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1 Introduction

The main purpose of this paper is to study the existence and multiplicity of
solutions for nonhomogeneous elliptic problems of the form

−∆u + V (x)u = f(u) + h(x), x ∈ R2 (1.1)

when the nonlinear term f(s) is allowed to enjoy the critical exponential
growth by means of the Trudinger-Moser inequality.

The above problem appears in many areas of mathematical physics; in
particular, solutions of the equation (1.1) provide standing waves solutions
for the nonlinear Schrödinger equation (see for instance [5], [18], [21], [25] and
references therein)

i
∂ψ

∂t
= −∆ψ + W (x)ψ − g(|ψ|)ψ − eiλth(x), x ∈ R2,

where ψ = ψ(t, x), ψ : R × R2 → C, λ is a positive constant, W : R2 → R
is a given potential and for suitable functions g : R+ → R, h : R2 → R.
Throughout this paper we assume the following hypotheses on V :

(V1) V : R2 → R is continuous and satisfies

V (x) ≥ V0 > 0 for all x ∈ R2;

(V2) The function [V (x)]−1 belongs to L1(R2).

The study of existence and multiplicity of solution for nonhomogeneous
elliptic equations in euclidian domains involving critical growth have received
considerable attention in recent years. Most of these problems are dealt with
variational methods, and since the Palais-Smale condition no longer holds for
this class of problems this poses an essential difficulty to the existence question.
It is well known that in dimensions N ≥ 3, the maximal possible growth for
the nonlinearity is polynomial at infinity, so that the related functional is
well defined in a Sobolev space (see [8] and [19]). Limitations on the growth
of the nonlinearity vary substantially when we come to dimension two. The
nonlinearity may exhibit exponential growth as established by the Trudinger-
Moser inequality, which in this case replaces the Sobolev embedding theorem.
We are interested in the case where the nonlinear term f(s) has the maximal
growth on s which allows us to treat problem (1.1) variationally. Motivated
by a Trudinger-Moser type inequality (see Lemma 2.1 below) we say that f(s)
has subcritical growth at +∞ if for all α > 0

lim
s→+∞

f(s)

eαs2 = 0, (1.2)
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and f(s) has critical growth at +∞ if there exists α0 > 0 such that

lim
s→+∞

f(s)

eαs2 =

{
0, ∀ α > α0,

+∞, ∀ α < α0.
(1.3)

We introduce the following assumptions on the nonlinear term:

(f0) f ∈ C(R,R) and f(0) = 0;
(f1) there exist θ > 2 and s1 > 0 such that for all |s| ≥ s1,

0 < θF (s)
.
= θ

∫ s

0
f(t) dt ≤ sf(s);

(f2) there exist constants R0,M0 > 0, such that for all |s| ≥ R0

0 < F (s) ≤ M0f(s).

Next, in order to apply variational methods, we consider the following subspace
of H1(R2)

E =
{
u ∈ H1(R2) :

∫

R2
V (x)u2dx < ∞

}
,

which is a Hilbert space endowed with the inner product

〈u, v〉 =
∫

R2
(∇u∇v + V (x)uv)dx, u, v ∈ E (1.4)

to which corresponds the norm ‖u‖ = 〈u, u〉1/2. Here H1(R2) denotes the usual
Sobolev space with the norm

‖u‖1,2 =
[∫

R2
(|∇u|2 + |u|2)dx

]1/2

.

We say that u ∈ E is a weak solution of the problem (1.1), provided that

∫

R2
(∇u∇v + V (x)uv)dx−

∫

R2
f(u)v dx−

∫

R2
hv dx = 0 (1.5)

for all v ∈ E. Notice that weak solutions of (1.1) turn out to be critical points
of the energy functional

I(u) =
1

2
‖u‖2 −

∫

R2
F (u) dx−

∫

R2
hu dx. (1.6)

Assumption (V1) implies that the embedding

E ↪→ H1(R2)

is continuous whereas condition (V2), together with the Hölder inequality,
implies that

‖u‖L1(R2) ≤
(∫

R2
V (x)−1dx

)1/2

‖u‖. (1.7)
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As a consequence,

