see [36]), which we denote
by LV

G(R2), of measurable functions v : R
2 → R such that∫

R2
G(|v|)dµ <∞, dµ = V (z)dz.

Remark 4. The Young function G satisfies the ∆2-condition globally (see [36]),
that is: there existsK > 0 such that G(2s) ≤ KG(s) for all s ≥ 0. As a consequence,
one has that LV

G is a linear space on which one can define the following norm

‖v‖G := sup
{∫

R2
|vw|dµ : w ∈ LV

eG
(R2),

∫
R2
G̃(|w|)dµ ≤ 1

}
(9)

where (G, G̃) denotes a Young pair.
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Thus, the new functional Ĩε in (8) turns out to be well defined in a natural fashion
on the Banach space

E :=
{
v ∈ LV

G(R2) :
∫

R2
|∇v|2dz <∞

}
which can be obtained as the completion of C∞

0 (R2) with respect to the norm

‖v‖ := ‖∇v‖2 + ‖v‖G.

At this stage, we also consider the closed subspace of H1(R2)

H1
V :=

{
u ∈ H1(R2) :

∫
R2
V (z)u2dz <∞

}
equipped with the norm

‖u‖V =
(∫

R2
|∇u|2dz +

∫
R2
V (z)u2dz

)1/2

.

Remark 5. Under the condition (V0) for all q ≥ 2,

H1
V (R2) ↪→ H1(R2) ↪→ Lq(R2)

with continuous embedding.

2.2. Properties of the Orlicz space E

In the following proposition we state some facts about the Banach space E and the
nonlinear map v → g(v) which are useful in the sequel.

Proposition 6. The space E enjoys the following properties:

(1) Let u = g(v) and v ∈ E. Then the following estimate holds :

‖u‖V ≤ ‖∇v‖2 + ‖v‖1/4
G + 2K0/2‖v‖K0/2

G

where K0 is a positive constant independent of v and u.
(2) If q ≥ 2, then the map v → g(v) from E to Lq(R2) is continuous.
(3) If q ≥ 2, then E is continuously embedded into Lq(R2).
(4) E ↪→ H1(R2) with continuous embedding.

Proof. We proceed the proof of (1) in several steps:

Step 1. First we prove that for all k > 0,

‖v‖G ≤ 1
k

(
1 +

∫
R2
G(kv)dµ

)
. (10)
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Indeed, by (9) and using the Young inequality xy ≤ G(x) + G̃(y) one has

‖v‖G =
1
k

sup
{∫

R2
|kvw|dµ :

∫
R2
G̃(|w|)dµ ≤ 1

}
≤ 1
k

sup
{∫

R2
[G(kv) + G̃(|w|)]dµ :

∫
R2
G̃(|w|)dµ ≤ 1

}
≤ 1
k

(∫
R2
G(kv)dµ + 1

)
.

Step 2. We next show that there exists a constant K0 > 0 such that∫
R2
G(v)dµ ≤

{
‖v‖G, ‖v‖G ≤ 1

2K0‖v‖K0
G , ‖v‖G > 1

∀ v ∈ LV
G(R2). (11)

We recall from [36, Proposition 3, p. 60] that if v ∈ LV
G(R2), v �= 0, one has∫

R2
G

(
v

‖v‖G

)
dµ ≤ 1

and in particular (11) follows if ‖v‖G = 1. Otherwise we distinguish when ‖v‖G < 1
and ‖v‖G > 1. In the first case, v < v/‖v‖G and since G is increasing, we get∫

R2
G(v)dµ ≤

∫
R2
G

(
v

‖v‖G

)
dµ ≤ 1.

Moreover, since G is strictly convex, we have

G(v‖v‖G) = G(v‖v‖G + (1 − ‖v‖G)0)

≤ G(v)‖v‖G +G(0)(1 − ‖v‖G) = G(v)‖v‖G

and thus ∫
R2
G(v‖v‖G)dµ ≤ ‖v‖G

∫
R2
G(v)dµ ≤ ‖v‖G.

Now, we set w = v‖v‖G to get for all ‖w‖G ≤ 1,∫
R2
G(w)dµ =

∫
R2
G(v‖v‖G)dµ ≤ ‖v‖G = ‖w‖1/2

G .

If ‖v‖G > 1, let η := 1/‖v‖G and v̄ := ηv. Since 0 < η < 1 we can find n = n(v) ∈ N,
such that 1/2n < η < 1/2n−1 and since G is increasing we have

G
( v

2n

)
≤ G(ηv) = G(v̄). (12)

By exploiting ∆2-condition in Remark 4 with a constant K > 1, we obtain

G(v) = G
(
2n v

2n

)
≤ KnG

( v

2n

)
(13)

and then joining (12) and (13) we obtain∫
R2
G(v)dµ ≤ Kn

∫
R2
G(v̄)dµ ≤ Kn ≤ K1+log2 ‖v‖G ≤ 2K0‖v‖K0

G
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for a constant K0 such that 2K0 ≥ K. We complete the proof of the lemma by
evaluating for u = g(v)

‖u‖V ≤
(∫

R2

1
1 +G(v)

|∇v|2dz
)1/2

+
(∫

R2
G(v)dµ

)1/2

≤ ‖∇v‖2 + ‖v‖1/4
G + 2K0/2‖v‖K0/2

G .

This proves part (1).
Part (2) follows from part (1), together with Remark 5. Let vn → v in E. Using

the mean value theorem and property (2) in Proposition 3,∫
R2

|g(vn) − g(v)|qdz ≤
∫

R2
|vn − v|qdz

which together with property (10) in Proposition 3 we obtain∫
R2

|g(vn) − g(v)|qdz ≤ C1

∫
R2

|g(vn − v)|qdz + C2

∫
R2

|g(vn − v)|2qdz

≤ C1‖g(vn − v)‖q
V + C2‖g(vn − v)‖2q

V ,

where in the last inequality we have used Remark 5. Finally, using part (1) we have
the desired conclusion.

Now, we prove (3). Let (vn) ⊂ E such that vn → 0 in E. Using part (1) we have
that g(vn) → 0 in H1

V and by property (10) in Proposition 3 we obtain∫
R2

|vn|qdz ≤ C1

∫
R2

|g(vn)|qdz + C2

∫
R2

|g(vn)|2qdz

which together with the continuous embedding H1
V (R2) ↪→ Lq(R2) for q ≥ 2 com-

pletes the proof of part (3). Finally, from part (3) it follows that

‖v‖2
1,2 = ‖∇v‖2

2 + ‖v‖2
2 ≤ ‖v‖2 + C‖v‖2 = (1 + C)‖v‖2

and the proof of Proposition 6 is complete.

3. Modified Problem

As in [14, 15, 21] (see also [2, 18]) in this section, we make a suitable modification
on the nonlinear term f(u) outside the domain Λ such that the associated energy
functional satisfies the hypotheses of the following version of the mountain-pass
theorem which is a consequence of the Ekeland Variational Principle as developed
in [4] (see also [10, 44] for related results) in the Orlicz space E.

Theorem 7. Let E be a Banach space and Φ ∈ C(E; R), Gateaux differentiable
for all v ∈ E, with G-derivative Φ′(v) ∈ E∗ continuous from the norm topology of
E to the weak-∗ topology of E∗ and Φ(0) = 0. Let S be a closed subset of E which
disconnects (archwise) E. Let v0 = 0 and v1 ∈ E be points belonging to distinct



August 19, 2009 11:12 WSPC/152-CCM 00348

Semi-Classical States for Quasilinear Schrödinger Equations Arising in Plasma Physics 557

connected components of E\S. Suppose that

inf
S

Φ ≥ α > 0 and Φ(v1) ≤ 0

and let

Γ = {γ ∈ C([0, 1], E) : γ(0) = 0 and γ(1) = v1}.
Then

c := inf
γ∈Γ

max
t∈[0,1]

Φ(γ(t)) ≥ α

and there exists a Palais–Smale sequence for Φ at the mountain-pass level c.

We recall that (vn) ⊂ E is a Palais–Smale sequence for F at level C (denoted in
the sequel as (P.-S.)C sequence), if F(vn) → C and F ′(vn) → 0 in E∗ as n→ ∞.

