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Abstract. In this paper the mountain–pass theorem and the Ekeland

variational principle in a suitable Orlicz space are employed to establish the

existence of positive standing wave solutions for a quasilinear Schrödinger
equation involving a combination of concave and convex terms. The second

order nonlinearity considered in this paper corresponds to the superfluid

equation in plasma physics.

1. Introduction. In this paper we are concerned with quasilinear Schrödinger
equations of the form

i
∂ψ

∂t
= −∆ψ +W (x)ψ − η(|ψ|2)ψ − κ

[
∆ρ(|ψ|2)

]
ρ′(|ψ|2)ψ, (1)

where ψ : R× RN → C, κ is a positive constant, W : RN → R is a given potential
and ρ, η : R+ → R are suitable functions. Quasilinear equations of the form (1)
appear naturally in mathematical physics and have been derived as models of several
physical phenomena corresponding to various types of nonlinear terms ρ. For more
details see [15], [20] and references therein.

Here we consider the case where ρ(s) = s, κ > 0 and our special interest is in
the existence of standing wave solutions, that is, solutions of type

ψ(t, x) = exp(−iEt)u(x),

where E ∈ R and u > 0 is a real function. It is well known that ψ satisfies (1) if
and only if the function u(x) solves the following equation of elliptic type with the
formal variational structure

−∆u+ V (x)u− κ
[
∆
(
u2
)]
u = η(u), u > 0, x ∈ RN , (2)

where V (x) := W (x)−E is the new potential, η is the new nonlinearity and without
loss of generality we assume κ = 1.

We were motivated by several recent mathematical studies on the existence of
solutions for (2). Among others we refer to [2], [9], [10], [12], [15], [16], [17], [19]
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