E ↪→ Lq(R2) for all 1 ≤ q < ∞, (1.8)

with continuous embedding. It is also well known that assumption (V2) implies
that these embeddings are compact for all 1 ≤ q < ∞ (see [16], [18]). Moreover,

λ1
.
= inf

u∈E\{0}

∫
R2(|∇u|2 + V (x)u2) dx∫

R2 u2 dx
≥ V0 > 0. (1.9)

If h ≥ 0, it is readily seen that the problem

−∆u + V (x)u = λ1u + 2ueu2

+ h(x), x ∈ R2

does not have positive solutions. Therefore, we assume the following additional
condition near the origin:

(f3) lims→0 2F (s)s−2 < λ1.

We want to remark that we have to handle two terms in problem (1.1), the
nonlinearity f(s) and the perturbation h(x). Our main interest is to analyze
the interplay between them. In this paper we look for conditions that ensure
the existence and multiplicity of solutions of (1.1), focusing our attention on
the existence and multiplicity of one sign.

We distinguish two cases:

1.1 Subcritical Case

Throughout this paper, we denote by H−1 the dual space of H1(R2) with the
usual norm ‖ · ‖H−1 .

Our main results are the following:

Theorem 1.1 If f(s) has subcritical growth and (V1)− (V2), (f0), (f1), (f3)
are satisfied, then there exists δ1 > 0 such that if 0 < ‖h‖H−1 < δ1, (1.1) has
at least two weak solutions. One of them with positive energy, while the other
one with negative energy.

Furthermore, if h(x) has defined sign, the following result holds:

Theorem 1.2 Under the assumptions of Theorem 1.1, if h(x) ≥ 0 (h(x) ≤ 0)
almost everywhere in R2, then the solutions obtained in Theorem 1.1 are
nonnegative (nonpositive), respectively.
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Example 1.3 A typical example of functions satisfying assumptions (f1), (f3)
with subcritical growth is f(s) = λ(2s+s2)es with 0 < λ < λ1/2. We have that
F (s) = λs2es. In order to prove that (f1) is satisfied, it is enough to notice
that

lim
|s|→∞

F (s)

sf(s)
= lim

|s|→∞
s2es

s(2s + s2)es
= lim

|s|→∞
1

2 + s
= 0.

Furthermore, (f3) is satisfied,

lim
s→0

2F (s)

s2
= 2λ lim

s→0
es = 2λ < λ1.

1.2 Critical Case

When f(s) exhibits critical growth we obtain the following results:

Theorem 1.4 If f(s) has critical growth and (V1)− (V2), (f0), (f2), (f3) are
satisfied, then, there exists δ1 > 0 such that if 0 < ‖h‖H−1 < δ1, problem (1.1)
has a weak solution with negative energy.

Theorem 1.5 Under the hypotheses of Theorem 1.4, if in addiction we
assume that there exists β0 > 0 such that

(f+
4 ) lim

s→+∞ sf(s)e−α0s2 ≥ β0 > 0.

Then, there exists δ2 > 0, such that if 0 < ‖h‖H−1 < δ2, then problem (1.1)
has a second weak solution.

Furthermore, if h(x) has defined sign, the following result holds:

Theorem 1.6 Under the assumptions of Theorem 1.5, if h(x) ≥ 0 almost
everywhere in R2, then the solutions obtained in Theorem 1.5 are nonnegative.
Moreover, if h(x) ≤ 0 almost everywhere in R2 and f(s) satisfies

(f−4 ) lim
s→−∞ sf(s)e−α0s2 ≥ β0 > 0,

then these solutions are nonpositive.

Example 1.7 A typical example of functions satisfying the assumptions
(f2), (f3), (f

+
4 ) with critical growth is f(s) = 3s2 + 2ses2 − 2s. In order to

prove that (f2) is satisfied, it is enough to notice that

lim
|s|→∞

F (s)

f(s)
= lim

|s|→∞
s3 + es2 − 1− s2

3s2 + 2ses2 − 2s
= 0.
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Furthermore, it is easy to see that lims→0 2F (s)s−2 = 0 < λ1 and
lims→+∞ sf(s)e−s2

= +∞, showing that (f3) and (f+
4 ) hold.