We define the Carathéodory function

h(z, s) = χΛ(z)f(s) + (1 − χΛ(z))f(s)

where χΛ is the characteristic function of Λ and

f(s) =


f(s), if s ≤ a

β0

τ
s, if s > a

with τ > 2θ/(θ − 4) > 2 and a > 0 is such that f(a) = aβ0/τ .
It is not difficult to check that the function h(z, s) enjoys the following

properties:

(h1) h(z, s) is piecewise C1 in s for any fixed z and h(z, s) = 0 for s ≤ 0;
(h2)s (subcritical case) for each δ > 0, α > 0 and q ≥ 0 there is a constant

C = C(δ, α, q) > 0 such that for all s ≥ 0 and z ∈ R
2, we have

h(z, s) ≤ δs+ Csq[exp(αs4) − 1] or

(h2)c (critical case) for each δ > 0, β > α0 and q ≥ 0 there is a constant
C = C(δ, β, q) > 0 such that for all s ≥ 0 and z ∈ R

2, we have

h(z, s) ≤ δs+ Csq[exp(βs4) − 1];

(h3) 0 < θH(z, s) ≤ h(z, s)s, (z, s) ∈ [Λ × (0,+∞)] ∪ [(R2 − Λ) × (0, a)] and

0 ≤ 2H(z, s) ≤ h(z, s)s ≤ 1
τ
V (z)s2, (z, s) ∈ [(R2 − Λ) × [0,+∞)]

where H(z, s) =
∫ s

0
h(z, t)dt;

(h4) For each z ∈ R
2, the function s→ h(z, s)s−1 is nondecreasing for s > 0.

Now, we consider the modified problem

−ε2∆v = g′(v)[h(z, g(v)) − V (z)g(v)] in R
2. (14)
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The energy functional Fε : E → R associated to (14) is given by

Fε(v) =
ε2

2

∫
R2

|∇v|2dz +
1
2

∫
R2
V (z)g2(v)dz −

∫
R2
H(z, g(v))dz.

3.1. Properties of the functional Fε

In what follows, without loss of generality, we may assume that ε = 1 and F = Fε.

Proposition 8. The functional F is well defined on E. Moreover,

(a) F is continuous on E;
(b) F is Gateaux differentiable on E with G-derivative given by

〈F ′(v), ϕ〉 =
∫

RN

∇v∇ϕdz +
∫

RN

V (z)g(v)g′(v)ϕdz

−
∫

RN

h(z, g(v))g′(v)ϕdz,

for v, ϕ ∈ E;
(c) for v ∈ E we have that F ′(v) ∈ E∗ and if vn → v in E then

〈F ′(vn), ϕ〉 → 〈F ′(v), ϕ〉
for each ϕ ∈ E.

Proof. By (h2)s (or (h2)c) and (h3) we have that∣∣∣∣∫
R2
H(z, g(v))dz

∣∣∣∣ ≤ 1
2

∫
R2

|h(z, g(v))g(v)|dz

≤ C1

∫
R2

|g(v)|2dz + C2

∫
R2

|g(v)|[eα(g(v))4 − 1]dz. (15)

Using (7) in Proposition 3, Hölder inequality, Trudinger–Moser inequality and the
Lemma 10, it follows that∫

R2
|g(v)|[eα(g(v))4 − 1]dz ≤

(∫
R2

|g(v)|2dz
)1/2 (∫

R2
(eCv2 − 1)dz

)1/2

(16)

which together with the definition of E and (15) shows that the functional F is well
defined on E. Now, suppose that vn → v in E. By Proposition 6 we can conclude
that ∫

R2
|∇vn|2dz →

∫
R2

|∇v|2dz∫
R2
V (z)g2(vn)dz →

∫
R2
V (z)g2(v)dz.

From (3) in Proposition 6, vn → v in L2(R2) and this implies that vn → v in
H1(R2). Thus, up to subsequence, we know that |vn| ≤ v̂ almost everywhere in R

2
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for some v̂ ∈ H1(R2). From this, using the same previous arguments, the fact that
g is increasing and Lebesgue dominated convergence theorem we obtain∫

R2
H(z, g(vn))dz →

∫
R2
H(z, g(v))dz.

Consequently, F(vn) → F(v) and the continuity is proved.
Next, let v, ϕ ∈ E. We have that

1
2

∫
R2

V (z)(g2(v + tϕ) − g2(v))
t

dz =
∫

R2
V (z)g(ξ)g′(ξ)ϕdz

where

min{v, v + tϕ} ≤ ξ ≤ max{v, v + tϕ}.
If |t| ≤ 1 it is clear that |ξ| ≤ |v|+ |ϕ| and using (2), (9)–(10) in Proposition 3 and
the fact that g is increasing we get

|V (z)g(ξ)g′(ξ)ϕ| ≤ V (z)|g(ξ)g′(ξ)||g(ϕ)| + V (z)|g(ξ)g′(ξ)|g2(ϕ)

≤ V (z)g(|v| + |ϕ|)|g(ϕ)| + V (z)g2(ϕ)

≤ V (z)g2(|v| + |ϕ|) + V (z)g2(ϕ)

and

V (z)g2(|v| + |ϕ|) + V (z)g2(ϕ) ∈ L1(R2).

As V (z)g(ξ)g′(ξ)ϕ→ V (z)g(v)g′(v)ϕ almost everywhere as t→ 0, by the Lebesgue
dominated convergence theorem we conclude that

lim
t→0

1
2

∫
R2

V (z)(g2(v + tϕ) − g2(v))
t

dz =
∫

R2
V (z)g(v)g′(v)ϕdz.

Similarly, using arguments as in (15)–(16), the fact that g is increasing and one
more time the Lebesgue dominated convergence theorem we achieve

lim
t→0

∫
R2

H(z, g(v + tϕ)) −H(z, g(v))
t

dz =
∫

R2
h(z, g(v))g′(v)ϕdz.

Thus, F is Gateaux-differentiable in E.
To see that F ′(v) ∈ E∗ for each v ∈ E, the main difficulty comes from the term∫

RN V (z)g(v)g′(v)ϕdz. Suppose that ϕn → 0 in E. It follows from Proposition 6
that ∫

RN

V (z)g2(ϕn)dz → 0.

Now, by (2) and (9)–(10) in Proposition 3 we have∣∣∣∣∫
R2
V (z)g(v)g′(v)ϕndz

∣∣∣∣ ≤ ∫
R2
V (z)|g(v)g′(v)||g(ϕn)|dz

+
∫

R2
V (z)|g(v)g′(v)|g2(ϕn)dz
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≤
(∫

R2
V (z)g2(v)dz

)1/2 (∫
RN

V (z)g2(ϕn)dz
)1/2

+
∫

R2
V (z)g2(ϕn)dz.

which implies that ∫
RN

V (z)f(v)f ′(v)ϕndz → 0.

Thus, F ′(v) ∈ E∗ and by similar arguments it is not difficult to check that if vn → v

in E, then 〈F ′(vn), ϕ〉 → 〈F ′(v), ϕ〉, for each ϕ ∈ E.

Proposition 9. If v is a critical point of F then v ∈ C2,α
loc (RN ). Moreover, v > 0

provided that v is nontrivial.

Proof. It is standard that critical points of the functional F are weak solutions of
the corresponding Euler–Lagrange equation. Indeed, we have

−∆v = w in R
2

in the weak sense, where

w(z) := g′(v(z))[h(z, g(v(z))) − V (z)g(v(z))].

According to (h2)s (or (h2)c), we obtain

|w| ≤ g′(v)[C1|g(v)| + C2|g(v)|(eα(g(v))4 − 1)] ≤ C3 + C4(eC5v2 − 1)

in any ball BR, where we have used (6) and (10) in Proposition 3. Using Lemma 10
and Trudinger–Moser inequality, it follows that w ∈ Lq(BR) for all q ≥ 2. Thus,
by elliptic regularity theory we obtain that v ∈ W 2,q(BR) for all q ≥ 2. Hence,
v ∈ C1,1

loc (RN ) and this implies that w is locally Hölder continuous. Consequently,
by Schauder regularity theory v ∈ C2,γ

loc (RN ) for some γ ∈ (0, 1).
Furthermore, v > 0 in R

2. In fact, suppose otherwise, that there exists z0 ∈ R
2

such that v(z0) = 0. Equation (14) can be written of the form

−∆v + c(z)v = V (z)g′(v)(v − g(v)) + h(z, g(v))g′(v) ≥ 0,

where c(z) = V (z)g′(v(z)) > 0 for all z ∈ R
2. Applying the strong maximum

principle for an arbitrary ball centered in z0 we can conclude that v ≡ 0 and this
is impossible.

