
Non variational elliptic systems in dimension two:

a priori bounds and existence of positive solutions

Djairo G. de Figueiredo

IMECC - Departamento de Matemática,
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Abstract

We establish a priori bounds for positive solutions of semilinear elliptic
systems of the form





−∆u = g(x, u, v) , in Ω

−∆v = f(x, u, v) , in Ω

u > 0 , v > 0 in Ω

u = v = 0 on ∂Ω

where Ω is a bounded and smooth domain in R2. We obtain results
concerning such bounds when f and g depend exponentially with respect to
u and v. Based on these bounds, existence of positive solutions is proved.
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1 Introduction

In this paper we establish the existence of positive solutions for semilinear
elliptic systems of the form





−∆u = g(x, u, v) , in Ω

−∆v = f(x, u, v) , in Ω

u > 0 , v > 0 in Ω

u = v = 0 on ∂Ω

(1.1)

where Ω is a bounded domain in R2 with smooth boundary ∂Ω, ∆ is the
Laplace operator, and f, g : Ω× R2 → R are continuous functions.

This class of systems has been extensively studied when Ω is a bounded
domain in RN , with N ≥ 3, see the recent survey paper [7].

The case of dimension 2 presents some different features than the case
of higher dimensions, and has been less studied. Some material in the case
of dimension two has been collected in the recent survey paper [18]. Using
variational methods, systems of the form





−∆u = g(x, v) , in Ω

−∆v = f(x, u) , in Ω

u > 0 , v > 0 in Ω

u = v = 0 on ∂Ω

(1.2)

have been treated in [11]. Existence of solutions to (1.2) were obtained for
nonlinearities both sub-critical and critical in the sense of the Trudinger-
Moser exponential growth.

Later, in [13], we investigated the question of a priori bounds for positive
solutions of (1.2). Such bounds were obtained under much more restrictive
hypotheses on the growth of the nonlinearities as compared with the above
growths used in the variational approach.

This fact is in agreement with a similar phenomenon already observed
in the scalar case by the authors of [5] and [6]. We recall that existence of
solutions for the scalar problem





−∆u = f(x, u) , in Ω

u > 0 in Ω

u = 0 on ∂Ω

(1.3)
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can be proved for cases where the non-linearity f(x, u) behaves at ∞ as
eα|u|2 (plus some additional conditions needed to use variational methods).
However, the a priori bounds for positive solutions of (1.3) have been
obtained in [5] and [6] under more restrictive conditions, namely f behaving
as eu at ∞. And in [5] it is even shown that in general one cannot expect
to get the bounds if f has higher growths in the non-homogeneous case.

It is apparent that one is in the presence of similar phenomena observed
in [16] in dimension N ≥ 3. They have shown that a priori bounds in these
dimensions, for general non-homogeneous nonlinearities, can be obtained
only if f(x, u) has polynomial growth at ∞ like up with p ≤ N+1

N−1 ; this is the
so-called Brezis-Turner exponent, which is the best exponent to get a priori
bounds for positive solutions of (1.3) using Hardy inequality, see [3].

The purpose of the present paper is to study systems of form (1.1) which
are not necessarily variational. We will derive a priori estimates for positive
solutions for nonlinearities whose growths will be restricted by exponentials
whose exponents are related and compensate each other. Then we use
topological methods to prove the existence of positive solutions for these
systems.

We assume throughout the paper that the nonlinearities satisfy the
hypothesis:

(H0) f, g : Ω× R× R→ R+ are continuous.

To start with, we consider very weak solutions of system (1.1), that is
solutions in the sense of distributions. More precisely, we assume that u and
v are L1-functions such that

f(x, u, v) and g(x, u, v) ∈ L1(Ω)

and

−
∫

Ω
u∆ϕdx =

∫

Ω
g(x, u, v)ϕdx

−
∫

Ω
v∆ϕdx =

∫

Ω
f(x, u, v)ϕdx

, ∀ ϕ ∈ E = {u ∈ C2(Ω), u|∂Ω = 0} .

Before stating our main results on a priori bounds, we present a result
on the regularity of the distribution solutions of (1.1). For that matter, a
growth assumption on only one of the nonlinearities suffices, namely,

(H1) f(x, t, s) ≤ c ept+qs and g(x, t, s) ≤ ep′t h(s)
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or

(H ′
1) g(x, t, s) ≤ cept+qs and f(x, t, s) ≤ eq′s k(t)

where c, p, q, p′ and q′ are some positive constants, and h(s) and k(t) are
positive, continuous functions.

Theorem 1.1 (Regularity of distribution solutions) Assume (H1) or
(H ′

1). Then the distribution solutions of system (1.1) are in fact in L∞(Ω).

It follows from Theorem 1.1 that any solution (u, v) of system (1.1)
satisfies

∫
Ω g(x, u, v) dx < ∞,

∫
Ω f(x, u, v) dx < ∞. Our next result states

that under some additional hypotheses there is a uniform bound for these
integrals.

Let c(x) ∈ C(Ω) be a positive function and denote by λ1(c) the first
eigenvalue of the following eigenvalue problem

−∆ϕ = λc(x)ϕ, in Ω, ϕ = 0, on ∂Ω .

We now state the “superlinearity” assumptions we need.