Remark 1.8 Condition (f2) is stronger than (f1), in the sense that (f2)
implies (f1). One can easily see that integrating condition (f1) there exists
positive constants C1, C2 such that

F (s) ≥ C1|s|θ − C2, s ∈ R. (1.10)

On the other hand, it follows from (f2) that there exist positive constants
C1, C2 such that

F (s) ≥ C1e
|s|/M − C2, s ∈ R. (1.11)

In the last years, several papers have been devoted to the study of elliptic
problems involving critical growth in terms of the Trudinger-Moser inequality.
Problems with critical growth, involving the Laplace operator and in bounded
domains of R2, have been investigated among others by [2], [3], [12].
Quasilinear elliptic problems with critical growth for the N−Laplacian in
bounded domains of RN , have been studied in [1], [13], [23]. Cao in [9]
treated problem (1.1) in the homogeneous case, that is, h ≡ 0, when V
and f(s) are asymptotic to a constant function. See also [15] and [4] for
related results for homogeneous elliptic problems when the potential V satisfies
some geometric condition. In [14], by combining a version of the Trudinger-
Moser inequality with the mountain-pass theorem, the author studied the
problem −∆Nu + V (x)|u|N−2u = f(x, u) imposing a coercivity condition on
the potential V , f(x, u) with critical growth and f(x, 0) = 0. In the present
paper, we improve and complement some of the results cited above and ours
results can be considered as an extension of the main results in [23] and [14].
Here our approach to obtain multiplicity of solutions is in the spirit of [21] and
based on a global variational point of view. The proofs of our results rely on
minimization methods in combination with the mountain-pass theorem. In the
subcritical case we are able to prove that the associated functional satisfies the
Palais-Smale compactness condition which allow us to obtain critical points
for the functional. As a consequence we can distinguish the local minimum
solution from the mountain-pass solution. However, in the critical case to
prove that these solutions are different is more involved, requiring fine energy
level estimates. Assumption (f+

4 ) in Theorem 1.5 will be used to estimate the
mountain-pass level.

The outline of the paper is as follows: Section 2 contains some preliminary
results including an extension of Lions’ lemma in the whole R2 (Lemma 2.6). In
Section 3, we set up technical results which will allow us to follow a variational
approach. Finally, in Section 4 we complete the proofs of our main results.

Notation. In this work we make use of the following notation:
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• C, C0, C1, C2, ... denote positive (possibly different) constants;
• BR denotes the open ball centered at the origin and radius R > 0;
• For 1 ≤ p < ∞, Lp(R2) denotes the usual Lebesgue spaces with respect the

norm

‖u‖p =
(∫

R2
|u|pdx

)1/p

;

• C∞
0 (Λ) denotes the space of infinitely differentiable functions with compact

support in Λ, where Λ is a domain of R2;
• H1(Λ) denotes the Sobolev spaces modeled in L2(Λ) with the norm

‖u‖1,2 =
[∫

Λ
(|∇u|2 + |u|2)dx

]1/2

;

• By 〈·, ·〉 we denote the duality pairing between X
′
and X;

• We denote the weak convergence in X by “ ⇀ ” and the strong convergence
by “ → ”.

2 Some preliminary results

Let Ω be a bounded domain in R2; we know by the Trudinger-Moser inequality
that for all α > 0 and u ∈ H1

0 (Ω), eαu2 ∈ L1(Ω) (see [20], [24]). Moreover,
there exists a constant C > 0 such that

sup
‖u‖

H1
0
(Ω)
≤1

∫

Ω
eαu2

dx ≤ C|Ω| if α ≤ 4π. (2.12)

Here we shall use the following extension of these results for the whole space
R2 obtained by [9] (see also [14,22] for a more complete result):

Lemma 2.1 If α > 0 and u ∈ H1 (R2) then

∫

R2
(eαu2 − 1) dx < ∞.