3.2. Mountain-pass geometry

In order to show that the functional F has the mountain-pass geometry, we shall
use the following result:

Lemma 10. Let β > 0 and r > 1. Then for each α > r there exists a positive
constant C = C(α) such that for all s ∈ R

(eβs2 − 1)r ≤ C(eαβs2 − 1).



August 19, 2009 11:12 WSPC/152-CCM 00348

Semi-Classical States for Quasilinear Schrödinger Equations Arising in Plasma Physics 561

Proof. We have that

lim
s→0

(eβs2 − 1)r

eαβs2 − 1
= lim

s→0

r(eβs2 − 1)r−1eβs2

αeαβs2 = 0.

Moreover,

lim
|s|→∞

(eβs2 − 1)r

eαβs2 − 1
= lim

|s|→∞
erβs2

(1 − e−βs2
)r

eαβs2(1 − e−αβs2)
= 0

and the result follows.

For ρ > 0 we define

Sρ
.=

{
v ∈ E :

∫
R2

[|∇v|2 + V (z)g2(v)]dz = ρ2

}
.

Since Q : E → R given by

Q(v) =
∫

R2
[|∇v|2 + V (z)g2(v)]dz

is continuous then Sρ is a closed subset and disconnects the space E.
The next two lemmas are crucial to show that the functional F possesses the

mountain-pass geometry.

Lemma 11. There exist ρ, α > 0 such that

F(v) ≥ α for all v ∈ Sρ.

Proof. Note first that for 2βρ2 < π, by Lemma 10 we have∫
R2

(eβg4(v) − 1)|g(v)|qdz

≤ C1

[∫
R2

(eξβg4(v) − 1)dz
]1/2

‖g(v)‖q
2q

≤ C1

[∫
R2

(
e

ξβ‖∇g2(v)‖2
2

(
g2(v)

‖∇g2(v)‖2

)2

− 1
)
dz

]1/2

‖g(v)‖q
2q

≤ C1

[∫
R2

(
e
4ξβρ2

(
g2(v)

‖∇g2(v)‖2

)2

− 1
)
dz

]1/2

‖g(v)‖q
2q

≤ C2‖g(v)‖q
2q

where ξ > 2 is such that ξβρ2 < π. Also note that for C small but independent of
v we have

C‖g(v)‖q
2q ≤ ‖g(v)‖q

V =
(∫

R2
|∇g(v)|2dz +

∫
R2
V (z)g2(v)dz

)q/2

≤
(∫

R2
|g′(v)∇v|2dz +

∫
R2
V (z)g2(v)dz

)q/2

≤ ρq.
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Therefore it follows from (h2)c (or (h2)s) and (h3) and the above inequalities that
for v ∈ Sρ

F(v) ≥ 1
2
ρ2 − β0

4

∫
R2
g2(v)dz − C

∫
R2

(eβ|g(v)|4 − 1)|g(v)|qdz

≥ 1
2
ρ2 − 1

4

∫
R2
V (z)g2(v)dz − C1‖g(v)‖q

V ≥ 1
4
ρ2 − C1ρ

q

with q > 2 and ‖v‖ small. Therefore, if ρ > 0 is sufficiently small we obtain for
v ∈ Sρ that

F(v) ≥ α =
1
4
ρ2 − Cρq > 0.

Lemma 12. There exists v ∈ E such that Q(v) > ρ2 and F(v) < 0.

Proof. We are going to prove that there exists ϕ ∈ E such that F(tϕ) → −∞ as
t→ +∞, which proves our thesis if we take v = tϕ with t large enough.

Note that by (h3) there exist positive constants C1, C2 such that

H(z, s) ≥ C1s
θ − C2 (17)

for all (z, s) ∈ Λ×[0,+∞). Choosing any ϕ ∈ C∞
0 (RN , [0, 1])\{0} such that suppϕ ⊆

Λ, it follows from (17) that

F(tϕ) ≤ t2

2

∫
Λ

(|∇ϕ|2 + V (z)ϕ2)dz − C1

∫
Λ

|g(tϕ)|θdz + C2|Λ|

where |Λ| denotes the Lebesgue measure of Λ in R
2.

Using property (6) in Proposition 3, it follows that g(s)/s is decreasing for s > 0.
Since 0 ≤ tϕ(z) ≤ t for z ∈ Λ and t > 0, we obtain g(tϕ(z)) ≥ g(t)ϕ(z), which
implies that

F(tϕ) ≤ t2

2

[∫
Λ

(|∇ϕ|2 + V (z)ϕ2)dz − C1g(t)θ

∫
Λ

ϕθdz + C2|Λ|
]

→ −∞ as t→ +∞,

where we have used that

lim
t→+∞

g(t)θ

t2
= +∞,

which is a consequence of θ > 4 and property (5) in Proposition 3.

3.3. Palais–Smale sequences

In this subsection, we establish some properties of the Palais-Smale sequences
of F .

Proposition 13. Any Palais–Smale sequence for F is bounded in E.
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Proof. Let (vn) ⊂ E be a (P.-S.)C sequence. Thus,

F(vn) =
1
2

∫
R2

|∇vn|2dz +
1
2

∫
R2
V (z)g(vn)2dz −

∫
R2
H(z, g(vn))dz

= C + δn, (18)

and

|〈F ′(vn), φ〉| =
∣∣∣∣∫

R2
∇vn · ∇φdz +

∫
R2
V (z)g(vn)g′(vn)φdz

−
∫

R2
h(z, g(vn))g′(vn)φdz

∣∣∣∣ ≤ εn‖φ‖ (19)

where δn, εn → 0 as n→ ∞. Next, we pick

φ =
g(vn)
g′(vn)

=
√

1 + g(vn)2g(vn)

as a test function in (19). One can easily deduce that

‖φ‖G ≤ C1‖vn‖G and |∇φ| =
[
1 +

g(vn)2

1 + g(vn)2

]
|∇vn| ≤ 2|∇vn|,

which implies ‖φ‖ ≤ C0‖vn‖. Substituting φ in (19), gives

|〈F ′(vn), φ〉| =
∣∣∣∣∫

R2

[
1 +

g(vn)2

1 + g(vn)2

]
|∇vn|2dz +

∫
R2
V (z)g(vn)2dz

−
∫

R2
h(z, g(vn))g(vn)dz

∣∣∣∣ ≤ εn‖vn‖. (20)

Taking into account property (6) and (18)–(20) we have

C + δn + εn‖vn‖ ≥ 1
2

∫
R2

|∇vn|2dz +
1
2

∫
R2
V (z)g(vn)2dz

− 1
θ

∫
R2

[
1 +

g(vn)2

1 + g(vn)2

]
|∇vn|2dz − 1

θ

∫
R2
V (z)g(vn)2dz

+
∫

R2

[
1
θ
h(z, g(vn))g(vn) −H(z, g(vn))

]
dz

≥
∫

R2

[
1
2
− 1
θ

(
1 +

g(vn)2

1 + g(vn)2

)]
|∇vn|2dz

+
(

1
2
− 1
θ

) ∫
R2
V (z)g(vn)2dz.

Now, by considering (10) with k = 1 we have∫
R2
V (z)g(vn)2dz ≥ ‖vn‖G − 1
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564 J. M. do Ó, A. Moameni & U. Severo

and therefore we obtain

C + δn + εn‖vn‖ ≥
(

1
2
− 2
θ

) ∫
R2

|∇vn|2dz +
(

1
2
− 1
θ

) ∫
R2
V (z)g(vn)2dz

≥ θ − 4
2θ

∫
R2

[|∇vn|2 + V (z)g(vn)2]dz

≥ θ − 4
2θ

(∫
R2

|∇vn|2dz + ‖vn‖G − 1
)

≥ θ − 4
2θ

(‖∇vn‖2 + ‖vn‖G − 2)

=
θ − 4
2θ

(‖vn‖ − 2). (21)

Since θ > 4, it follows from the above estimate that

C + δn + εn‖vn‖ ≥ C1‖vn‖,
which implies that (vn) is bounded in E.

Remark 14. From (21) we can conclude that∫
R2

|∇vn|2dz ≤ 2θ
θ − 4

C + on(1).

Lemma 15. Let (vn) be a (P.-S.)C sequence for F . Then,

(i) given δ > 0 there exists R > 0 such that

lim sup
n→∞

∫
|z|≥R

(|∇vn|2 + V (z)g2(vn))dz < δ.

(ii) Up to a subsequence, V (x)g2(vn) converges to V (x)g2(v) in L1(R2) and conse-
quently g(vn) → g(v) converges in L2(R2).