(H2) There exist positive functions a, b ∈ C(Ω) and constants a1, b1 with the
property:

f(x, t, s) ≥ a(x)t− a1 and g(x, t, s) ≥ b(x)s− b1

and such that
a(x)λ1(a)2 < b(x) , x ∈ Ω. (1.4)

(H ′
2) There exist positive functions a, b ∈ C(Ω) and constants a1, b1 with the

property

f(x, t, s) ≥ a(x)t− a1 and g(x, t, s) ≥ b(x)s− b1

and such that
b(x)λ1(b)2 < a(x) , x ∈ Ω . (1.5)

The next assumption concerns the behaviour of the nonlinearities near
the boundary:

(H3) For some r > 0,

∂

∂t
f(x, t, s) ≥ 0 and

∂

∂s
g(x, t, s) ≥ 0 in Ωr × R× R ,

where Ωr :=
{
x ∈ Ω : dist(x, ∂Ω) ≤ r

}
.
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We note that condition (H3) will allow the use of the Maximum Principle
for cooperative systems; this is a basic tool in order to apply the Moving
Planes technique (cf. [9], [19]).

Due to the fact that we are considering non-autonomous problems, we
also need geometric assumptions concerning the behavior of f and g with
respect to x near the boundary.

(H4) (Ω a convex domain) There exist r, δ > 0 such that g(·, t, s), f(·, t, s) ∈
C1(Ωr), and

∇x g(x, t, s) · θ ≤ 0 and ∇x f(x, t, s) · θ ≤ 0

for all x ∈ Ωr, t, s ≥ 0, and unit vectors θ such that |θ − ν(x̄)| < δ,
where x̄ is the closest point to x in ∂Ω and ν(x̄) denotes the unit
external normal to ∂Ω in the point x̄.

If Ω is not convex, we use the Kelvin transform as in [6] to reduce the
problem to a situation as in the convex case. So we follow [6] and assume

(H5) (Ω a general domain) There exist r, C > 0 such that g(·, t, s),
f(·, t, s) ∈ C1(Ωr) and

|∇x g(x, t, s)| ≤ Cg(x, t, s) and |∇x f(x, t)| ≤ Cf(x, t, s) .

for all x ∈ Ωr and t, s ≥ 0.

Theorem 1.2 (Uniform Estimates) Assume (H1) (or (H ′
1)), (H2) (or

(H ′
2)), (H3), (H4) and Ω convex (or (H5)). Then there exists a positive

constant C, depending only on f, g and Ω, such that
∫

Ω
g(x, u, v) dx ≤ C ,

∫

Ω
f(x, u, v) dx ≤ C,

for all (u, v) solution of system (1.1).

In order to obtain a priori bounds for the solutions of system (1.1)
we have to assume further conditions regarding the growth at infinity of
the nonlinearities f and g. For that matter, we introduce the following
conditions.
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(H6) There exists a constant c such that

g(x, t, s) ≤ c etα+sβ
and f(x, t, s) ≤ c etβ

′
+sα′

,

where

a) 0 ≤ α ≤ β and 0 ≤ α′ ≤ β′

b) α + β < 2 and α′ + β′ < 2

c) β + β′ < 2

Remark 1.1 From our main growth assumption (H6) it follows that both
(H1) and (H ′

1) are satisfied.

Example 1.1 The nonlinearities below satisfy condition (H6):

f(x, t, s) = et+s1/2
, g(x, t, s) = et1/2+s3/4

Remark 1.2 If f(x, t, s) ≤ c′ ep tα+q tβ , for some p, q > 1, then condition
(H6) will be satisfied for suitable choices of c and α < α̃ < 1, β < β̃ < 1,
and similarly for g(x, t, s). So these conditions are not more general than
(H6).

The next Theorem gives a priori estimates for positive solutions of system
(1.1) under the growth restrictions (H6):

Theorem 1.3 Assume (H2) (or (H ′
2)), (H3), (H4) and Ω convex (or (H5)),

and (H6). Then there exists a constant C > 0 such that

‖u‖L∞ ≤ C and ‖v‖L∞ ≤ C ,

for all eventual solutions (u, v) of system (1.1).

Remark 1.3
1) Condition (H6, a) says that the system is strongly coupled.

2) If α = 0 = α ′, then the system reduces to

−∆u = g(x, v) , −∆v = f(x, u) (1.6)

which was considered in [12]; indeed, in this case Theorem 1.3 contains and
generalizes Theorems 1.4 and 1.5 from that article, which covers the case
β + β′ < 2.
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3) The general case β + β′ = 2 (and α = α′ = 0) was left open in [12],
except for the particular case β = β′ = 1, for which it was possible to obtain
a priori bounds following the techniques developed by Brezis-Merle [5].

Here we come back to this situation, which we call ”critical growth”, and
generalize it to the case where both nonlinearities depend on the variables
u and v, both with exponential growth, i.e. with β = β′ = 1 together with
α = α′ = 1; see the next result.

Theorem 1.4 Assume (H2) (or (H ′
2)), (H3), (H4) and Ω convex (or (H5)),

and assume that f(x, t, s) and g(x, t, s) satisfy:

(H7) There exist constants c, d > 0 such that

c et+s ≤ g(x, t, s) ≤ d et+s

and
0 ≤ f(x, t, s) ≤ d et+s .

Then all positive solutions (u, v) of system (1.1) are uniformly bounded in
L∞.

Example 1.2

g(x, t, s) = b et+s , f(x, t, s) = sin2(x) et+s ,

where b > sin2(x) · λ2
1(sin

2(x)), see (H2).