Moreover, if ‖∇u‖2
2 ≤ 1, ‖u‖2 ≤ M < ∞ and α < 4π then there exists a

constant C = C(M, α), which depends only on M and α, such that

∫

R2
(eαu2 − 1) dx ≤ C(M,α). (2.13)

The next results are essential to establish the mountain-pass geometry of the
associated functional.
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Lemma 2.2 Let β > 0 and r > 1. Then for each α > r there exists a positive
constant C = C(α) such that for all s ∈ R

(eβs2 − 1)r ≤ C(eαβs2 − 1).

In particular, if u ∈ H1(R2) then (eβu2 − 1)r belongs to L1(R2).

Proof. Since r > 1, by L’Hospital’s Rule we conclude that

lim
s→0

(eβs2 − 1)r

eαβs2 − 1
= lim

s→0

r(eβs2 − 1)r−1eβs2

αeαβs2 = 0.

Moreover, notice that

lim
|s|→∞

(eβs2 − 1)r

(eαβs2 − 1)
= lim

|s|→∞
erβs2

(1− e−βs2
)r

eαβs2(1− e−αβs2)
= 0.

Thus, the result follows.

Remark 2.3 As a consequence of Lemmas 2.1 and 2.2 and Hölder inequality,
we see that if β > 0 and q > 0 then the function |u|q(eβu2−1) belongs to L1(R2)
for all u ∈ H1(R2).

Lemma 2.4 If v ∈ E, β > 0, q > 0 and ‖v‖ ≤ M with βM2 < 4π, then there
exists C = C(β,M, q) > 0 such that

∫

R2
(eβv2 − 1)|v|q dx ≤ C‖v‖q.

Proof. We consider r > 1 close to 1 such that rβM2 < 4π and sq ≥ 1 where
s = r/(r − 1). Using the Hölder inequality, we have

∫

R2
(eβv2 − 1)|v|q dx ≤

[∫

R2
(eβv2 − 1)rdx

]1/r

‖v‖q
qs.

Now, taking α > r close to r such that αβM2 < 4π, by Lemmas 2.2 and 2.1
we obtain

∫

R2
(eβv2 − 1)|v|q dx ≤ C1

[∫

R2
(eαβv2 − 1) dx

]1/r

‖v‖q
qs

≤ C1





∫

R2

[
e

αβM2

(
v

‖∇v‖2

)2

− 1
]
dx





1/r

‖v‖q
qs

≤ C2‖v‖q
qs.

Finally, using the continuous embedding E ↪→ Lsq(R2), we conclude that

∫

R2
(eβv2 − 1)|v|q dx ≤ C‖v‖q.

8



The inequality (2.12) was improved by Lions in [17]. More precisely, he proved
the following lemma in a bounded domain:

Lemma 2.5 Let (wn) be a sequence in H1(Ω) such that ‖wn‖1,2 = 1. Suppose
that (wn) converges weakly to w0 6= 0 in H1(Ω), then for all 0 < p <
4π(1− ‖w0‖2

1,2)
−1 we have

sup
n

∫

Ω
epw2

n dx < ∞.

Proof. See proof in [17, Theorem I.6] or [3, Lemma 3.5].

Next, let us establish a version of Lemma 2.5 for the whole R2.

Lemma 2.6 Let (wn) in H1(R2) with ‖wn‖1,2 = 1 and suppose that wn ⇀ w0

in H1(R2) with ‖w0‖1,2 < 1. Then for all 0 < p < 4π(1− ‖w0‖2
1,2)

−1 we have

sup
n

∫

R2
(epw2

n − 1) dx < ∞.

Proof. Since wn ⇀ w0 and ‖wn‖1,2 = 1, we conclude that

‖wn − w0‖2
1,2 = 1− 2〈wn, w0〉+ ‖w0‖2

1,2 → 1− ‖w0‖2
1,2 <

4π

p
.

Thus, for n large we have p‖wn − w0‖2
1,2 < α < 4π for some α > 0. Now

choosing q > 1 close to 1 and ε > 0 satisfying q(1 + ε2)p‖wn − w0‖2
1,2 < α, by

(2.13) we have

∫

R2

[
eqp(1+ε2)(wn−w0)2 − 1

]
dx =

∫

R2

[
e

qp(1+ε2)‖wn−w0‖21,2

(
wn−w0

‖wn−w0‖1,2

)2

− 1
]

dx

≤
∫

R2

[
e

α

(
|wn−w0|

‖wn−w0‖1,2

)2

− 1
]

dx ≤ C.