Proof. Consider the test function ϕRvn, where ϕR ∈ C∞(R2, [0, 1]), ϕR(z) = 0
if |z| ≤ R/2, ϕR(z) = 1 if |z| ≥ R and |∇ϕR(z)| ≤ C/R for all z ∈ R

2. By
Proposition 13, (ϕRvn) is bounded in E. Thus, we obtain∫

R2
|∇vn|2ϕRdz +

∫
R2
V (z)g(vn)g′(vn)vnϕRdz +

∫
R2
vn∇vn∇ϕRdz

=
∫

R2
h(z, g(vn))g′(vn)vnϕRdz + on(1).

From (h3) and properties of g,

1
2

∫
R2

(|∇vn|2 + V (z)g2(vn))ϕRdz +
∫

R2
vn∇vn∇ϕRdz

≤ 1
τ

∫
R2
V (z)g2(vn)ϕRdz + on(1)
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for R > 0 suitably large, which implies that∫
|z|≥R

(|∇vn|2 + V (z)g2(vn))dz ≤ C

R
‖vn‖2‖∇vn‖2 + on(1)

and this proves part (i) of this lemma. Part (ii) is a consequence of (i) and Lebesgue
dominated convergence theorem since g(vn) → g(v) in L2

loc(R
2).

For the next result, we will use the following result of convergence, whose proof
can be found in [13].

Lemma 16. Suppose O is a bounded domain in R
2. Let (un) in L1(O) such that

un → u in L1(O) and let g(x, s) be a continuous function. Then g(x, un) → g(x, u)
in L1(O) provided that g(x, un) ∈ L1(O) for all n and

∫
O |g(x, un)un|dx ≤ C.

Lemma 17. Suppose that (vn) is a (P.-S.)C sequence for F . If either of the fol-
lowing conditions hold:

(1) The function f has critical growth and 0 < C < (θ − 4)/8θ;
(2) The function f has subcritical growth,

then, up to a subsequence, we have:

(i)
∫

R2 h(z, g(vn))g′(vn)vndz → ∫
R2 h(z, g(v))g′(v)vdz;

(ii)
∫

R2 H(z, g(vn))dz → ∫
R2 H(z, g(v))dz,

for some v ∈ E which is indeed a critical point of F .

Proof. We shall prove this lemma only in the critical case. The subcritical case
can be proceeded similarly. By Lemma 13, the sequence (vn) is bounded in E and,
consequently, from (4) in Proposition 6 it is also bounded in H1(R2). Thus, up to
a subsequence, vn ⇀ v in H1(R2) and vn → v almost everywhere in R

2. By using
(1) in Proposition 6, we conclude that

∫
R2 V (z)g2(vn)dz is bounded and by Fatou’s

Lemma ∫
R2
V (z)g2(v)dz ≤ lim inf

n→∞

∫
R2
V (z)g2(vn)dz

which implies that v ∈ E.
First, we prove that h(z, g(vn))g(vn) → h(z, g(v))g(v) in L1(R2). Given δ > 0,

we consider R > 0 such that Λ ⊂ BR and∫
Bc

R

h(z, g(vn))g(vn)dz ≤ 1
τ

∫
Bc

R

V (z)g2(vn)dz < δ.

From Fatou’s Lemma, we also have
∫

Bc
R
h(z, g(v))g(v)dz < δ. Hence,∫

R2
|h(z, g(vn))g(vn) − h(z, g(v))g(v)|dz

≤
∫

BR

|h(z, g(vn))g(vn) − h(z, g(v))g(v)|dz + 2δ
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and therefore we just need to prove that h(z, g(vn))g(vn) → h(z, g(v))g(v) in
L1(BR). We claim that v is a critical point of F . In fact, let φ in C∞

0 (R2) and
Q = supp(φ). Since

∫
R2 h(z, g(vn))g(vn)dz is bounded by Lemma 16 we conclude

that h(z, g(vn)) → h(z, g(v)) in L1(Q). Hence, up to subsequences, there exists
ϕ ∈ L1(Q) such that

|h(z, g(vn))| ≤ ϕ almost everywhere in Q.

Thus,

|h(z, g(vn))g′(vn)φ| ≤ sup
Q

|φ|ϕ almost everywhere in Q.

Therefore, as a consequence of the Lebesgue dominated convergence theorem∫
R2
h(z, g(vn))g′(vn)φdz →

∫
R2
h(z, g(v))g′(v)φdz.

Similarly, ∫
R2
V (z)g(vn)g′(vn)φdz →

∫
R2
V (z)g(v)g′(v)φdz,

and since

〈F ′(vn), φ〉 =
∫

R2
∇vn∇φdz +

∫
R2
V (z)g(vn)g′(vn)φdz

−
∫

R2
h(z, g(vn))g′(vn)φdz → 0

it follows that, for all φ ∈ C∞
0 (R2),∫

R2
∇v∇φdz +

∫
R2
V (z)g(v)g′(v)φdz =

∫
R2
h(z, g(v))g′(v)φdz

which shows that v is a critical point of F . It also follows from Proposition 9 that
v ∈ C2(R2). Next, we have∫

BR

|h(z, g(vn))g(vn) − h(z, g(v))g(v)|dz

≤
∫

BR

|[h(z, g(vn)) − h(z, g(v))]g(v)|dz

+
∫

BR

|h(z, g(vn))||g(vn) − g(v)|dz

and since∫
BR

|h(z, g(vn))g(vn)g(v)|dz ≤ max
BR

|g(v)|
∫

BR

|h(z, g(vn))g(vn)|dz ≤ CR,

using Lemma 16 we obtain

lim
n→∞

∫
BR

|[h(z, g(vn)) − h(z, g(v))]g(v)|dz = 0.
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As 0 < C < (θ − 4)/8θ, by Remark 14 we have that ‖∇vn‖2
2 ≤ K < 1/4 for n

sufficiently large. Taking q > 1 and ε > 0 such that qK(α0 + ε) < π and using the
growth properties of nonlinear term h(z, s), we get∫

BR

|h(z, g(vn))||g(vn) − g(v)|dz

≤
∫

BR

|g(vn)||g(vn) − g(v)|dz + C

∫
BR

|g(vn) − g(v)|(e(α0+ε)g4(vn) − 1)dz

≤ C1

∫
BR

|g(vn) − g(v)|2dz + C

∫
BR

|g(vn) − g(v)|(e(α0+ε)g4(vn) − 1)dz.

Moreover,∫
BR

|g(vn) − g(v)|(e(α0+ε)g4(vn) − 1)dz

≤ C

(∫
BR

e
q(α0+ε)‖∇g2(vn)‖2

2

(
g2(vn)

‖∇g2(vn)‖2

)2

dz
)1/q (∫

BR

|g(vn) − g(v)|q′
dz

)1/q′

≤ C1

(∫
BR

|g(vn) − g(v)|q′
dz

)1/q′

→ 0

by virtue of the following fact

q(α0 + ε)‖∇g2(vn)‖2
2 = q(α0 + ε)‖2g(vn)g′(vn)∇vn‖2

2 ≤ q(α0 + ε)4K < α0.

Thus, h(z, g(vn))g(vn) → h(z, g(v))g(v) in L1(BR) and therefore

h(z, g(vn))g(vn) → h(z, g(v))g(v) in L1(R2).

From this and the following inequalities

h(z, g(vn))g′(vn)vn ≤ h(z, g(vn))g(vn) and 2H(z, g(vn)) ≤ h(z, g(vn))g(vn),

parts (i) and (ii) follow from the Lebesgue dominated convergence theorem.

In view of the previous results, we can conclude that for all ε > 0 the functional
Fε : E → R given by

Fε(v) =
ε2

2

∫
R2

|∇v|2dz +
1
2

∫
R2
V (z)g2(v)dz −

∫
R2
H(z, g(v))dz

possesses the mountain-pass geometry, the Palais–Smale sequences are bounded
and the mountain-pass level Cε has the following characterization

Cε = inf
v∈E\{0}

max
t≥0

Fε(tv) > 0. (22)

Furthermore, by condition (h4) we can see that

Cε = inf
v∈N

Fε(v) (23)

where N := {v ∈ E\{0} : 〈F ′
ε(v), v〉 = 0} (see, for example, [44]).
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At this stage it is more convenient to work with stretched variables. Thus we
change the variables as z = εx. We denote Vε(x) = V (εx) and we consider the
following energy functional

Iε(v) =
1
2

∫
R2

|∇v|2dx+
1
2

∫
R2
Vε(x)g2(v)dx −

∫
R2
H(εx, g(v))dx,

associated to the equation

−∆v = g′(v)[h(εx, g(v)) − Vε(x)g(v)] in R
2, (24)

and defined on the Banach space

Eε :=
{
v ∈ LVε

G (R2) :
∫

R2
|∇v|2dz <∞

}
.