Finally, we give an existence theorem. Denote with

(−∆)−1 : C0(Ω) → C0(Ω)
y 7→ u s.th. −∆u = y , u|∂Ω = 0

the inverse Laplace operator, with M such that

‖(−∆)−1y‖C0 ≤ M‖y‖C0 , ∀ y ∈ C0(Ω) . (1.7)

Theorem 1.5 Assume that f and g satisfy the hypotheses of Theorem 1.3
or Theorem 1.4, and in addition:

(H8) There exists ε > 0 and constants c1, c2 with the property:

f(x, t, s) ≤ c1(|t|+ |s|) and g(x, t, s) ≤ c2(|t|+ |s|) , for |t|+ |s| ≤ ε ,

with M(c1 + c2) < 1.

Then system (1.1) has a nontrivial solution (u, v).
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2 Regularity of distribution solutions

For easy reference, we state a result due to Brezis-Merle [5] which will be
used to prove Theorem 1.1 above, and also in the proofs of Theorems 1.3
and 1.4.

Proposition 2.1 (Brezis-Merle) Let u be a distribution solution of the
linear equation { −∆u = h(x) in Ω

u = 0 on ∂Ω ,
(2.1)

where Ω is a bounded domain in R2, and h ∈ L1(Ω). Then

i) for every δ ∈ (0, 4π), we have
∫

Ω
exp

((4π − δ)|u(x)|
‖h‖L1

)
dx ≤ 4π2

δ
(diam Ω)2 .

ii) for every k > 0, eku ∈ L1(Ω) .

Proof of Theorem 1.1. Let (u, v) be a distributional solution of system
(1.1). By Proposition 2.1, ii) follows that eu, ev are in Lp for every p ≥ 1.
Consequently, if we assume (H1), i.e. f(x, u, v) ≤ c epu+qv, then
∫

Ω
|f(x, u, v)|α dx ≤ c

∫

Ω
eαpu ·eαqv dx ≤

(∫

Ω
e2αpu dx

)1/2(∫

Ω
e2αqv dx

)1/2
,

that is, f(x, u, v) ∈ Lα, for every α > 1. By Lp-estimates it follows from
the second equation in system (1.1) that v ∈ W 2,α(Ω), for all α > 1, and
hence v ∈ L∞. Using now the first equation in (1.1) we conclude that also
u ∈ L∞.
Using similar arguments we come to the same conclusions, if (H ′

1) is assumed
instead of (H1).

Remark 2.1 As a consequence of Theorem 1.1 and standard regularity
results for elliptic equations we have that solutions of (1.1) in the distribution
sense are, in fact, classical solutions.
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3 Proof of Theorem 1.2 (uniform estimates)

Let ϕ b
1 be an eigenfunction associated to the first eigenvalue λ1(b) of the

eigenvalue problem

−∆ϕ b
1 = λ1(b)b(x)ϕ b

1 in Ω and ϕ b
1 = 0 on ∂Ω

which is chosen in such a way that ϕ b
1 > 0 and

∫
Ω |ϕ b

1 |2 = 1.

Lemma 3.1 Assume (H1) and (H ′
2) (or (H2)). Then we have for any

solution (u, v) of system (1.1)
∫

Ω
g(x, u, v)ϕ b

1 dx ≤ C ,

∫

Ω
f(x, u, v)ϕ b

1 dx ≤ C , (3.1)

where the constant C depends only on f, g and Ω.

Proof. From assumption (H ′
2), it follows that one can find an ε > 0, such

that
a(x) ≥ (

λ1(b)2 + ε
)
b(x), x ∈ Ω. (3.2)

Multiplying the first equation in (1.1) by ϕ b
1 , integrating by parts and using

(H ′
2) one obtains

λ1(b)
∫

Ω
ub(x)ϕ b

1 dx =
∫

Ω
g(x, u, v)ϕ b

1 dx

≥
∫

Ω
b(x)vϕ b

1 dx−
∫

Ω
b1(x)ϕ b

1 dx.

(3.3)

Multiplying the second equation in (1.1) by ϕ b
1 , integrating by parts and

using again (H ′
2) one obtains

λ1(b)
∫

Ω
vb(x)ϕ b

1 dx =
∫

Ω
f(x, u, v)ϕ b

1 dx

≥
∫

Ω
a(x)uϕ b

1 dx−
∫

Ω
a1(x)ϕ b

1 dx.

(3.4)

Using (3.4)and (3.2), we get

λ1(b)
∫

Ω
vb(x)ϕ b

1 dx ≥ (λ1(b)2 + ε)
∫

Ω
b(x)uϕ b

1 dx−
∫

Ω
a1(x)ϕ b

1 dx. (3.5)

Next using (3.5) and (3.3) we obtain

λ1(b)
∫

Ω
vb(x)ϕ b

1 dx ≥ (λ1(b)2 + ε)
λ1(b)

∫

Ω
vb(x)ϕ b

1 dx− C (3.6)
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So it follows that
∫
Ω vb(x)ϕ b

1 ≤ C, and hence by (3.4)
∫
Ω f(x, u, v)ϕ b

1 ≤ c,
and also

∫
Ω a(x)uϕ b

1 ≤ c from which by (3.3) also
∫
Ω g(x, u, v)ϕ b

1 dx ≤ c.

Lemma 3.2 Assume conditions (H1) (or (H ′
1)), (H3), (H4) and Ω convex

(or (H5)). Then there exist r, δ > 0 such that

∇u(x) · θ ≤ 0 and ∇v(x) · θ ≤ 0 for all x ∈ Ωr, |θ − ν(x)| < δ,

for each (u, v) solution of (1.1), where Ωr is defined in (H3); θ and ν are as
in (H4).

