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Abstract

We study the following semilinear biharmonic equation: ∆2u = λ f(x)

(1−u)2
, x ∈ BR,

where 0 ≤ f ≤ 1 and BR ⊂ R
N , N ≥ 1, is the ball centered in the origin of radius

R. We prove, under Dirichlet boundary conditions u = ∂u/∂η = 0 on ∂BR, the

existence of λ∗ = λ∗(R, f) > 0 such that for λ ∈ (0, λ∗) there exists a minimal

(classical) solution uλ, which satisfies 0 < uλ < 1. In the extremal case λ = λ∗,

we prove the existence of a weak solution which has finite energy and which is

the unique solution even in a very weak sense. For λ > λ∗ there are no solutions

of any kind. Estimates on λ∗, stability properties of solutions and nonexistence

results in the whole space are also established.
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1 Introduction

The main purpose of this paper is to investigate a class of fourth order prob-
lems which arise in applications in the study of Micro Electro Mechanical Systems
(MEMS), micro-devices developed since late 1960s and which nowadays enter as a
key ingredient in many industrial products beyond having made inroads into many
different areas of applied sciences; we refer to [23] and reference therein for a tech-
nical insight on the subject and an overview on applications. As a naive reference
model, let us think of a dielectric membrane coated with a conducting film, building
up a plate which is clamped at the boundary of a region Ω ⊂ R

N . Once that a drop
voltage is suitably applied, the plate deflects from the steady state u = 0 towards
a conducting plate (ground plate) positioned at hight u = 1. The deformation u of
the membrane is then governed, in the stationary case, by the following model:

(Mλ)





α∆2u =

(
β

∫

Ω

|∇u|2 dx+ γ

)
∆u+

λf(x)

(1 − u)2
(

1 + χ

∫

Ω

dx

(1 − u)2

) , in Ω

0 < u < 1, in Ω

u =
∂u

∂η
= 0, on ∂Ω

where ∆2( · ) := −∆(−∆ · ) denotes the biharmonic operator, Ω ⊂ R
N is a smooth

bounded domain, η denotes the outward pointing unit normal to ∂Ω and α, β, γ, χ ≥
0 are physically relevant constants: α is proportional to the thickness of the plate, for
β > 0 the presence of a non-local term represents the self-stretching contributions
to the potential energy of deformation, γ is the tension related to the stretching
energy whereas in the electrostatic actuation, the dependence of the capacitance on
the deformation variable u does not allow one to keep the drop voltage at a given
supply voltage and this yields an extra non-local term for χ > 0. The parameter
λ ≥ 0 is proportional to the applied voltage and, as we are going to see, it plays
an important role: if λ crosses an extremal value λ∗, the so-called pull-in voltage,
then the problem has no solutions which physically corresponds to the fact that the
membrane hits the ground plate and a snap-through occurs. This “touch-down”
phenomenon, which is the main feature of a MEMS device, is allowed by the presence
of the singular nonlinearity. The function f : Ω −→ R is the permittivity profile
and is related to a varying dielectric property of the material; in what follows we
assume that f is a continuous function satisfying: 0 ≤ f(x) ≤ 1 and f(x) > 0 on a
set of positive Lebesgue measure.

We mention that in the applications framework, from one side one is interested
to prevent or push back the pull-in instability, on the other side, as in the case of
security systems, one needs to facilitate the occurrence of the snap-through in order
to improve the performance of the device; this two-fold employment of MEMS de-
vices turns into a rich and challenging mathematical problem. However, if from the
point of view of applications, many progresses have been made as well as numerical
results obtained, just recently problem (Mλ) has been investigated with a rigorous
mathematical approach. In the limit case of zero plate thickness, hence for a thin
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membrane with zero rigidity and neglecting inertial effects as well as non-local ef-
fects, that is in dimensionless constants we set α = β = χ = 0, (Mλ) reduces to the
following second order semilinear elliptic problem:

(M̃λ)





−∆u = λ
f(x)

(1 − u)2
, in Ω

0 < u < 1, in Ω

u = 0, on ∂Ω

where we have set for simplicity γ = 1 and where u ∈ C2(Ω). When f ≡ 1 this
problem was studied in a very general context in [19] whereas the situation of a
non constant permittivity profile has been investigated in a series of papers: the
effects on the pull-in instability of a special tailoring of the permittivity profile has
been studied in [22]; in [15] non-existence results and upper bounds for the pull-in
voltage λ∗ were established in terms of material and geometric properties of the
membrane, results further complemented in [13], where the existence of minimal
solutions for 0 < λ < λ∗ was proved as well as the existence and uniqueness of the
extremal (classical) solution for λ = λ∗ provided that the dimension 1 ≤ N ≤ 7. In
this dimensional range, the existence of non minimal solutions was obtained in [11],
where the authors study the branch of semi-stable solutions and where existence
results in higher dimensions, for a suitable class of functions f , were also established.

Very recently, some existence results for the non-local equation (Mλ), avoiding
self-stretching effects (β = 0) and for a constant permittivity profile, have been
obtained in [16], where a contraction iteration scheme is used to build up a unique
small-amplitude solution for small voltage λ and which tends to zero as λ → 0;
however in [16] the authors deal mainly with Navier boundary conditions: u =
∆u = 0 on ∂Ω. Sometimes called pinned boundary conditions, physically this
situation corresponds to a device which is ideally hinged along the boundary without
experiencing any torque or bending moment. Even though too loose from the point
of view of applications, the mathematical advantage of Navier boundary conditions
consists of the availability of two important tools: the Maximum Principle and the
Gidas-Ni-Nirenberg [14] symmetry type results, by which radial domains induce
spherically symmetric and radially decreasing solutions. These key-ingredients are
missing in general when Dirichlet boundary conditions are considered (see [25, 3])
and just recently some symmetry results are obtained in [4].