Moreover, since

pw2
n ≤ p(1 + ε2)(wn − w0)

2 + p(1 +
1

ε2
)w2

0,

it follows that

epw2
n − 1 ≤ (ep(1+ε2)(wn−w0)2ep(1+1/ε2)w2

0 − 1)

≤ 1

q

(
eqp(1+ε2)(wn−w0)2 − 1

)
+

1

r

(
erp(1+1/ε2)w2

0 − 1
)
,
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where in the last inequality we have used that for all a, b > 0 and q−1+r−1 = 1
it holds

ab− 1 ≤ 1

q
(aq − 1) +

1

r
(br − 1).

Therefore,

∫

R2
(epw2

n − 1)dx ≤ 1

q

∫

R2

[
eqp(1+ε2)(wn−w0)2 − 1

]
dx +

1

r

∫

R2

[
erp(1+1/ε2)w2

0 − 1
]
dx

≤ C,

for n large and the result is proved.

We will use the following result which is a converse of the Lebesgue dominated
convergence theorem in the space H1(R2).

Proposition 2.7 Let (un) be a sequence in H1(R2) strongly convergent. Then
there exist a subsequence (unk

) of (un) and g ∈ H1(R2) such that |unk
(x)| ≤

g(x) almost everywhere in R2.

Proof. Let (un) be a sequence in H1(R2) such that un → u in H1(R2). In
particular, un → u almost everywhere in R2. Also we can extract a subsequence
(unk

) de (un) which we denote by (uk) such that for all k ≥ 1

‖uk+1 − uk‖1,2 ≤ 1

2k
.

Setting

wn(x)
.
=

n∑

k=1

∣∣∣uk+1(x)− uk(x)
∣∣∣,

it follows that wn ∈ H1(R2) and ‖wn‖1,2 ≤ 1. Consequently

‖wn‖2 ≤ 1 and ‖∇wn‖2 ≤ 1.

By monotone convergence theorem, wn → w almost everywhere in R2 for some
w ∈ L2(R2). Furthermore, using Lebesgue dominated convergence theorem we
have that ‖wn − w‖2 → 0. From this convergence in L2(R2) and by the fact
that |∇wn| is bounded in L2(R2), we can conclude that w ∈ H1(R2) (see [6,
Remark 4 in Chapter 9]). Now, for l > k ≥ 2, we have

|ul(x)−uk(x)| ≤ |ul(x)−ul−1(x)|+ ...+ |uk+1(x)−uk(x)| ≤ wl−1(x)−wk−1(x),

and taking l →∞, we obtain for any k ≥ 2,

|u(x)− uk(x)| ≤ w(x) almost everywhere in R2.

Therefore

|uk(x)| ≤ g(x) almost everywhere in R2
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with g = |u|+ w ∈ H1(R2) and the proof is completed.

In order to show that the weak limit of a sequence in E is a weak solution of
(1.1) we will use the following convergence result due Figueiredo et al. [12].

Lemma 2.8 Let Ω ⊂ R2 a bounded domain and f : R → R a continuous
function. Then for any sequence (un) in L1(Ω) such that

un → u in L1(Ω), f(un) ∈ L1(Ω) and
∫

Ω
|f(un)un| dx ≤ C,

up to a subsequence we have f(un) → f(u) in L1(Ω).

3 The variational framework

By the hypothesis (f3) we have

lim
s→0

f(s)

s
< λ1.