Proceeding similarly as for Fε, the functional Iε has the mountain-pass geometry
with the mountain-pass level given by

bε = inf
v∈Eε\{0}

max
t≥0

Iε(tv) > 0.

Next, we obtain an estimate, as ε → 0, of the level bε by considering the following
functional

F0(v) =
1
2

∫
R2

[|∇v|2 + β1G(v)]dx −
∫

R2
F (g(v))dx. (25)

We may suppose, without loss of generality by the translation invariance of the
problem, that 0 ∈ Λ and β1 = V (0). Roughly speaking, the idea which moti-
vates a comparison argument is that we expect Fε(vε) → F0(v) to hold for a
suitable v.

Critical points of F0 are classical solutions of the following autonomous limit
problem

−∆v = h1(v)
.= g′(v)[f(g(v)) − β1g(v)] in R

2. (26)

We recall the following result established in [31]:

Theorem 18. Suppose the nonlinearity f has subcritical growth and satisfies the
conditions (f0) and (f1) or it has critical growth and satisfies (f0), (f1) and (f2).
Then the following statements hold :

(i) There exists ω ∈ H1(R2) such that F0(ω) = C1 and F ′
0(ω) = 0 where C1 is

the mountain-pass level

C1 = inf
v∈H1(R2)\{0}

max
t≥0

F0(tv) > 0;

(ii) C1 is bounded from above by (θ − 4)/8θ in the critical case;
(iii) ω is a nonnegative solution of (26) and moreover ω(x) → 0 as |x| → ∞.
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Furthermore, since

h′1(s) = g′′(s)f(g(s)) + (g′(s))2f ′(g(s)) − β1g
′′(s)g(s) − β1(g′(s))2

we obtain h′1(0) = −β1 < 0. Thus, using a result of Gidas–Ni–Nirenberg [19] we
conclude that ω is spherically symmetric about some point in R

2 and ∂ω/∂r < 0
for all r > 0, where r is the radial coordinate about that point.

3.4. Estimate of the mountain-pass level bε

Lemma 19. lim supε→0 bε ≤ C1.

Proof. Define ωε(x) := ϕ(εx)ω(x), where ϕ ∈ C∞
0 (R2) is a standard cut-off func-

tion, such that ϕ ≡ 1 on Bρ and ϕ ≡ 0 on Bc
2ρ, with ρ > 0 such that B2ρ ⊂ Λ. In

particular, supp ωε ⊂ Λε := {x ∈ R
2|εx ∈ Λ} and ωε → ω in H1(R2). By definition,

bε ≤ max
t≥0

Iε(tωε) = Iε(tεωε) (27)

and

〈I ′ε(tεωε), tεωε〉 = 0,

that is, ∫
R2

[t2ε|∇ωε|2 + V (εx)g(tεωε)g′(tεωε)tεωε]dx

=
∫

R2
f(g(tεωε))g′(tεωε)tεωεdx. (28)

Thus, from (28) we have

C1t
2
ε ≥

∫
R2

[t2ε|∇ωε|2 + V (εx)g2(tεωε)]dx

≥
∫

R2
f(g(tεωε))g′(tεωε)tεωεdx

≥ 1
2

∫
R2
f(g(tεωε))g(tεωε)dx. (29)

Note that since ω ≥ 0 and ω �≡ 0 there exists n0 ∈ N such that An0 :=
{x ∈ R

2; 1/n0 ≤ ω(x) ≤ n0} has positive Lebesgue measure. Define Aε
n0

:= {x ∈
R

2; 1/(n0 + ε) ≤ ωε(x) ≤ n0 + ε}. Since ωε → ω converges in Lθ(R2), we obtain∫
Aε

n0

ωθ
ε(x)dx→

∫
An0

ωθ(x)dx �= 0.

Also note that g(t)/t is decreasing from which we obtain

g(tεωε) ≥ g(tε(n0 + ε))
n0 + ε

ωε on Aε
n0
.
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Furthermore, from (6) we have that there exist C3, C4 > 0 such that F (s) ≥
C3s

θ − C4 for all s ≥ 0. Thus,∫
R2
f(g(tεωε))g(tεωε)dx ≥ θ

∫
Aε

n0

F (g(tεωε))dx

= θ

∫
Aε

n0

[C3g
θ(tεωε) − C4]dx

≥ C5
gθ(tε(n0 + ε))

(n0 + ε)θ

∫
Aε

n0

ωθ
εdx− C6|A1

n0
|. (30)

If tε → +∞ as ε→ 0 we have that

lim
ε→0

gθ(tε(n0 + ε))
t2ε

= +∞

where we obtain a contradiction in view of (29) and (30). Therefore, {tε}ε>0 is
bounded. Hence, up to a subsequence, tε → t0 as ε → 0. We claim that t0 = 1.
Suppose for the moment that the claim holds true, in order to get as ε→ 0

Iε(tεωε) = F0(tεωε) +
1
2

∫
Λε

[V (εx) − β0]g2(tεωε)dx

≤ F0(tεωε) + C

∫
R2

[V (εx) − β1]ω2
εdx = F0(tεωε) + oε(1) (31)

by the Lebesgue dominated convergence theorem, since

sup
x∈Λε

V (εx) ≤ C, for all ε > 0

for a positive constant C. Hence, from (27) the lemma follows.

Proof of the claim. From one side ω satisfies the limit equation∫
R2

|∇ω|2dx+
∫

R2
β1g(ω)g′(ω)ωdx =

∫
R2
f(g(ω))g′(ω)ωdx (32)

whence from the other side, taking the limit in (28), as ε→ 0, we obtain∫
R2
t20|∇ω|2dx+

∫
R2
β1g(t0ω)g′(t0ω)t0ωdx =

∫
R2
f(g(t0ω))g′(t0ω)t0ωdx

and hence∫
R2

|∇ω|2dx+
∫

R2
β1g(t0ω)

g′(t0ω)
t0ω

ω2dx =
∫

R2
f(g(t0ω))

g′(t0ω)
t0ω

ω2dx. (33)

Subtracting (33) from (32) we get∫
R2

[L(t0ω) − L(ω)]ω2dx = 0 (34)

where

L(u) := β1g(u)
g′(u)
u

− f(g(u))
g′(u)
u

.

It follows from assumptions (f1) and straightforward calculations that L(u) is mono-
tone and therefore from (34) necessarily t0 = 1.
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3.5. Existence result via mountain-pass theorem

In this subsection, we are going to prove that there exists ε0 > 0 such that for all
ε ∈ (0, ε0), Eq. (14) possesses a positive ground state solution. The theorem below
together with Proposition 9 provide this result.

Theorem 20. Suppose that V satisfies (V0)–(V1) and either of the following con-
ditions hold:

(i) The nonlinear term f is subcritical and enjoys (f0) and (f1);
(ii) The nonlinear term f is critical and enjoys (f0), (f1) and (f2).

Then there exists ε0 > 0 such that for all ε ∈ (0, ε0), the functional Fε has a critical
point vε ∈ E at the mountain-pass level Cε given in (22).

Proof. First of all, notice that Cε = ε2bε. Thus, from Lemma 19 there exists
ε0 > 0 such that 0 < Cε < (θ − 4)/8θ. In order to simplify the notation, without
loss of generality, we fix ε and we denote Fε ≡ F and Cε ≡ C0. It follows from
Lemmas 11 and 12 that the functional F has the geometry of the mountain-pass
theorem. Therefore applying Theorem 7 we obtain a bounded (P.−S.)C0

sequence
(vn) in E (cf. Proposition 13), that is,

F(vn) → C0 and F ′(vn) → 0.

Since 0 < C0 < (θ − 4)/8θ, by Lemmas 17 and 15 there exists a critical point v of
F satisfying ∫

R2
h(z, g(vn))g′(vn)vndz →

∫
R2
h(z, g(v))g′(v)vdz, (35)∫

R2
H(z, g(vn))dz →

∫
R2
H(z, g(v))dz, (36)∫

R2
V (z)g2(vn)dz →

∫
R2
V (z)g2(v)dz. (37)

Now, we claim that v �≡ 0. Indeed, if v = 0, using that 〈F(vn), vn〉 → 0 and
g(s)g′(s)s ≤ g2(s) for all s ∈ R together with (35), we get∫

R2
|∇vn|2dz +

∫
R2
V (z)g2(vn)dz → 0.