Proof. We can assume, without loss of generality, that

Ω ⊂ R2
+ := {(x, y) ∈ R2 : x > 0} and (0, 0) ∈ ∂Ω.

Now, we consider

Tλ := {(x, y) : x = λ} the hyperplane
Σλ := {(x, y) ∈ Ω : x < λ} the cap
Σ′λ := {(xλ, y) : (x, y) ∈ Σλ} the reflected cap

where
xλ := 2λ− x.

It follows that there exists λ such that Σλ ∪ Σ′λ ⊂ Ωr for each 0 < λ < λ.
In fact this λ depends only on r and not on the particular point on the
boundary.

For 0 < λ < λ , define in Σλ the auxiliary functions

wλ(x, y) = u(xλ, y)− u(x, y),
zλ(x, y) = v(xλ, y)− v(x, y).

Then we have

∆wλ = ∆u(xλ, y)−∆u(x, y)
= −g

(
(xλ, y), u(xλ, y), v(xλ, y)

)
+ g

(
(x, y), u(x, y), v(x, y)

)

= −g
(
(xλ, y), u(xλ, y), v(xλ, y)

)
+ g

(
(xλ, y), u(x, y), v(xλ, y)

)

−g
(
(xλ, y), u(x, y), v(xλ, y)

)
+ g

(
(xλ, y), u(x, y), v(x, y)

)

−g
(
(xλ, y), u(x, y), v(x, y)

)
+ g

(
(x, y), u(x, y), v(x, y)

)

=: J1 + J2 + J3
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It follows from (H4) that J3 < 0. The other two expressions are evaluated
using the Mean Value Theorem, namely

J1 = −cλ(x)[u(xλ, y)− u(x, y)]
J2 = −dλ(x)[v(xλ, y)− v(x, y)],

where

cλ(x) = ∂g
∂t

(
(xλ, y), ζ, v(xλ, y)

)

dλ(x) = ∂g
∂s

(
(xλ, y), u(x, y), ξ

)
,

where ζ is some value between u(xλ, y) and u(x, y). Similarly for ξ.
Observe that cλ(x) and dλ(x) are non-negative in view of Hypothesis

(H3). With a similar computation for zλ, we come to the system:

−∆wλ ≥ cλwλ + dλzλ

−∆zλ ≥ c′λwλ + d′λzλ

in a neighborhood of the boundary, where the coefficients are all non-
negative in that neighborhood. By the Maximum Principle for Cooperative
Systems (see [15]) wλ, zλ are positive, and so there exists ε > 0 such that u
and v are increasing in Ωε. At this point, the proof follows the same steps
as in the proof of Theorem 1.1 in [10].

Proof of Theorem 1.2:

From Lemma 3.2 and an argument similar to the one in the proof of
Theorem 1.1 in [10] we conclude that there exists ε > 0 and C > 0 such that

‖u‖L∞(Ωε) ≤ C , ‖v‖L∞(Ωε) ≤ C

for all solutions (u, v) of system (1.1).

Finally, let a := inf{ϕb
1(x) ; x ∈ Ω \ Ωε}, and estimate∫

Ω
f(x, u, v) dx =

∫

Ωε

f(x, u, v) dx +
∫

Ω\Ωε

f(x, u, v) dx

≤ C +
1
a

∫

Ω\Ωε

f(x, u, v)ϕb
1(x) dx

≤ C +
1
a

∫

Ω
f(x, u, v)ϕb

1(x) dx ≤ C ,

by Lemma 3.1, and similarly for
∫
Ω g(x, u, v) dx. This completes the proof

of Theorem 1.2.
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4 Proof of Theorem 1.3

In this section we rely on two inequalities, some kind of Young inequalities.
The first one was introduced in [11] to treat simpler elliptic systems in
dimension two. The second one generalizes the first one to the case when
there are three terms.

Proposition 4.1 For any a, s, t ≥ 1 we have
s t ≤ eta − 1 + s(logs)1/a .

Proposition 4.2 For any a, b, r, s, t ≥ 1 we have
r s t ≤ eta + erb

+ s(log s)
1
a
+ 1

b .

Proof. We are going to prove that for any a, b, s ≥ 1 fixed we have

sup
r,t>1

{
r s t− eta − erb} ≤ s (log s)1/a+1/b .

Let h(r, t) := r s t− eta − erb
. From

∂
∂rh(r, t) = tss− brb−1

s erb
s = 0

∂
∂th(r, t) = rss− ata−1

s etas = 0

we obtain

log ts + log s = log
(
brb−1

s erb
s
)

= rb
s + log(brb−1

s ) ≥ rb
s,

and

log rs + log s = log
(
ata−1

s etas
)

= tas + log(ata−1
s ) ≥ tas

using the fact that ata−1
s ≥ 1 and btb−1

s ≥ 1. Thus

rs ≤ (log ts + log s)1/b

ts ≤ (log rs + log s)1/a

Therefore,

h(r, t) ≤ s rs ts

≤ s
(
log ts + log s

)1/b( log rs + log s
)1/a

≤ s (log s)1/a+1/b
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and the proof is complete.