In the present paper we consider the corresponding fourth order problem of
(M̃λ), namely with the biharmonic operator ∆2 in place of ∆ and subject to Dirich-
let boundary conditions, thus we set β = γ = χ = 0 in (Mλ): in the physical model,
neglecting non-local contributions, we consider the plate situation in which flex-
ural rigidity is now allowed whose effects however dominates over the stretching
tension (see [23, Sec. 7.6]). In order to exploit the positivity of the Green func-
tion for the biharmonic operator, we restrict ourself to the ball which will enable
us to use a positivity preserving property due to T. Boggio [5, 1905]. We set
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BR :=
{
x ∈ R

N : |x| < R
}

and we study the following semilinear problem:

(Pλ)





∆2u = λ
f(x)

(1 − u)2
, in BR

0 < u < 1, in BR

u =
∂u

∂η
= 0, on ∂BR

where λ ≥ 0 and notice that the nonlinearity is given by a singular function. We
mention that closely related problems for smooth nonlinearities and in particular
the fourth order Gelfand problem with exponential nonlinearty, have been inves-
tigated in [2]. It is worth to point out that problem (Mλ) in its whole generality
as stated remains essentially open, however some identification problem for the dy-
namic version of (Mλ) has been studied in [8]. Before stating our main results,
we give some basic definitions and precise the class of solutions we are going to
consider.

1.1 Preliminaries

Besides classical solutions i.e. uλ ∈ C4(BR) which satisfy (Pλ), let us introduce the
class of weak solutions we will be dealing with. We denote by H2

0 (BR) the usual
Sobolev space which can be defined by completion as follows:

H2
0 (BR) := cl {u ∈ C∞

c (BR) : ‖∆u‖2 <∞}

and which is an Hilbert space endowed with the scalar product

(u, v)H2
0
(BR) :=

∫

BR

∆u∆v dx

Definition 1.1 We say that uλ ∈ L1(BR) is a weak solution of (Pλ) provided
0 ≤ uλ ≤ 1 almost everywhere, 1/(1 − uλ)2 ∈ L1(BR) and

∫

BR

uλ∆2ϕdx = λ

∫

BR

f(x)

(1 − uλ)2
ϕdx, ∀ϕ ∈ C4(BR) ∩H2

0 (BR) (1.1)

When in (1.1) the equality is replaced by the inequality ≥ and ϕ ≥ 0, we say that
uλ is a weak super-solution of (Pλ) provided the following boundary conditions are
satisfied: uλ = 0 and ∂uλ/∂η ≤ 0 on ∂BR. (Indeed, the second boundary condition
turns out to be automatically satisfied, integrating by parts, in the case of a smooth
super-solution.)

Definition 1.2 If uλ is a solution of (Pλ) such that for any other solution vλ of
(Pλ) one has

uλ(x) ≤ vλ(x), a.e. x ∈ BR

we say that uλ is a minimal solution of (Pλ), which we denote in the sequel by uλ.
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If uλ is a classical solution of (Pλ), then it turns out to be well defined the linearized
operator at uλ

Luλ
:= ∆2 −

2λf(x)

(1 − uλ)3

which yields the following notion of stability

Definition 1.3 A classical solution uλ of (Pλ) is semi-stable provided

µ1(uλ) := inf
{
〈Luλ

ϕ,ϕ〉 : ϕ ∈ C4(BR) ∩H2
0 (BR), ‖ϕ‖2 = 1

}
≥ 0

If µ1(uλ) > 0 we say that uλ is stable.
(Analogously one defines (semi-) unstable solutions by reversing the above in-

equalities).

As far as we are concerned with weak solutions, the linearized operator is no longer
well defined, however we introduce the following weaker notion of stability

Definition 1.4 A weak solution uλ to (Pλ) is said to be weakly stable if 1/(1 −
uλ)3 ∈ L1(BR) and the following holds:

∫

BR

|∆ϕ|2 dx ≥

∫

BR

2λf(x)

(1 − uλ)3
ϕ2, ϕ ∈ C4(BR) ∩H2

0 (BR), ϕ ≥ 0

Accordingly to the class of solutions which we consider, let us introduce the following
values:

λ∗ := sup {λ ≥ 0 : (Pλ) posses a weak solution}

λ∗ := sup {λ ≥ 0 : (Pλ) posses a classical solution}
(1.2)

Remark 1.1 Clearly, a classical solution is also a weak solution, so that one has
λ∗ ≤ λ∗.

Let us denote by νR the first eigenvalue of the biharmonic operator on BR with
Dirichlet boundary conditions, which is characterized variationally as follows:

νR := min

{∫

BR

|∆u|2 dx : u ∈ H2
0 (BR), ‖u‖2 = 1

}

It is well known that νR > 0, that it is simple, isolated and that the corresponding
eigenfunction ψR > 0, spherically symmetric and radially decreasing.