From this and (36) we conclude that

F(vn) =
1
2

∫
R2

|∇vn|2dz +
1
2

∫
R2
V (z)g2(vn)dz −

∫
R2
H(z, g(vn))dz → 0

which is a contradiction. Therefore, v is a nontrivial critical of F . Next, by the
characterization (23) we must have F(v) ≥ C0. Moreover, as vn ⇀ v in H1(R2) by
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572 J. M. do Ó, A. Moameni & U. Severo

the semi-continuity of norm and (36), (37) we achieve, up to a subsequence, that

F(v) ≤ lim
n→∞

[
1
2

∫
R2

|∇vn|2dz +
1
2

∫
R2
V (z)g2(vn)dz −

∫
R2
H(z, g(vn))dz

]
= lim

n→∞F(vn) = C0.

Hence, F(v) = C0 and the proof of the theorem is complete.

By performing the scaling x �→ εx, Theorem 20 also yields a one parameter
family of critical points for the functional Iε, namely

ϑε(x) := vε(εx), ε > 0.

4. L∞-Estimate and the Behavior of ϑε as ε → 0

In this section, we shall prove that the family (ϑε){0<ε<ε0} decays uniformly to
zero. To do this, we first prove that this family is uniformly bounded in L∞.

Proposition 21. There exist ε0 > 0 and C > 0 such that ‖ϑε‖Eε ≤ C for all
0 < ε < ε0.

Proof. Since ϑε is a positive critical point of Iε at the level bε, that is,

Iε(ϑε) = bε = inf
v∈Eε\{0}

max
t≥0

Fε(tv) > 0,

by Lemma 19, we have Iε(ϑε) ≤ C1 + oε(1), where oε(1) → 0 as ε→ 0. Hence

θ

2

(∫
R2

|∇ϑε|2dx+
∫

R2
V (εx)g2(ϑε)dx

)
≤

∫
R2
θH(εx, g(ϑε))dx+ θC1 + 1 (38)

for all ε ∈ (0, ε0). On the other hand, notice that∫
R2

|∇ϑε|2dx+
∫

R2
V (εx)g2(ϑε)dx ≥

∫
R2

|∇ϑε|2dx+
∫

R2
V (εx)g(ϑε)g′(ϑε)ϑεdx

=
∫

R2
h(εx, g(ϑε))g′(ϑε)ϑεdx

≥ 1
2

∫
R2
h(εx, g(ϑε))g(ϑε)dx,

which together with (h3) and (38) implies that(
θ − 4

2

) [∫
R2

(|∇ϑε|2 + V (εx)g2(ϑε))dx
]

≤
∫

R2
[θH(εx, g(ϑε)) − h(εx, g(ϑε))g(ϑε)]dx+ θC1 + 1

≤
∫

R2\Λε

[θH(εx, g(ϑε)) − h(εx, g(ϑε))g(ϑε)]dx+ θC1 + 1

≤ θ − 2
τ

∫
R2\Λε

V (εx)f2(ϑε)dx + 2θC1 + 1
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where Λε = {x ∈ R
2 : εx ∈ Λ}. Therefore,∫

R2
[|∇ϑε|2 + V (εx)g2(ϑε)]dx ≤ C (39)

which implies that ‖ϑε‖ε ≤ C for all ε ∈ (0, ε0).

The next result concerns the regularity of the family (ϑε) and it is essential for
the proof of Theorems 1 and 2. We will use the Gagliardo–Nirenberg inequality
(see [22, p. 31]), which asserts

‖u‖q ≤ C(θ)‖u‖1−θ
r ‖∇u‖θ

2 (40)

for all u ∈ H1(R2) ∩ Lr(R2), where 1 ≤ r <∞, 0 < θ ≤ 1 and

1
q

.=
1 − θ

r
. (41)

Proposition 22. The functions ϑε belongs to L∞(R2). Furthermore, there exist
ε0 > 0 and C > 0 such that ‖ϑε‖∞ ≤ C for all 0 < ε < ε0.

Proof. Taking θ = 1/2 in (41), it follows that q = 2r and (40) implies

‖u‖2r ≤ C‖u‖1/2
r ‖∇u‖1/2

2 .

Now, setting u = g(ϑε), r = σn
.= 2n, n ≥ 1, we have

‖g(ϑε)‖σn+1 ≤ C‖g(ϑε)‖1/2
σn

because ‖∇ϑε‖2 ≤ C and g′(ϑε) ≤ 1. Hence, by iteration, we see that

‖g(ϑε)‖σn+1 ≤ C1+1/2+···+1/2n−1‖g(ϑε)‖1/2n

2 .

Using that

‖g(ϑε)‖2 ≤ β
−1/2
0

[∫
R2
V (εx)g2(ϑε)dx

]1/2

≤ C

and since the series 1 + 1/2 + · · · + 1/2n−1 + · · · is convergent, we conclude that

‖g(ϑε)‖L∞(Bρ(x)) ≤ lim
n→∞ ‖g(ϑε)‖Lσn+1(Bρ(x)) ≤ lim

n→∞ ‖g(ϑε)‖σn+1 ≤ C

where ρ > 0 and x ∈ R
2 are arbitrary. Thus, since g−1 is continuous, it follows that

‖ϑε‖∞ ≤ C for all 0 < ε < ε0. (42)

Corollary 23. There exists C0 > 0 such that ‖ϑε‖H1 ≤ C0 for all 0 < ε < ε0.

Proof. Since ‖ϑε‖∞ ≤ C for all 0 < ε < ε0, using property (9) in Proposition 3,
we have that

g(ϑε) ≥ C2ϑε for some C2 > 0. (43)

Thus, in view of (39) and (V0) the result follows.
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Lemma 24. There exist ε0 > 0, a family (yε){0<ε<ε0} in R
2 and positive constants

R and β such that ∫
BR(yε)

g2(ϑε)dx ≥ β for all 0 < ε < ε0.

Proof. We assume, for the sake of contradiction, that there exists a sequence
εn → 0 as n→ ∞ such that for all R > 0

lim
n→∞ sup

x∈R2

∫
BR(x)

g2(ϑεn)dx = 0.

Using a result by Lions (see [44]), we conclude that g(ϑεn) → 0 in Ls(R2) for all
s > 2. Hence, using (h2)c (or (h2)s), for δ > 0 we obtain∫

R2
h(εnx, g(ϑεn))g(ϑεn)dx ≤ δ

∫
R2
g2(ϑεn)dx

+C

∫
R2
g2(ϑεn)e[βg4(ϑεn)−1]g(ϑεn)dx

≤ C1δ + C2

∫
R2

(g(ϑεn))3dx

because ‖ϑεn‖∞ ≤ C and this shows that∫
R2
h(εnx, g(ϑεn))g(ϑεn)dx→ 0.

Consequently, we also have ∫
R2
H(εnx, g(ϑεn))dx→ 0.

Since 〈I′
εn

(ϑεn), ϑεn〉 = 0, we get∫
R2

|∇ϑεn |2dx+
1
2

∫
R2
V (εnx)g2(ϑεn)dx ≤

∫
R2
h(εnx, g(ϑεn))g(ϑεn)dx

which implies that ∫
R2

|∇ϑεn |2dx+
∫

R2
V (εnx)g2(ϑεn)dx→ 0.

Thus

bεn = Iεn(ϑεn) → 0

which is a contradiction, because bεn ≥ c0 > 0 for all n, where c0 is the mountain-
pass level of the functional

I0(v) =
1
2

∫
R2

|∇v|2dx+
β0

2

∫
R2
g2(v)dx −

∫
R2
F (g(v))dx

and the result is proved.
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Lemma 25. The family (εyε){0<ε<ε0} has the following property

dist(εyε,Λ) ≤ εR.

Proof. For every δ > 0, we define Kδ
.= {x ∈ R

2 : dist(x,Λ) ≤ δ} and φε(x)
.=

φ(εx), where φ ∈ C∞(R2, [0, 1]) is such that φ(x) = 1 if x /∈ Kδ, φ(x) = 0 if x ∈ Λ
and |∇φ| ≤ C/δ. Note that |∇φε| ≤ Cε/δ. By condition (V0), we have

β0

(
1
2
− 1
τ

) ∫
R2
g2(ϑε)φεdx ≤

∫
R2

|∇ϑε|2φεdx+
(

1
2
− 1
τ

) ∫
R2
V (εx)g2(ϑε)φεdx.