Proof of Theorem 1.3
First we recall that Theorem 1.1 gives that each (u, v) solution of (1.1)
belongs to (L∞(Ω))2, and then it follows that it belongs to (W 1,2(Ω))2. Let
η, η′ be positive parameters to be determined later. Using the first equation
of system (1.1) we obtain

∫

Ω
|∇u|2 dx =

∫

Ω
ug(x, u, v) dx

≤ c +
∫

Ω1

g(x, u, v)
uη + vη′

(
uη + vη′)u

=: c + I1 + I2,

where

I1 :=
∫

Ω1

g(x, u, v)
uη + vη′ uη+1 and I2 :=

∫

Ω1

g(x, u, v)
uη + vη′ vη′u

with
Ω1 := {x ∈ Ω : u(x) ≥ 1 or v(x) ≥ 1}.

First we estimate I1. We have

I1 ≤ ‖u‖η+1

∫

Ω1

g(x, u, v)
uη + vη′

( u

‖u‖
)η+1

,

and using Proposition 4.1 with a = γ, we obtain

I1 ≤ ‖u‖η+1

{∫

Ω1

e
( u
‖u‖ )(η+1)γ

+
∫

Ω1

g(x, u, v)
uη + vη′

(
log

g(x, u, v)
uη + vη′

)1/γ
}

.

The first term above is bounded by Trudinger-Moser inequality, if we take

(η + 1)γ ≤ 2 . (4.1)

To estimate the second term we notice that by assumption (H6)
∫

Ω1

g(x, u, v)
uη + vη′

(
log

g(x, u, v)
uη + vη′

)1/γ
≤

∫

Ω1

g(x, u, v)
uη + vη′

(
log

(
euα+vβ))1/γ

≤ C

∫

Ω1

g(x, u, v)
uη + vη′

(
uα/γ + vβ/γ

)
≤ C

∫

Ω1

g(x, u, v) ≤ C ,
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if we take
η ≥ α/γ and η′ ≥ β/γ , (4.2)

and where we have used the elementary inequality
(
uα + vβ

)1/γ
≤ C

(
uα/γ + vβ/γ

)
.

Thus we have
I1 ≤ C (‖u‖η+1 + 1) .

Next we estimate I2. By Proposition 4.2 we get

I2 ≤ C ‖u‖ ‖v‖η′
∫

Ω1

g(x, u, v)
uη + vη′

(
v

‖v‖
)η′ ( u

‖u‖
)

≤ C ‖u‖ ‖v‖η′
{∫

Ω1

e
( v
‖v‖ )η′a

+
∫

Ω1

e
( u
‖u‖ )b

+ J1

}
,

where

J1 =
∫

Ω1

g(x, u, v)
uη + vη′ log

(g(x, u, v)
uη + vη′

)(a−1+b−1)
.

Using Trudinger-Moser inequality and taking

η′a ≤ 2 and b ≤ 2 (4.3)

we obtain
I2 ≤ C ‖u‖ ‖v‖η′ {C + J1}

Finally, the integral J1 is estimated as above:

J1 ≤
∫

Ω1

g(x, u, v)
uη + vη′

(
uα(a−1+b−1) + vβ(a−1+b−1)

)

≤ C

∫

Ω1

g(x, u, v) dx ≤ C ,

by choosing

α
(1

a
+

1
b

)
≤ η and β

(1
a

+
1
b

)
≤ η′ . (4.4)

Thus, we have obtained
I2 ≤ C ‖v‖η′‖u‖ .

Hence, altogether with the above choices we have

‖u‖2 =
∫

Ω
|∇u|2 ≤ C (‖u‖η+1 + ‖v‖η′‖u‖+ 1) ,
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which implies
‖u‖ ≤ C

(‖u‖η + ‖v‖η′ + 1
)

. (4.5)

We now analyze the inequalities (4.1) - (4.2), viewing to obtain the
possible values of the parameters η and η′. First, we eliminate γ, a and b :
by using (4.1) - (4.2) we obtain

(I) η ≥ α

2− α

and

(II) η′ ≥ β(η + 1)
2

.

By using (4.3) and (4.4) we have

1
a

+
1
b
≥ η′ + 1

2
.

(III) η ≥ α(η′ + 1)
2

and

(IV ) η′ ≥ β

2− β
.

We now choose equality in (III) and (IV ) to obtain η ′:

η′ =
β

2− β
, (4.6)

and
η =

α

2− β
. (4.7)

Checking the compatibility of this choice with inequality (I) yields:

α

2− β
= η ≥ α

2− α
,

which agrees with the assumption (H6, a), that is, α ≤ β, which is also
compatible with (II).

We now return to inequality (4.5). To eliminate the term ‖u‖η on the
right, we need to require

η < 1 ⇐⇒ α + β < 2 , that is, hypothesis (H6, b) ;
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thus, inequality (4.5) reduces to

‖u‖ ≤ C (‖v‖η ′ + 1) . (4.8)

Note that 2 > α + β ≥ 2α also implies that 1 > α .

Next, we proceed similarly with the second equation in system (1.1)
∫

Ω
|∇v|2 dx =

∫

Ω
f(x, u, v)v

≤ c +
∫

Ω1

f(x, u, v)
uη̄ ′ + vη̄

(uη̄ ′ + vη̄)v

= c + J1 + J2,

where
J1 =

∫

Ω1

f(x, u, v)
uη̄ ′ + vη̄

vη̄+1.