1.2 Main results

Theorem 1.1 There exists λ∗ = λ∗(R, f) > 0 such that for 0 < λ < λ∗, problem
(Pλ) posses a minimal classical solution uλ which is positive and stable. Moreover,
λ∗ satisfies the following bounds:

max
{

32(10N−N2−12)
27 , 128−240N+72N2

81

}

R4 sup
x∈BR

f(x)
≤ λ∗ ≤ min





4νR

27 inf
x∈BR

f(x)
,

νR‖ψR‖1∫
BR

ψRf(x) dx




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If in addition, f(x) is radially symmetric, then the minimal solution is radially
symmetric and radially decreasing. In particular, for f(x) = |x|α, x ∈ B1 and
N ≥ 3, we have also the following lower bound

λ∗ ≥ max
α>0

(4 + α)(2 − α)[(1 + α)(α− 5) + 6(N − 1)α+ 3(N − 1)(3N − 7)]

81

Theorem 1.2 The following holds:

λ∗ = λ∗

In particular, for λ > λ∗ there are no solutions, even in the weak sense. Further-
more, for almost every x ∈ BR, there exists

u∗(x) := lim
λ↗λ∗

uλ(x)

and u∗ is a weak solution of (Pλ∗) such that u∗ ∈ H2
0 (BR).

Theorem 1.3 Let v be a weak super-solution of (Pλ∗). Then v = u∗; in particular
(Pλ∗) has a unique weak solution (which is called the extremal solution).

As a consequence of Theorem 1.2 and Theorem 1.3, we obtain in the spirit of [7,
Brezis-Vásquez] the following characterization of possibly “singular” solutions:

Corollary 1.1 Let uλ ∈ H2
0 (BR) be a weak solution of (Pλ) such that ‖uλ‖∞ = 1.

Then uλ is weakly stable if and only if λ = λ∗ and uλ = u∗.

As complementary to the existence results in the ball, we conclude this paper by
proving a general non-existence result in the whole space, precisely we have the
following

Theorem 1.4 Let λ > 0 and g(x) ≥ λ|x|γ, γ ≥ 0. Then the following problem





∆2u ≥
g(x)

(1 − u)2
,

in R
N

0 < u < 1,

(1.3)

has no solutions (even in the weak sense) for any dimension N ≥ 1.

1.3 Key-ingredients

We are going to make an extensive use of the following weak version of a positiv-
ity preserving property, due to Boggio [5], for the biharmonic operator subject to
Dirichlet boundary conditions, see [2, Lemma 16]:

Lemma 1.1 (Boggio’s Principle) Let u ∈ L1(BR) such that
∫

BR

u∆2ϕdx ≥ 0, ϕ ∈ C4(BR) ∩H2
0 (BR), ϕ ≥ 0

Then u ≥ 0 a.e. in BR. Moreover, u ≡ 0 or u > 0 a.e. in BR.
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As a consequence, any solution of (Pλ) is necessarily positive a.e. inside the ball.
It is well known (see [3]) that the positivity preserving property fails for general
domains and this is the main reason for us to setting up the problem in the ball.
The following existence result has been proved in [2, Lemma 17]:

Lemma 1.2 Let g ∈ L1(BR), g ≥ 0 almost everywhere. Then there exists a unique
u ∈ L1(BR) such that u ≥ 0 and

∫

BR

u∆2ϕdx =

∫

BR

gϕ dx, ϕ ∈ C4(BR) ∩H2
0 (BR)

Moreover, there exists C > 0 which does not depend on g such that ‖u‖1 ≤ C‖g‖1.

Proposition 1.1 Let λ > 0 and assume that there exists a weak super-solution Uλ

of (Pλ). Then there exists a weak solution uλ of (Pλ) such that 0 ≤ uλ ≤ Uλ.

Proof. By means of a standard monotone iteration argument, set u0 := Uλ and
define recursively un+1 ∈ L1(BR) as the unique solution of

∫

BR

un+1∆
2ϕdx = λ

∫

BR

f(x)ϕ

(1 − un)2
dx, ϕ ∈ C4(BR) ∩H2

0 (BR)

then we have
∫

BR

(un − un+1)∆
2ϕdx ≥ 0, ϕ ∈ C4(BR) ∩H2

0 (BR) (1.4)

and Lemma 1.1 yields 0 ≤ un+1(x) ≤ un(x) a.e. for all n ∈ N and the claim follows
from the Beppo-Levi monotone convergence theorem.

Remark 1.2 Notice that by a standard approximation procedure one easily shows
that C4(BR) ∩ H2

0 (BR) is dense into H4(BR) ∩ H2
0 (BR); see e.g. [2, Lemma 16].

Moreover, by standard elliptic regularity theory for the biharmonic operator [1] (see
also [17]), any weak solution of (Pλ) which satisfies ‖uλ‖∞ < 1 turns out to be
smooth.

We complete these preliminary results by proving a key lemma which provides
a comparison principle:

Lemma 1.3 Let u, U ∈ H2
0 (BR) such that in the weak sense: u is a (weakly) stable

sub-solution of (Pλ) and U is super-solution of (Pλ). Then, u(x) ≤ U(x) almost
everywhere in BR. Moreover, if 0 < u < 1 is a solution of (Pλ) such that µ1(u) = 0
and U is any classical super-solution of (Pλ), then u ≡ U .