On the other hand, since 〈I′
ε(ϑε), ϑεφε〉 = 0 and using (h3) and the fact that the

support of φε does not intercept Λε, we obtain∫
R2

|∇ϑε|2φεdx+
(

1
2
− 1
τ

) ∫
R2
V (εx)g2(ϑε)φεdx ≤ −

∫
R2
ϑε∇ϑε∇φεdx.

Thereby giving,

β0

(
1
2
− 1
τ

) ∫
R2
g2(ϑε)φεdx ≤ −

∫
R2
ϑε∇ϑε∇φεdx

≤ Cε

δ

(∫
R2

|∇ϑε|2dx
)1/2 (∫

R2
ϑ2

εdx
)1/2

≤ C1ε

δ
.

From this inequality, if for some sequence εn↘0 and

BR(yεn) ∩ {x ∈ R
2 : εnx ∈ Kδ} = ∅

we conclude that (
1
2
− 1
τ

) ∫
BR(yεn)

g2(ϑεn)dx ≤ C1εn

β0δ

which contradicts Lemma 24. Thus, for all ε ∈ (0, ε0), there exists an x such that
εx ∈ Kδ and |x − yε| ≤ R, showing that dist(εyε,Λ) ≤ εR + δ and from this we
conclude the proof.

Remark 26. It follows from the previous lemma that the family (εyε){0<ε<ε0} can
be taken in such a way that εyε ∈ Λ for all 0 < ε < ε0. Indeed, since dist(εyε,Λ) <
2εR for each ε ∈ (0, ε0), there exists xε ∈ Λ satisfying |yε − ε−1xε| < 2R. Thus,

0 < β ≤
∫

BR(yε)

g2(ϑε)dx ≤
∫

B3R(ε−1xε)

g2(ϑε)dx.

Replacing R by 3R in Lemma 24, we can replace yε by ε−1xε.

Lemma 27. There exists ε0 > 0 sufficiently small such that the family (ϑε){0<ε<ε0}
decays to zero as |x| → ∞ uniformly with respect to ε ∈ (0, ε0).
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Proof. We know that for all φ ∈ C∞
0 (R2),∫

R2
∇ϑε∇φdx +

∫
R2
V (εx)g(ϑε)g′(ϑε)φdx =

∫
R2
h(εx, g(ϑε))g′(ϑε)φdx. (44)

This, together with Propositions 3 and 22, implies that∫
R2

∇ϑε∇φdx ≤ C

∫
R2
ϑεφdx,

for all nonnegative functions φ ∈ C∞
0 (R2). By standard local behavior result [20,

Theorem 8.17], for any ball B2r(x) centered at any x ∈ R
2,

sup
y∈Br(x)

ϑε(y) ≤ C‖ϑε‖L2(B2r(x)) for all 0 < ε < ε0.

Therefore, the assertion of the lemma will be a consequence of the following result.

Claim 28. There exists ε0 > 0 sufficiently small such that the following holds :

lim
R→∞

∫
|x|≥R

ϑ2
εdx = 0

uniformly with respect to ε ∈ (0, ε0).

For the proof of this claim we use the Radial Lemma (see [6, Lemma A.IV])
which asserts that for all x �= 0 and u ∈ H1(R2) holds

|u∗(x)| ≤ 1√
π|x| ‖u

∗‖H1 , (45)

where u∗ denotes the Schwarz symmetrization of u.
For R > 0, let ψR be in C∞(R2, [0, 1]) such that

ψR(x) =
{

0, if |x| ≤ R

1, if |x| ≥ 2R

and satisfying |∇ψR| ≤ C/R for some C > 0. Taking φ = ϑεψR in (44), we obtain∫
R2

|∇ϑε|2ψRdx+
∫

R2
ϑε∇ϑε∇ψRdx+

∫
R2
V (εx)g(ϑε)g′(ϑε)ϑεψRdx

=
∫

R2
h(z, g(ϑε))g′(ϑε)ϑεψRdx. (46)

Using property (h2)s or (h2)c, we have that

h(εnx, g(ϑε)) ≤ β0

4
g(ϑε) + Cg(ϑε)e[βg4(ϑε)−1]

which together with (V0), Proposition 3 and (46) imply that

β0

2

∫
R2
g2(ϑε)ψRdx ≤ −

∫
R2
ϑε∇ϑε∇ψRdx+

β0

4

∫
R2
g2(ϑε)ψRdx

+
∫

R2
e[βg4(ϑε)−1]g(ϑε)g′(ϑε)ϑεψRdx.
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From Proposition 22 and (45) it follows that for all ε ∈ (0, ε0),∫
|x|≥2R

g2(ϑε)dx ≤ C

R
(47)

where we have used the following estimate∫
|x|≥R

e[2βϑ2
ε−1]ϑ2

εdx ≤ C

R
. (48)

Indeed, by the properties of Schwarz symmetrization,∫
|x|≥R

e[2βϑ2
ε−1]ϑ2

εdx =
∫
|x|≥R

e[2β(ϑ∗
ε)2−1](ϑ∗ε)

2dx

=
∞∑

k=1

(2β)k

k!

∫
|x|≥R

(ϑ∗ε)
2k+2dx. (49)

Since ‖ϑ∗ε‖H1 ≤ ‖ϑε‖H1 ≤ C for all 0 < ε < ε0, it follows from (45) that for all
k ≥ 1 ∫

|x|≥R

(ϑ∗ε)
2k+2dx ≤

(
C√
π

)2k+2 ∫
|x|≥R

1
|x|2k+2

dx

= π

(
C√
π

)2k+2 1
kR2k

≤ C2

(
C2

π

)k 1
R
,

where we have assumed that R > 1. Thus, from this estimate and (49) we obtain
(48). Finally, using Proposition 3 and (47), the claim is proved.

5. The Concentration Behavior

The critical points vε of the modified functional Fε actually yield, as ε→ 0, critical
points of the reduced functional Ĩε which, by means of the change of variable uε =
g(vε), are eventually solutions of the original problem (Pε). Furthermore, we are
going to show that such solutions inherit the shape of the solutions of the limit
problem (26) and how this fact forces them, as ε → 0, to concentrate around a
point which is localized by the potential V .

Lemma 29. The following limit holds

lim
ε→0

V (εyε) = β1

and wε(x)
.= ϑε(x+yε) converges uniformly to a nontrivial solution of problem (26)

over compacts subsets of R
2.

Proof. Let εn be a sequence such that εn → 0 and yn ∈ R
2 verifying εnyn ∈ Λ. As

εnyn ∈ Λ, up to subsequences, we get εnyn → x0 ∈ Λ. To simplify the notation, set
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ϑn = ϑεn and wn(x) = ϑn(x + yn). Since ‖wn‖H1 = ‖ϑn‖H1 is bounded, we may
assume that there exists w ∈ H1(R2) such that

wn ⇀ w in H1(R2) and wn → w almost everywhere in R
2.

By Lemma 24, we have w �= 0. We define

χ(x) .= lim
n→∞χΛ(εnx+ εnyn) almost everywhere in R

2

and

h̃(x, s) .= χ(x)f(s) + (1 − χ(x))f (s).

We have that ∫
R2

[∇wn∇φ+ V (εnx+ εnyn)g(wn)g′(wn)φ]dx

=
∫

R2
h(εnx+ εnyn, g(wn))g′(wn)φdx, (50)

for all φ ∈ C∞
0 (R2). Since ‖ϑn‖∞ ≤ C for all n, by the Lebesgue dominated con-

vergence theorem it follows that

lim
n→∞

∫
R2
h(εnx+ εnyn, g(wn))g′(wn)φdx =

∫
R2
h̃(x, g(w))g′(w)φdx,

for all φ ∈ C∞
0 (R2). Taking the limit in (50) we achieve that w satisfies∫
R2

[∇w∇φ + V (x0)g(w)g′(w)φ]dx =
∫

R2
h̃(x, g(w))g′(w)φdx,

for all φ ∈ C∞
0 (R2). Therefore, w is a critical point of the functional given by

F̃(v) =
1
2

∫
R2

[|∇v|2 + V (x0)g2(v)]dx −
∫

R2
H̃(x, g(v))dx,

where H̃ is the primitive of h̃. If x0 ∈ Λ we have εnx+ εnyn ∈ Λ for n sufficiently
large. Hence, χ(x) = 1 for all x ∈ R

2 and so w is a critical point of the following
functional

Ix0(v) =
1
2

∫
R2

[|∇v|2 + V (x0)g2(v)]dx −
∫

R2
F (g(v))dx.