We estimate as before, using Proposition 4.1, the Trudinger-Moser inequality
and Theorem 1.2

J1 ≤ C ‖v‖η̄+1

∫

Ω1

f(x, u, v)
uη̄ ′ + vη̄

( v

‖v‖
)η̄+1

≤ C ‖v‖η̄+1

{∫

Ω1

e

(
v
‖v‖

)(η̄+1)γ ′

+
∫

Ω1

f(x, u, v)
uη̄ ′ + vη̄

(
log

f(x, u, v)
uη̄ ′ + vη̄

)1/γ ′
}

≤ C ‖v‖η̄+1 ,

if we choose

(η̄ + 1)γ ′ ≤ 2 , η̄ ′ ≥ β ′

γ ′
, η̄ ≥ α ′

γ ′
. (4.9)

The integral J2 is estimated using Proposition 4.2, Trudinger-Moser
inequality and Theorem 1.2

J2 ≤ c

∫

Ω1

f(x, u, v)
uη̄ ′ + vη̄

uη̄ ′v = c‖u‖η̄ ′‖v‖
∫

Ω1

f(x, u, v)
uη̄ ′ + vη̄

( u

‖u‖
)η̄ ′( v

‖v‖
)

≤ c
{∫

Ω1

e
( u
‖u‖ )η̄ ′a ′

dx +
∫

Ω1

e
( v
‖v‖ )b ′

dx +
∫

Ω1

f(x, u, v)
uη̄ ′ + vη̄

log
(f(x, u, v)

uη̄ ′ + vη̄

) 1
a ′+

1
b ′

}

≤ C ‖u‖η̄ ′‖v‖ ,

if we choose

η̄ ′a ′ ≤ 2 , b ′ ≤ 2 , η̄ ′ ≥ β ′( 1
a ′

+
1
b ′

)
, η̄ ≥ α ′( 1

a ′
+

1
b ′

)
(4.10)
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Joining the estimates for J1 and J2 we thus obtain

‖v‖2 ≤ c ‖v‖η̄+1 + c ‖u‖η̄ ′‖v‖+ c,

that is,
‖v‖ ≤ c ‖v‖η̄ + c ‖u‖η̄ ′ + c . (4.11)

From (4.9) and (4.10) we now get, by choosing equality in the appropriate
relations, the analogues of (4.6) and (4.7)

η̄ ′ =
β ′

2− β ′ , η̄ =
α ′

2− β ′

By condition (H6, b) we conclude that η̄ < 1, and then we obtain from (4.11)
that

‖v‖ ≤ C (‖u‖η̄ ′ + 1) (4.12)

Finally, joining inequalities (4.8) and (4.12) we get

‖u‖ ≤ C (‖v‖η ′ + 1) ≤ C (‖u‖η ′η̄ ′ + 1)

The condition (H6, c) yields η ′ η̄ ′ < 1, since

η ′ η̄ ′ < 1 ⇐⇒ β

2− β

β ′

2− β ′ < 1

⇐⇒ β β ′ < 4− 2β − 2β ′ + ββ ′

⇐⇒ β + β ′ < 2 ,

and hence the solutions u are uniformly bounded in H1
0 (Ω). Joining

inequalities (4.8) and (4.12) in the other order we obtain that also the
solutions v are uniformly bounded. Finally, since et ≤ cεe

εt2 for any ε > 0,
we conclude by the Trudinger-Moser inequality that the righthand sides in
system (1.1) are uniformly bounded in Lp, for any p > 1, and hence we
conclude that all solutions (u, v) are uniformly bounded in L∞.

5 Proof of Theorem 1.4

Assume that (un, vn) is a sequence of solutions of system (1.1). Theorem
1.2 says that the sequences (f(x, un, vn)) and (g(x, un, vn)) are bounded in
L1(Ω). So it follows, passing to subsequences if necessary, (see [4]) that
there is a nonnegative Radon measure µ such that

f(x, un, vn) + g(x, un, vn) → µ. (5.1)
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We also observe that, as a consequence of Theorem 1.2 and assumption (H2)
(or (H ′

2)), the solutions ((un, vn)) of (1.1) are bounded in L1(Ω):

‖un‖L1 , ‖vn‖L1 ≤ C, for all n . (5.2)

Definition 5.1 We say that x0 ∈ Ω is a regular point of the measure µ if
there is a function ψ ∈ Cc(Ω), 0 ≤ ψ ≤ 1, with ψ ≡ 1 in some neighborhood
of x0 and such that ∫

Ω
ψ dµ < 4π.

We denote by Σµ the set of non-regular points in Ω for the measure µ.

Remark 5.1 For a bounded non-negative measure µ, Σµ is a finite set.
Indeed, if x0 ∈ Σµ, we have that

∫

Ω
ψdµ ≥ 4π,

for any function ψ ∈ Cc(Ω), 0 ≤ ψ ≤ 1, with ψ ≡ 1 in some neighborhood
of x0. Thus, µ({x0}) ≥ 4π. Finally, since

∫
Ω dµ ≤ C, it follows that Σµ is

a finite set.

Let Su be the blow-up set for the sequence (un), that is

Su := {x ∈ Ω : ∃ (xn) ⊂ Ω such that xn → x and un(xn) → +∞}.

The assertions of Theorem 1.4 will be proved if we show that Su = Sv =
∅. This will be achieved in the next lemmas.

Lemma 5.1 Assume that x0 is a regular point for the measure µ. Then
there exist constants ρ > 0 and C, independent of n, such that

‖un‖L∞(Bρ(x0)) ≤ C , ‖vn‖L∞(Bρ(x0)) ≤ C .