Proof. Set v := u− U . By means of the Moreau decomposition [21] for the bihar-
monic operator [12], there exist v1, v2 ∈ H2

0 (BR) such that v = v1 + v2 with v1 ≥ 0
and v1 ⊥ v2, ∆2v2 ≤ 0 in the H2

0 (BR) sense; in particular Boggio’s principle yields
v2 ≤ 0 from which v1 ≥ v. For ϕ ∈ C∞

c (BR), ϕ ≥ 0 we have
∫

BR

∆(u− U)∆ϕdx ≤ λ

∫

BR

f(x)

[
1

(1 − u)2
−

1

(1 − U)2

]
ϕdx (1.5)
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By a standard density argument we may test (1.5) with v1 and then, the stability
assumption together with the orthogonality condition (v1, v2)H2

0
(BR) = 0 yield

2λ

∫

BR

f(x)

(1 − u)3
v2
1 dx ≤

∫

BR

|∆v1|
2 dx =

∫

BR

∆(u− U)∆v1 dx

≤ λ

∫

BR

f(x)

[
1

(1 − u)2
−

1

(1 − U)2

]
v1 dx

Since v1 ≥ v, we obtain

0 ≤

∫

BR

f(x)

[
1

(1 − u)2
−

1

(1 − U)2
− 2

(u− U)

(1 − u)3

]
v1 dx (1.6)

Now observe that, by convexity of the map s 7→ 1/(1 − s)2, the factor between
brackets is non positive, thus necessarily

0 = v1 ≥ v = u− U, a.e. x ∈ BR

and the first part of the lemma follows. Next consider the map Q : [0, 1] → R given
by

Q(τ ) := ∆2[u+ τ (U − u)] −
λf(x)

{1 − [u+ τ (U − u)]}2

Notice that Q(0) = 0 and if µ1(u) = 0 also Q′(0) = 0 moreover, by convexity of the
map s 7→ 1/(1−s)2 we have Q(τ ) ≥ 0 for all τ ∈ [0, 1]. Thus necessarily Q′′(0) ≥ 0,
that is

−6λf(x)
(U − u)2

(1 − u)4
≥ 0

and hence U ≡ u.

Remark 1.3 From the first part of the previous lemma we deduce in particular that
weakly stable solutions, belonging to a suitable energy class are necessarily minimal.

2 Existence results: proof of Theorems 1.1 and 1.2

2.1 The pull-in voltage

Let us define

Λ := {λ ≥ 0 : (Pλ) has a classical solution}

Lemma 2.1 Λ is a bounded interval. Moreover,

sup Λ =: λ∗ ≤ min





4νR

27 inf
x∈BR

f(x)
,

νR‖ψR‖1∫
BR

ψRf(x) dx




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Proof. First we show that Λ does not consist of just λ = 0. To this end, let ΨR2

be the first eigenfunction of the biharmonic operator subject to Dirichlet boundary
conditions on BR2

⊃ BR which we normalize by supBR2
ψR2

= 1 and let νR2
> 0

be the corresponding eigenvalue. Next, we are going to prove that for θ ∈ (0, 1) the
function ψ := θψR2

is a super-solution of (Pλ) as long as λ is sufficiently small. We
have

0 < 1 − θψR2
< 1, in BR

and moreover,

∆2ψ = νR2
θψR2

≥
λf(x)

(1 − θψR2
)2

=
λf(x)

(1 − ψ)2
, in BR

provided that
νR2

θψR2
(1 − θψR2

)2 ≥ λf(x)

Notice that
0 < s1 := inf

x∈BR

ψ < s2 := sup
x∈BR

ψ < 1

and that ∂ψ/∂η < 0 on ∂BR. Thus, looking at the function g(s) := s(1 − s)2, for
s ∈ [s1, s2], it is readily seen that we can choose λ > 0 sufficiently small such that

νR2
inf

x∈BR

g(θψR2
(x)) > λ sup

x∈BR

f(x) (2.7)

Since u ≡ 0 is a sub-solution of (Pλ), the classical sub-super solution theorem
provides a (classical) solution to (Pλ). We conclude with a straightforward upper
bound for λ∗. Indeed, let uλ be a solution of (Pλ) then,

νR ≥ νR

∫

BR

uλ

ψR

‖ψR‖1
dx =

∫

BR

uλ∆2

(
ψR

‖ψR‖1

)
dx

=

∫

BR

(
∆2uλ

) ψR

‖ψR‖1
dx

= λ

∫

BR

f(x)ψ1,R

‖ψR‖1(1 − uλ)2
dx

≥ λ

∫

BR

f(x)
ψR

‖ψR‖1
dx

(2.8)

and this implies

sup Λ = λ∗ ≤
νR‖ψR‖1∫

BR
f(x)ψR dx

<∞ (2.9)

The upper bound (2.9) can be improved in the case: infBR
f > 0. Indeed, resuming

resuming calculations in (2.8), notice that

∫

BR

(
−νRuλ +

λf(x)

(1 − uλ)2

)
ψR dx = 0
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can not occur if the following holds

λ >
νR

infBR
f(x)

uλ(1 − uλ)2

and clearly this is the case when

λ >
νR

infBR
f(x)

max
s∈[0,1]

s(1 − s)2 =
4

27

νR

infBR
f(x)

Remark 2.1 Notice that as a consequence of the argument in the first part of the
above proof, we have from (2.7) the following “max-min” estimate from below:

λ∗ ≥
1

sup
x∈BR

f(x)
sup

0<θ<1

R2>R

[
νR2

inf
x∈BR

g(θψR2
(x))

]

and one may proceed exactly as in [13] to which we refer, to get a slight more explicit
estimate of this lower bound. Finally, by means of Lemma 1.1, if µ ≤ λ one has
that solutions of (Pλ) provide super-solution to (Pµ) and thus Λ is an interval.