From this, if f(s) satisfies (1.2), then for each α > 0 there exist b1, b2 > 0 such
that for all s ∈ R

|f(s)| ≤ b1|s|+ b2(e
αs2 − 1). (3.14)

Similarly, if f(s) satisfies (1.3), then for each α > α0 there exist c1, c2 > 0
such that for all s ∈ R

|f(s)| ≤ c1|s|+ c2(e
αs2 − 1). (3.15)

This together with Remark 2.3 and conditions (f1), (f3) imply that F (u) ∈
L1(R2) for all u ∈ H1 (R2). Therefore, the functional energy I : E → R given
by (1.6) is well defined. Using standard arguments (see [5, Theorem A.VI] and
[10]), we can see that I ∈ C1(E,R) with

〈I ′(u), v〉 =
∫

R2
(∇u∇v + V (x)uv) dx−

∫

R2
f(u)v dx−

∫

R2
hv dx,

for u, v ∈ E. Consequently, critical points of the functional I are precisely the
weak solutions of problem (1.1).

In the next two lemmas we check that the functional I satisfies the geometric
conditions of the mountain-pass theorem.

Lemma 3.1 Assume (f1), (f3) and (1.2) (or (1.3)) hold. Then there exists
δ1 > 0 such that for each h ∈ H−1 with ‖h‖H−1 < δ1, there exists ρh > 0 such
that

I (u) > 0 if ‖u‖ = ρh.
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Furthermore, ρh can be chosen such that ρh → 0 as ‖h‖H−1 → 0.

Proof. From (f3), there exist ε, δ > 0 in such a way that |s| ≤ δ implies

|F (s)| ≤ (λ1 − ε)

2
|s|2. (3.16)

By (1.2) (or (1.3)) and (f1), for each q > 2 there exists a constant C = C(q, δ)
such that

|F (s)| ≤ C|s|q(eαs2 − 1), (3.17)

if |s| ≥ δ. From (3.16) and (3.17) we obtain

|F (s)| ≤ (λ1 − ε)

2
|s|2 + C|s|q(eαs2 − 1), (3.18)

for all s ∈ R and q > 2. Now, using Lemma 2.4, (1.9) and the continuous
embedding (1.8), we obtain

I(u) ≥ 1

2
‖u‖2 − (λ1 − ε)

2
‖u‖2

2 − C‖u‖q − ‖h‖H−1‖u‖

≥ 1

2

[
1− (λ1 − ε)

λ1

]
‖u‖2 − C‖u‖q − ‖h‖H−1‖u‖.

Consequently

I(u) ≥ ‖u‖
[
1

2

(
1− (λ1 − ε)

λ1

)
‖u‖ − C‖u‖q−1 − ‖h‖H−1

]
. (3.19)

Since ε > 0 and q > 2, we may choose ρ > 0 such that

1

2

[
1− (λ1 − ε)

λ1

]
ρ− Cρq−1 > 0.

Thus, for ‖h‖H−1 sufficiently small there exists ρh > 0 such that I(u) > 0 if
‖u‖ = ρh and ρh → 0 as ‖h‖H−1 → 0.

Lemma 3.2 Suppose that f satisfies (f1) or (f2). Then there exists e ∈ E
with ‖e‖ > ρh such that

I(e) < inf
‖u‖=ρh

I(u).

Proof. Let u ∈ H1(R2) such that u ≡ s1 in B1, u ≡ 0 in Bc
2 and u ≥ 0.

Denoting K = supp(u), by (1.10) we have for t > 1 that

I(tu) ≤ t2

2
‖u‖2 − Ctθ

∫

{x : t|u(x)|≥s1}
uθ dx + C1|K| − t

∫

R2
hu dx,

≤ t2

2
‖u‖2 − Ctθ

∫

B1

uθ dx + C1|K| − t
∫

R2
hu dx.
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Since θ > 2, we get I(tu) → −∞. Setting e
.
= tu with t large enough, the

proof is finished.

In order to find an appropriate ball to use minimization argument we need
the following result:

Lemma 3.3 If f satisfies (1.2) (or (1.3)), there exists η > 0 and v ∈ E with
‖v‖ = 1 such that I(tv) < 0 for all 0 < t < η. In particular,

inf
‖u‖≤η

I(u) < 0.

Proof. For each h ∈ H−1, by applying the Riesz representation theorem in
the space E with the inner product (1.4), the problem

−∆v + V (x)v = h, x ∈ R2

has a unique weak solution v in E. Thus,

∫

R2
hv dx = ‖v‖2 > 0 for each h 6= 0.