Proof. Using the fact that x0 is a regular point of the measure µ we have a
function ψ ∈ Cc(Ω), 0 ≤ ψ ≤ 1, with ψ ≡ 1 in some neighborhood Vx0 of
x0, such that

∫
ψdµ < 4π. Thus,

∫
Vx0

dµ < 4π, which implies that there
exist R > 0, δ > 0 and n0 such that for all n ≥ n0,

∫

BR(x0)
[f(x, un, vn) + g(x, un, vn)] dx ≤ 4π − δ . (5.3)
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Let us write un := u1,n + u2,n and vn := v1,n + v2,n, where

−∆u1,n = g(x, un, vn), in BR(x0) and u1,n = 0 for |x− x0| = R

and

−∆v1,n = f(x, un, vn), in BR(x0) and v1,n = 0 for |x− x0| = R

Notice that −∆u2,n = 0 and −∆v2,n = 0 in BR(x0).
Using Proposition 2.1 and (5.3), we obtain

c ≥
∫

BR

e
(4π− δ

2
)

u1,n+v1,n∫
(f+g) ≥

∫

BR

e(4π− δ
2
)

u1,n+v1,n
4π−δ =

∫

BR

ep (u1,n+v1,n), (5.4)

where p > 1 is a constant depending only on δ. Using the fact that t ≤ et

we get
‖u1,n‖L1(BR(x0)) ≤ C and ‖v1,n‖L1(BR(x0)) ≤ C . (5.5)

Furthermore, as in the regularity Theorem 1.1 we get

‖u1,n‖L∞(BR(x0)) ≤ C and ‖v1,n‖L∞(BR(x0)) ≤ C. (5.6)

Since the functions u2,n, v2,n are harmonic in BR(x0), it follows from the
Mean Value Theorem for harmonic functions that

‖u2,n‖L∞(BR/2) ≤ C‖u2,n‖L1(BR) and ‖v2,n‖L∞(BR/2) ≤ C‖v2,n‖L1(BR).

On the other hand, using (5.2) and (5.5) we obtain

‖u2,n‖L1(BR) ≤ ‖un‖L1(BR) + ‖u1,n‖L1(BR) ≤ C ,

and
‖v2,n‖L1(BR) ≤ ‖vn‖L1(BR) + ‖v1,n‖L1(BR) ≤ C.

Thus,
‖u2,n‖L∞(BR/2) ≤ C and ‖v2,n‖L∞(BR/2) ≤ C. (5.7)

From (5.6) and (5.7) we obtain

‖un‖L∞(BR/2) ≤ C and ‖vn‖L∞(BR/2) ≤ C.

and the proof is complete.

Lemma 5.2 Su ∪ Sv ⊂ Σµ.



Elliptic Systems in dimension two 21

Proof. Suppose that x0 /∈ Σµ, i.e. x0 is a regular point for µ. Then it follows
by Lemma 5.1 that ‖un‖L∞(Bρ(x0)) ≤ C and ‖vn‖L∞(Bρ(x0)) ≤ C for some
ρ > 0, and hence x0 /∈ Su ∪ Sv by the definition of the sets Su and Sv.

Lemma 5.3 Σµ ⊂ Su ∪ Sv.

Proof. Let x0 ∈ Σµ. We claim that for each R > 0 we have

lim
n→+∞ ‖un‖L∞(BR(x0)) = +∞ or lim

n→+∞ ‖vn‖L∞(BR(x0)) = +∞ (5.8)

Suppose by contradiction that there exists R0 > 0 and a subsequence, which
we denote also by (un), (vn), such that

‖un‖L∞(BR0
(x0)) ≤ C and ‖vn‖L∞(BR0

(x0)) ≤ C.

So,
‖eun+vn‖L∞(BR0

(x0)) ≤ C.

Now using the hypothesis

f(x, u, v) ≤ d et+s , g(x, u, v ≤ d eu+v

it follows that

‖f(x, un, vn)‖L∞(BR0
(x0)) ≤ C and ‖g(x, un, vn)‖L∞(BR0

(x0)) ≤ C

which implies that for R < R0 we have
∫

BR(x0)
[f(x, un, vn) + g(x, un, vn)] ≤ CR2

Thus, there exists R1 > 0, such that
∫

BR1
(x0)

[f(x, un, vn) + g(x, un, vn)] < 4π.

This implies that x0 is a regular point of µ, which is a contradiction.

As a consequence of Lemmas 5.2 and 5.3 we conclude that

Σµ = Su ∪ Sv.

Finally, we prove that this set is indeed empty, and this completes the
proof of the Theorem 1.4.



Elliptic Systems in dimension two 22

Lemma 5.4 Su ∪ Sv = ∅ .

Proof. Suppose, by contradiction, that there exists x0 ∈ Su ∪ Sv. Since x0

is isolated, we can take R > 0 such that BR(x0) ∩
(
(Su ∪ Sv) \ {x0}

)
= ∅.

Next, we consider the Dirichlet problem in BR(x0),

−∆zn = f(x, un, vn)+ g(x, un, vn), in BR(x0), and zn = 0 for |x−x0| = R.

We know that the function un + vn satisfies

−∆(un+vn) = f(x, un, vn)+g(x, un, vn), in BR(x0), and un+vn ≥ 0 for |x−x0| = R.

Thus, by the Maximum Principle we have

0 ≤ zn ≤ un + vn in BR(x0)

Taking the limit we have zn → z, where z is a solution of the problem

−∆z = µ, in BR(x0) and z = 0 when |x− x0| = R.

On the other hand the problem

−∆w = 4πδ0 in BR(x0) and w = 0 when |x− x0| = R

has the solution
w(x) = 2 log

R

|x− x0| .