Remark 2.2 Clearly, by the very definition of λ∗, there are no classical solutions
of (Pλ) for λ > λ∗. However one may wonder about the existence of weak solutions;
see Section 2.2.

In applications, upper bounds for the pull-in voltage are important in order to
shorten the lapse of time to get the snap-through, improving the efficiency of the
MEMS device as in the case of security systems. However, in many situations
one is interested in preventing the so called pull-in instability which in turn can
be achieved by rising the pull-in voltage λ∗; this conveys in obtaining (preferably
computationally accessible) lower bounds.

Lemma 2.2 The following lower bound holds:

λ∗ ≥
32

27

(10N −N2 − 12)

R4‖f‖∞

Proof. Consider the function

wα(x) := α

(
1 −

|x|4

R4

)
, α ∈ (0, 1)

wich satisfies 0 ≤ wα(x) < 1 for x ∈ BR and wα(x) = 0, ∂wα/∂η ≤ 0, for x ∈ ∂BR;
for all α ∈ (0, 1). Now the idea is to obtain from wα(x) a super-solution of (Pλ), for a

suitable choice of α and for λ in a suitable range of the form 0 < λ ≤ λ̃(N,R, ‖f‖∞).
We have

∆2wα(r) =
d4wα

dr4
+

2(N − 1)

r

d3wα

dr3
+

(N − 1)(N − 3)

r2
d2wα

dr2
−

(N − 1)(N − 3)

r3
dwα

dr

= [−24 + 48(N − 1) − 8(N − 1)(N − 3)]
α

R4
=: C(N)

α

R4
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and thus

∆2wα(x) =
C(N)α

R4
(1 − α)2

1

(1 − α)2
≥
C(N)α(1 − α)2

R4‖f‖∞

f(x)
[
1 − α

(
1 − |x|4

R4

)]2

=
C(N)α(1 − α)2

R4‖f‖∞

f(x)

(1 − wα)2

from which we deduce that

λ∗ ≥ sup
α∈(0,1)

C(N)α(1 − α)2

R4‖f‖∞
=

4

27

C(N)

R4‖f‖∞

and the result follows by evaluating C(N) = 80N − 8N2 − 96.

2.2 The branch of minimal solutions

Proposition 2.1 For all 0 ≤ λ < λ∗, there exists a minimal classical solution uλ

of (Pλ) which is smooth and stable. Moreover,

(i) The map λ 7→ uλ, for λ ∈ (0, λ∗) is differentiable and strictly increasing.

(ii) The map λ 7→ µ1(uλ) is decreasing on (0, λ∗).

Proof. As a consequence of Lemma 2.1 there exists a classical solution uλ of (Pλ)
which we are going to exploit as a super solution while u0 = 0 is a sub solution.
Let us define recursively a sequence {un,λ}

∞
n=0 as follows:





∆2un,λ = λ
f(x)

(1 − un−1,λ)2
, in BR

un,λ =
∂un,λ

∂η
= 0, on ∂BR

which is well defined since u0 ≤ uλ < 1 and if we assume un−1,λ ≤ uλ then





∆2(uλ − un,λ) = λf(x)

[
1

(1 − uλ)2
−

1

(1 − un−1,λ)2

]
≥ 0, in BR

(uλ − un,λ) =
∂(uλ − un,λ)

∂η
= 0, on ∂BR

and the Boggio principle yields 0 ≤ un,λ ≤ uλ < 1 for all n ∈ N; similarly one proves
that un−1,λ ≤ un,λ for all n ∈ N. Therefore, the sequence {un,λ}

∞
n=0 is monotone

increasing and the minimal solution uλ is obtained as the increasing limit

uλ(x) := lim
n→∞

un,λ(x)

Again from the Boggio positivity preserving property (Lemma 1.1) we obtain 0 ≤
uλ < 1; in particular, from standard elliptic regularity theory for the biharmonic
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operator [1] (see also [17]) follows that uλ is smooth. In order to prove stability, let
us argue as follows: set

λ∗∗ := sup {λ ∈ (0, λ∗) : µ1 (uλ) > 0}

clearly λ∗∗ ≤ λ∗. Now suppose by contradiction that λ∗∗ < λ∗ and let ε > 0
sufficiently small such that λ∗∗ + ε < λ∗ and vε be the corresponding minimal solu-
tion. By definition and left continuity of the map λ 7→ µ1(uλ) we have necessarily
µ1(uλ∗∗

) = 0. Since vε is a super-solution of (Pλ∗∗
) by Lemma 1.3 we get vε = uλ∗∗

and thus ε = 0; a contradiction. Next consider the map F : (0, λ∗) × C4(BR) → R

given by

F (λ, v) = ∆2v −
λf(x)

(1 − v)2

Since uλ is stable, we have

∂F

∂v
(λ, uλ) = ∆2uλ −

2λf(x)uλ

(1 − uλ)3
> 0

and statement (i) follows by means of the Implicit Function Theorem. The last
claim of the lemma easily follows from the variational characterization

µ1(uλ) = inf
w∈H2

0
(BR)\{0}

∫
BR

[
(∆w)2 − 2λf(x)(1 − uλ)−3w2

]
dx∫

BR
w2 dx

. (2.10)

together with the monotonicity of the map s 7→ 1/(1− s)3, s ∈ (0, 1) and part (i).

2.3 Weak solutions versus classical solutions

Lemma 2.3 Let uµ be a weak solution of (Pµ) with µ < λ∗. Then, for ε > 0
sufficiently small, the problem (P(1−ε)µ) posses a classical solution.