Denoting by Cx0 the mountain-pass level associated to the functional Ix0 and by
C̃ the mountain-pass level associated to the functional F̃ , we claim that Cx0 ≤ C̃.
In fact, since H̃(x, s) ≤ F (s) for all x ∈ R

2 and s ∈ R, we obtain Ix0(v) ≤ F̃(v) for
all v ∈ H1(R2) and this implies that Cx0 ≤ C̃. Let us define the set

An = {x ∈ R
2 : εnx+ εnyn ∈ Λ}.
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If x ∈ An, using (h3) we have
θ

4
V (εnx+ εnyn)g2(wn(x)) − V (εnx+ εnyn)g(wn(x))g′(wn(x))wn(x)

+ h(εnx+ εnyn, g(wn(x)))g′(wn(x))wn(x) − θ

2
H(εnx+ εnyn, g(wn(x)))

≥
(
θ

4
− 1

)
V (εnx+ εnyn)g2(wn(x))

+
1
2
[f(g(wn(x)))g(wn(x)) − θF (g(wn(x)))] ≥ 0

and if x /∈ An

θ

4
V (εnx+ εnyn)g2(wn(x)) − V (εnx+ εnyn)g(wn(x))g′(wn(x))wn(x)

+ h(εnx+ εnyn, g(wn(x)))g′(wn(x))wn(x) − θ

2
H(εnx+ εnyn, g(wn(x)))

≥
(
θ

4
− 1 − θ

4τ

)
V (εnx+ εnyn)g2(wn(x)) ≥ 0

because θ/4 − 1 − θ/4τ > 0. Since C1 ≤ Cx0 and C̃ ≤ F̃(w), we have
θ

2
C1 ≤ θ

2
Cx0 ≤ θ

2
C̃ ≤ θ

2
F̃(w) =

θ

2
F̃(w) − 〈F̃ ′(w), w〉,

from which we obtain
θ

2
C1 ≤

(
θ

4
− 1

)∫
R2

|∇w|2dx+
∫

R2

[
θ

4
V (x0)g2(w) − V (x0)g(w)g′(w)w

+ h̃(x, g(w))g′(w)w − θ

2
H̃(x, g(w))

]
dx.

It follows from the above inequality, Fatou’s Lemma and semicontinuity of the norm
that
θ

2
C1 ≤ lim inf

n→∞

(
θ

4
− 1

)∫
R2

|∇wn|2dx

+ lim inf
n→∞

∫
R2

[
θ

4
V (εnx+ εnyn)g2(wn) − V (εnx+ εnyn)g(wn)g′(wn)wn

+ h(εnx+ εnyn, g(wn))g′(wn)wn − θ

2
H(εnx+ εnyn, g(wn))

]
dx

= lim inf
n→∞

(
θ

4
− 1

)∫
R2

|∇ϑn|2dx

+ lim inf
n→∞

∫
R2

[
θ

4
V (εnx)g2(ϑn) − V (εnx)g(ϑn)g′(ϑn)ϑn

+ h(εnx, g(ϑn))g′(ϑn)ϑn − θ

2
H(εnx, g(ϑn))

]
dx
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= lim inf
n→∞

[
θ

2
Fεn(ϑn) − 〈F ′

εn
(ϑn), ϑn〉

]
=
θ

2
lim inf
n→∞ bεn ≤ θ

2
C1.

Thus, F̃(w) = C1 and limε→0 bε = C1. Moreover, if V (x0) > β1 we obtain, by the
fact that the mountain-pass level C1 on the constant potential β1 is continuous and
increasing (see, for example, [35]), that C1 < Cx0 ≤ C̃ ≤ F̃ (w) = C1 which is a
contradiction. Therefore, V (x0) = β1 and this implies that x0 ∈ Λ and F̃ = Ix0 =
F0. Therefore, w is a solution of (26). Also we have

−∆(wn − w) = Gn in R
2

where

Gn(x) .= β1g(w(x))g′(w(x)) − V (εnx+ εnyn)g(wn(x))g′(wn(x))

+ h(εnx+ εnyn, g(wn(x)))g′(wn(x)) − f(g(w(x)))g′(w(x)).

As wn → w almost everywhere in R
2 this implies that Gn → 0 almost everywhere

in R
2. Notice that for each compact subset B of R

2 we have |Gn|, |w| ≤ CB since
‖wn‖∞ ≤ C and |εnx + εnyn| ≤ C1 for all n and x ∈ B. Thus, by the Lebesgue
dominated convergence theorem it follows that Gn → 0 in Ls

loc(R
2) for all s ≥ 1.

Using [20, Theorem 9.11] we can conclude that wn → w in W 2,s
loc (R2) for all s ≥ 1

and from this wn → w in C1,α
loc (R2) for some α ∈ (0, 1). Now, by [20, Theorem 6.2],

wn → w in C2,α
loc (R2) for some α ∈ (0, 1) and the lemma is proved.

6. Proof of Theorems 1 and 2

Since ϑε decays uniformly to zero, there exists R > 0 such that ϑε(x) ≤ a for all
|x| ≥ R. Choosing ε0 > 0 sufficiently small such that BR ⊂ Λε0 , we conclude that
for all ε ∈ (0, ε0)

−∆ϑε + V (εx)g(ϑε)g′(ϑε) = f(g(ϑε))g′(ϑε) in R
2.

Thus,

−ε2∆vε + V (z)g(vε)g′(vε) = f(g(vε))g′(ϑε) in R
2

and this implies that uε = g(vε) is a positive solution of problem (Pε) for all
ε ∈ (0, ε0).

By Proposition 22, we have that, for all ε ∈ (0, ε0), wε possesses a global maxi-
mum point xε ∈ Bρ for some ρ > 0. Considering the translation w̃ε(x) = wε(x+xε),
we may assume that the function wε achieve its global maximum at the origin of
R

2. Using the fact that w is spherically symmetric, ∂w/∂r < 0 for all r > 0 and
wε converges to w in C2,α

loc (R2), by Lemma 4.2 in [33] we can conclude that wε

possesses no critical point other than the origin for all ε ∈ (0, ε0).
Notice that the maximum value of vε(z) = vε(εx) = ϑε(x) = wε(x − yε) is

achieved at the point zε = εyε ∈ Λ. As the function g is strictly increasing, the
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maximum value of uε(z) = g(vε(z)) is also achieved at the point zε = εyε ∈ Λ. As
∇uε = g′(vε)∇vε, uε possesses no critical point other than zε and the item (i) in
Theorems 1 and 2 is proved. The item (ii) is a consequence of Lemma 29.

6.1. Exponential decay of the solutions

To finalize, we are going to prove the exponential decay of the solutions uε. Using
that lims→0 g(s)g′(s)/s = 1 and (f0), we can choose R0 > 0 such that for all
ε ∈ (0, ε0) and |x| ≥ R0

g(wε(x))g′(wε(x)) ≥ 3
4
wε(x) and f(g(wε(x))) ≤ β0

2
g(wε(x)). (51)

We define ψ(x) := Me−ξ|x| where ξ and M are such that 4ξ2 < β0 and Me−ξR0 ≥
wε(x) for all |x| = R0. It is not difficult to check that

∆ψ ≤ ξ2ψ, ∀x �= 0. (52)

We consider the function ψε = ψ − wε. Thus, using (51), (52) and the following
equation

−∆wε + V (εx+ εyε)g(wε)g′(wε) = f(g(wε))g′(wε) in R
2,

we obtain

−∆ψε +
β0

4
ψε ≥ 0 in |x| ≥ R0,

ψε ≥ 0 on |x| = R0,

lim
|x|→∞

ψε(x) = 0.

By the maximum principle, we have that ψε(x) ≥ 0 for all |x| ≥ R0. Hence, ψε(x) ≤
Me−ξ|x| for all |x| ≥ R0 and ε ∈ (0, ε0). This implies that

uε(z) = g(vε(z)) ≤ vε(z) = ϑε

(z
ε

)
= wε

(
z − zε

ε

)
≤ Ce−ξ

∣∣ z−zε
ε

∣∣
and the item (iii) of Theorems 1 and 2 is proved.
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