Since x0 is not a regular point of µ it follows that µ ≥ 4πδ0. So

z(x) ≥ 2 log |x− x0|−1 + o(1) , x → x0

Now, by hypothesis (H7)

f(x, t, s) + g(x, t, s) ≥ g(x, t, s) ≥ c et+s,

we have
lim

n→∞

∫

BR(x0)
[f(x, un, vn) + g(x, un, vn)] dx ≥

≥ lim
n→∞ c

∫

BR(x0)
ezn

≥ c

∫

BR(x0)
ew = ∞ ,

which is impossible.
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6 Proof of Theorem 1.5

We rely on the following well-known Theorem by Krasnoselsk’ii (we state in
the form given in [8], Theorem 3.1).

Theorem 6.1
Let C ⊂ E denote a cone in a Banach space, and let T : C → C be a
compact mapping, with T (0) = 0. Furthermore, assume that there are real
numbers 0 < r < R such that

(1) x 6= Tx , for 0 ≤ t ≤ 1 , ‖x‖ = r , x ∈ C

(2) there exists H : C × [0,∞) → C such that

(a) H(x, 0) = Tx , x ∈ C

(b) H(x, t) 6= x , ‖x‖ = R , t ≥ 0

(c) H(x, t) = x has no solution x ∈ B̄R , t ≥ t0

Then (1) implies iC(T,Br) = 1, and (2) implies iC(T,BR) = 0.

Here iC(T,O) is the fixed point index of T in C with respect to the
(relatively) open set O.

Note that it then follows by the excision property that T has a fixed
point in BR \ B̄r.

Proof of Theorem 1.5:
Let X = C0(Ω̄)× C0(Ω̄) with norm ‖(u, v)‖ = ‖u‖∞ + ‖v‖∞, and set

C = {(u, v) ∈ X ; u ≥ 0 , v ≥ 0 }

Furthermore, define the compact mapping T : C → C given by

T
( u

v

)
=

( (−∆)−1g(x, u, v)
(−∆)−1f(x, u, v)

)
(5.9)

We now check that T satisfies hypotheses (i) and (ii) of Theorem 1.5:

Hypthesis (1): We have to show that there is no solution (u, v) of
{ −∆u = tg(x, u, v)

−∆v = tf(x, u, v)
, for 0 ≤ t ≤ 1 , ‖(u, v)‖ = r , r < ε , (5.10)
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where ε is given in (H8).
Indeed, suppose by contradiction that there is a solution (u, v) ∈ C with

‖(u, v)‖ = r. Then we can estimate by (H8) the righthand side of (5.10)

‖t g(x, u, v)‖∞ ≤ c1‖(u, v)‖ = c1r

‖t f(x, u, v)‖∞ ≤ c2r

and obtain by (5.10) and (1.7)

‖u‖∞ ≤ Mc1r , ‖v‖∞ ≤ Mc2r .

This implies that

r = ‖(u, v)‖ = ‖u‖∞ + ‖v‖∞ ≤ M(c1 + c2) r ,

which is a contradiction, since M(c1 + c2) < 1.

Hypothesis (2):
Define the homotopy H : C × [0, 1] → C

H

(( u
v

)
, t

)
=

(
(−∆)−1gt((x, u, v)

(−∆)−1ft(x, u, v)

)
,

where
gt(x, u, v) = (1− t)g(x, u, v) + tµ(v+ + 1)

ft(x, u, v) = (1− t)f(x, u, v) + tµ(u+ + 1)
,

with µ > max{λ1, ‖a‖∞, ‖b‖∞}, where a, b are as in assumption (H2), resp.
assumption (H ′

2).
Note that with this choice gt and ft satisfy assumption (H2) uniformly

with respect to t; indeed, for u, v ≥ 0

gt(x, u, v) ≥ (1− t)
(
b(x)v − b1(x)

)
+ tµ(v + 1)

=
(
(1− t)b(x) + tµ

)
v − (1− t)b1(x) + tµ

≥ b(x)v − b1(x) + tb1(x) + tµ

≥ b(x)v − b1(x)

,

and similarly for ft(x, u, v).

Observe that the hypotheses on f and g transfer to ft and gt with the
same parameters. So (2,b) holds for R sufficiently large by the a priori
bounds for solutions in Theorem 1.3 and Theorem 1.4.
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Finally, we show (2,c), that is, that there exists no solution for t = 1:
otherwise we would have

−∆u = µ(v+ + 1)

−∆v = µ(u+ + 1)
=⇒

−∆u = µu + µ

−∆v = µu + µ

Multiplying both equations by the first eigenfunction ϕ1 and integration
gives

λ1

∫

Ω
uϕ1 = µ

∫

Ω
vϕ1 + µ

∫

Ω
ϕ1

λ1

∫

Ω
vϕ1 = µ

∫

Ω
uϕ1 + µ

∫

Ω
ϕ1

.

Inserting the second equation into the first we obtain

λ1

∫

Ω
uϕ1 = µ

{ µ

λ1

∫

Ω
uϕ1 +

µ

λ1

∫

Ω
ϕ1

}
+ µ

∫

Ω
ϕ1 ,

and hence

λ2
1

∫

Ω
uϕ1 = µ2

∫

Ω
uϕ1 + µ2

∫

Ω
ϕ1 + µλ1

∫

Ω
ϕ1 ;

this is a contradiction, since µ > λ1.

Hence, the map T given in (5.9) has a nontrivial fixed point (u, v) in C,
that is, (u, v) is a positive solution of system (1.1).
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