Proof. Let ũ ∈ L1(BR) be the unique solution of

∫

BR

ũ∆2ϕdx = (1 − ε)µ

∫

B

f(x)

(1 − uµ)2
ϕdx, ϕ ∈ C4(BR) ∩H2

0 (BR) (2.11)

provided by Lemma 1.2. By hypothesis we have

∫

BR

uµ∆2ϕdx = µ

∫

BR

f(x)

(1 − uµ)2
ϕdx, ϕ ∈ C4(BR) ∩H2

0 (BR) (2.12)

By uniqueness we get
(1 − ε)uµ = ũ

whereas Lemma 1.1 yields ũ > 0 a.e. in BR and hence we may assume

uµ > ũ, x ∈ BR \ {x ∈ BR : ũ = 0}

12



Therefore,

∫

BR

ũ∆2ϕdx = (1 − ε)µ

∫

BR

f(x)
(
1 − 1

1−ε
ũ
)2ϕdx

≥ (1 − ε)µ

∫

BR

f(x)

(1 − ũ)2
dx, ϕ ∈ C4(BR) ∩H2

0 (BR)

thus ũ is a weak super-solution of (P(1−ε)µ) and Proposition 1.1 yields a weak
solution v of (P(1−ε)µ) which satisfies

0 ≤ v ≤ ũ

and then classical by Remark 1.2, since ũ < uµ ≤ 1.

Proposition 2.2 Up to a subsequence, the convergence

u∗(x) := lim
λ↗λ∗

uλ(x)

holds in H2
0 (BR) and the extremal solution u∗ satisfies

∫

BR

∆u∗∆ϕdx = λ∗

∫

BR

f(x)ϕ

(1 − u∗)2
dx, ϕ ∈ C∞

c (BR) (2.13)

In particular, u∗ is a weak solution of (Pλ∗
). Furthermore, the extremal solution is

weakly stable and if ‖u∗‖∞ < 1 then µ1(u
∗) = 0.

Proof. Since uλ is stable, we have

2λ

∫

B

f(x)u2
λ

(1 − uλ)3
dx ≤

∫

B

|∆uλ|
2 dx =

∫

B

uλ∆2uλ dx = λ

∫

B

f(x)uλ

(1 − uλ)2
dx (2.14)

Next, it is easy to check that the following elementary inequality holds: there exist
C > 0 such that

(1 + C)
s

(1 − s)2
≤

s2

(1 − s)3
+ (1 + C), s ∈ (0, 1) (2.15)

which used in (2.14) yields

λ

∫

B

f(x)uλ

(1 − uλ)2
dx ≥ 2λ

∫

B

f(x)u2
λ

(1 − uλ)3
dx

≥ 2λ(1 + C)

∫

B

f(x)uλ

(1 − uλ)2
dx− 2λ(1 + C)

∫

B

f(x) dx

from which we get

‖∆uλ‖
2
2 = λ

∫

B

f(x)uλ

(1 − uλ)2
dx ≤ 2λ2

∗

(1 + C)

C
‖f‖1

13



Therefore, we may assume uλ ⇀ u∗ in H2
0 (BR) and by monotone convergence (2.13)

holds after integration by parts. Clearly, (2.13) implies that u∗ is a weak solution
in terms of Definition 1.1. Since µ1(uλ) > 0 for all λ ∈ (0, λ∗), in particular we have

∫

BR

|∆ϕ|2 dx ≥

∫

BR

2λf(x)

(1 − uλ)3
ϕ2, ϕ ∈ C∞

c (BR)

and passing to the limit as λ ↗ λ∗ we obtain that u∗ is weakly stable. Finally, if
‖u∗‖∞ < 1 and hence u∗ is a classical solution of (Pλ∗

), the linearized operator at
u∗

L(λ∗, u∗) := ∆2 −
2λ∗f(x)

(1 − u∗)3

is well defined on the space C4,α(BR)×R
+. If µ1(u

∗) > 0 then the implicit function
theorem applied to the function

F (λ, u) := ∆2u− λ
f(x)

(1 − u)2

would yield a solution for λ > λ∗ contradicting the definition of λ∗; thus µ1(u
∗) = 0.

Remark 2.3 Notice that from (2.13) the extremal solution solves problem (Pλ∗
) in

a stronger sense with respect to Definition 1.1 and one may think to use (2.13) as
a suitable definition of weak-solution. Actually this benefit comes from the fact that
we are approaching λ∗ following the branch of smooth stable solutions. However, in
general one can not expect this extra regularity to hold for possibly singular solutions,
that is ‖uλ‖∞ = 1 and 1/(1 − uλ)2 ∈ L1(BR), which do not belong to a suitable
energy class; compare with [18, 6]. In this case one has to resort to the weaker
notion of solution as in Definition 1.1 in order to provide an existence tool as in
Proposition 1.1 (see also [7]). (We mention that this delicate key point, which may
prevent to use standard arguments, affects somehow [10] where the stronger notion
of weak solution is adopted).

Proof. [Proof of Theorem 1.2] We already have λ∗ ≤ λ∗. Suppose λ∗ < λ∗, then
Lemma 2.3 yields a classical solution of (Pλ∗+ε), ε > 0, contradicting the definition
of λ∗. The second part of Theorem 1.2 follows from Proposition 2.2. Proof. [Proof
of Theorem 1.1] Notice that for N ≥ 3 the function

ũ(x) = 1 −

(
|x|

R

) 4
3

enjoys
1

(1 − ũ)2
∈ L1(BR)

and satisfies in the weak sense

∆2ũ =
c(N)

R4

1

(1 − ũ)2
, c(N) =

72N2 − 240N + 128

81

14



Therefore, ũ turns out to be a weak super-solution of (Pλ) provided

λf(x) ≤
c(N)

R4

thus necessarily

λ∗ = λ∗ ≥
c(N)

R4‖f‖∞
(2.16)

If f is radially symmetric then the iteration scheme used in the proof of Proposition
2.1 yields a radially symmetric minimal solution which is also strictly radially de-
creasing in view of [24]. In the case of a power-like permittivity profile f(x) = |x|α,
α > 0, we can improve the lower bound for λ∗ at least in dimension N ≥ 3 by
considering functions

uα(x) = 1 − |x|
4+α

3 , x ∈ B1

which satisfy in the weak sense the following equation

∆2uα = λ(N,α)
|x|α

(1 − uα)2
, x ∈ B1 (2.17)

where

λ(N,α) =
1

81
(4 + α)(2 − α)[(1 + α)(α− 5) + 6(N − 1)α+ 3(N − 1)(3N − 7)]

Hence, we necessarily have
λ∗ ≥ max

α>0
λ(N,α)

The proof of Theorem 1.1 then follows from Lemma 2.1, Proposition 2.1 and Lemma
2.2.

3 Uniqueness in the extremal case λ = λ
∗: proof of

Theorem 1.3

Let us consider a perturbation of problem (Pλ∗) as follows:

(P̃λ∗)





∆2u = λ∗
f(x)

(1 − u)2
+ µ0

ξ(x)f(x)

(1 − u)2
, in BR

0 ≤ u ≤ 1, in BR

u =
∂u

∂η
= 0, on ∂BR

for a standard cut-off function ξ ∈ C∞
c (BR) and µ0 > 0 to be suitably chosen; clearly

a solution is understood in the weak sense. Let v be as in Theorem 1.3 a super-
solution of problem (Pλ∗); assuming by contradiction that v 6≡ u∗ we are going to

prove the existence of a super-solution for the perturbed problem (P̃λ∗) and this
will enable us to build up a weak solution of (Pλ) for λ > λ∗ and thus necessarily

15



v ≡ u∗. We mention that a similar idea was introduced in [18] in the second
order case for regular nonlinearities, afterwards extended in [10] to the fourth order
Gelfand problem; however here we propose a different technique. Proof. [Proof of
Theorem 1.3] Notice that the construction of minimal solutions in Proposition 2.1,
for λ ∈ (0, λ∗) carries over to λ = λ∗ but just in the weak sense; precisely, we may
assume that for λ = λ∗ there exists a minimal weak solution. Next we are going to
show that any weak super-solution of (Pλ∗) coincides with the minimal solution. In
other words, it is legitimate to assume:

v(x) ≥ u∗(x), a.e. x ∈ BR

Therefore, for ϕ ∈ C∞
c (BR), ϕ ≥ 0, we have

∫

BR

(v − u∗)∆2ϕdx ≥

∫

BR

λ∗f(x)

[
1

(1 − v)2
−

1

(1 − u∗)2

]
ϕdx ≥ 0

and the Boggio principle (Lemma 1.1) yields:

v ≡ u∗ a.e. x ∈ BR or v − u∗ ≥ c0 > 0, a.e. |x| ≤ ρ < R

In the first case we are done, otherwise let us set

u0 :=
u∗ + v

2

so that 0 ≤ u0 ≤ 1 and as one can easily check, the following elementary inequality
holds

1

(1 − v)2
+

1

(1 − u∗)2
≥

1

(1 − u0)2

[(
1 +

v − u0

1 − u0

)2

+

(
1 +

u∗ − u0

1 − u0

)2
]

=
1

(1 − u0)2

[
2 +

(v − u∗)2

2(1 − u0)2

]

and in turn we obtain,

∫

BR

u0∆
2ϕdx ≥

∫

BR

[
λ∗f(x)

(1 − u0)2
+
λ∗f(x)(v − u∗)2

4(1 − u0)2

]
ϕdx

≥

∫

BR

[
λ∗f(x)

(1 − u0)2
+
λ∗c20ξ(x)f(x)

4(1 − u0)2

]
ϕdx

Thus, u0 is a weak super-solution of (P̃λ∗) with µ0 = (λ∗c20)/4 and the cut-off ξ with
support in Bρ. Now reasoning as in Lemma 2.3, we may assume for ε > 0 sufficiently

small, that (P̃λ∗−ε) posses a classical solution 0 ≤ uε < 1. Set µε := [(λ∗ − ε)c20]/4
and let ψ ∈ C4(BR) be the unique classical solution (by Boggio [5]) of the following





∆2ψ = µε

ξ(x)f(x)

(1 − uε)2
, in BR

ψ =
∂ψ

∂η
= 0, on ∂BR

(3.18)
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We also have that there exists M > 0 sufficiently large such that uε ≤ Mψ. Next
let δ > 0 and set

w :=
(λ∗ − ε) + δ

λ∗ − ε
uε − ψ

and choosing δ sufficiently small, we obtain w ≤ uε < 1; moreover, from




∆2(uε − ψ) = (λ∗ − ε)
f(x)

(1 − uε)2
≥ 0, in BR

uε − ψ =
∂(uε − ψ)

∂η
= 0, on ∂BR

(3.19)

we have again by the Boggio principle that ψ ≤ uε and eventually that w ≥ 0.
Finally we have

∆2w = (λ∗ − ε+ δ)
f(x)

(1 − uε)2
+

(λ∗ − ε+ δ)c20
4

ξ(x)f(x)

(1 − uε)2
− µε

ξ(x)f(x)

(1 − uε)2

≥ (λ∗ − ε+ δ)
f(x)

(1 − w)2
(3.20)

since w ≤ uε. Thus it is enough to choose 0 < ε < δ to provide a classical solution
to (Pλ) for λ > λ∗ which is a contradiction; this completes the proof of Theorem
1.3.

3.1 Characterization of singular solutions

Proof. [Proof of Corollary 1.1] From Proposition 2.2 we have that u∗ is weakly
stable, thus we have to prove just the necessary part. If λ = λ∗, the result easily
follows from Theorem 1.3. On the other hand, if λ < λ∗, by Theorem 1.1 there
exists a minimal solution uλ and the comparison Lemma 1.3 yields uλ = uλ < 1,
thus a contradiction.

4 Final remarks and open problems

4.1 Nonexistence results in R
N : proof of Theorem 1.4

The result essentially follows from [20, Section I.5] and we just sketch the proof;
the main tool is the nonlinear capacity method. Let us first make precise what
we mean by weak solution of (1.3), namely: u ∈ L1

loc(R
N ), u ≥ 0, such that

1/(1 − u)2 ∈ L1
loc(R

N ) and the following holds

∫

RN

u∆2ϕdx ≥

∫

RN

g(x)

(1 − u)2
ϕdx, ϕ ∈ C4

c (RN ; R+)

Now notice that
∫

RN

g(x)

(1 − u)2
ϕdx ≥

∫

RN

λ|x|γupϕdx, ∀p ≥ 1
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Set

ϕ(x) :=

[
ϕ0

(
|x|

R

)]α

with α > 0 to be suitably chosen and where ϕ0 : R −→ R
+ is a smooth cut-off

function such that ϕ0(s) = 1, for 0 ≤ s ≤ 1 and ϕ0(s) = 0 for s ≥ 2. Let ε > 0,
then by Hölder’s inequality with exponents p = 1 + ε, p′ = (1 + ε)/ε, we have

∫

RN

λ|x|γupϕdx ≤

(∫

RN

λ|x|γupϕdx

) 1
p

(∫

RN

|∆2ϕ|p
′

(|x|γϕ)p′−1
dx

) 1

p′

from which ∫

RN

λ|x|γupϕdx ≤

∫

RN

|∆2ϕ|p
′

(|x|γϕ)
p′−1

dx (4.21)

where we may choose α > 0 such that the right hand side in (4.21) (the so-called
nonlinear capacity induced by the operator: ∆2u − |x|γ |u|p ) is finite. Moreover,
by straightforward calculations one has, performing the change of variable x = Rξ,
the following estimate:

∫

RN

|∆2ϕ|p
′

(|x|γϕ)
p′−1

dx ≤
C0

R4p′+γ(p′−1)−N

for a positive constant C0 = C0(p, α,N), depending on the choice of ϕ0 but not on
R. Thus, if the following condition is satisfied

N ≤
4(1 + ε) + γ

ε
(4.22)

the claim follows from (4.21) by letting R→ +∞; however, since ε > 0 is arbitrary,
condition (4.22) turns out to be always satisfied provided ε > 0 is sufficiently small.
This completes the proof of Theorem 1.4.

4.2 Compactness issues

The main problem we leave open in this paper conveys into the following question:
For which class of solutions uλ of problem (Pλ) and under which conditions does

the following property:
(C) sup

λ∈[0,λ∗]

‖uλ‖∞ < 1

hold true?
This compactness property has many important consequences which are relevant

both from the point of view of applications and mathematics. Clearly, in MEMS
devices condition (C) would prevent the occurrence of snap-through phenomena,
representing a stability properties of the device. On the other side, if (C) holds
along the branch of minimal solutions uλ, we end up in λ = λ∗ with a smooth
extremal solution and by means of the implicit function theorem, this would enable
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us to continue, at least locally, the minimal branch with a new branch of unstable
solutions.

It is worth to point out that similar issues have been intensively studied in
literature (see e.g. [19, 7, 9]) for the second order problem

{
−∆u = λg(u), in Ω

u = 0, on ∂Ω

where g : R −→ R
+ is increasing, convex and super-linear at infinity. Here one

expects that the extremal solution can be regular or singular, that is u∗ 6∈ L∞(Ω).
In this respect, a crucial role is played by the underlying space dimension: in
particular for the Gelfand problem, when g(u) = eu, it is well known that in the
ball, the extremal solution is bounded provided N ≤ 9 and unbounded in dimension
N ≥ 10; the threshold N∗ = 10 between regular and singular solutions is called the
critical dimension.

In the case of singular nonlinearity, it was shown in [13] by means of energy
estimates that property (C) holds following the branch of minimal solutions of

problem (M̃λ) as long as 1 ≤ N ≤ 7, result further extended in [11] where finer
blow-up arguments are used to prove compactness along the branch of unstable
solutions. Thus, in this case the critical dimension N∗ = 8.

In our situation the plot thickens and the picture is far from being clear: from
one side the techniques used in the second order case do not seem working in the
fourth order problem, on the other side even basic evidences, which in the second
order problem are based on Hardy’s inequality and which may be used to guess the
critical candidate (see [11]), here fail because of the too stringent Dirichlet boundary
conditions.
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