Since f(0) = 0, by continuity, it follows that there exists η > 0 such that

d

dt
I(tv) = t‖v‖2 −

∫

R2
f(tv)v dx−

∫

R2
hv dx < 0,

for all 0 < t < η. Using that I(0) = 0, it must hold that I(tv) < 0 for all
0 < t < η.

Lemma 3.4 Assume (f1) or (f2) and (1.2) (or (1.3)). Let (un) in E such
that I(un) → c and I ′(un) → 0. Then

‖un‖ ≤ C,
∫

R2
f(un)un dx ≤ C and

∫

R2
F (un) dx ≤ C.

Proof. We have

1

2
‖un‖2 −

∫

R2
F (un) dx−

∫

R2
hun dx = c + on(1),

and for any ϕ ∈ E

∫

RN
(∇un∇ϕ+V (x)unϕ) dx−

∫

RN
f(un)ϕ dx−

∫

RN
hϕ dx = on(‖ϕ‖). (3.20)

13



By (f1) or (f2), we obtain

C + εn‖un‖ ≥
(

θ

2
− 1

)
‖un‖2 −

∫

R2
[θF (un)− f(un)un] dx

≥
(

θ

2
− 1

)
‖un‖2 −

∫

{x : |un(x)|<s1}
[θF (un)− f(un)un] dx,

where εn → 0 as n → ∞. Using that |f(s)s − F (s)| ≤ C1|s| for all |s| ≤ s1

and inequality (1.7) we get

C + εn‖un‖ ≥
(

θ

2
− 1

)
‖un‖2 − C1‖un‖,

which implies that ‖un‖ ≤ C. The other estimates in the statement of the
lemma follows easily.

For the next result, we will use the Radial Lemma (see [25] or [5, Lemma
A.IV]) which asserts that if u ∈ L2(R2) and u∗ is the Schwarz symmetrization
of u, then for all x 6= 0

|u∗(x)| ≤ 1√
π|x|‖u

∗‖2.

Lemma 3.5 Assume that f satisfies (f2) and (1.3). If (vn) ⊂ E is a (P.-S.)
sequence for I and u0 is its weak limit then, up to a subsequence,

F (vn) → F (u0) in L1(R2).

Proof. As a consequence of Lemmas 2.8 and 3.4, for any R > 0 we get

f(vn) → f(u0) in L1(BR).

Thus, there exists g ∈ L1(BR) such that |f(vn)| ≤ g almost everywhere in BR.
From (f2) we can conclude that

|F (vn)| ≤ sup
vn∈[−R0,R0]

|F (vn)|+ M0g almost everywhere in BR.

Thus, by Lebesgue dominated convergence theorem

F (vn) → F (u0) in L1(BR)

for all R > 0. Using (f1) together with (3.15), we have

∫

|x|>R
|F (vn)| dx ≤ C1

∫

|x|>R
v2

n dx + C2

∫

|x|>R
|vn|(eαv2

n − 1) dx (3.21)
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for α > α0. Moreover,

∫

|x|>R
|vn|(eαv2

n − 1) dx =
∞∑

j=1

αj

j!

∫

|x|>R
|vn|2j+1 dx

=
∞∑

j=1

αj

j!

∫

|x|>R
|v∗n|2j+1 dx,

where v∗n is the Schwarz symmetrization of vn. Notice that using the estimate

∫

|x|>R

1

|x|2j+1
dx = 2π

∫ ∞

R

t

t2j+1
dt =

π

j
R−2j ≤ π

R
, j ≥ 1

and Radial Lemma we achieve

∞∑

j=1

αj

j!

∫

|x|>R
|v∗n|2j+1 dx ≤ C√

π

∞∑

j=1

αj

j!

(
1

2π

)j

C2j
∫

|x|>R
|x|−2j−1 dx

≤ C

R
.

Then given δ > 0 there exists R > 0 such that
∫

|x|>R
|u0|2 dx < δ and

∫

|x|>R
|vn|(eα|vn|2 − 1) dx < δ.

Thus, from (3.21) we conclude
∫

|x|>R
|F (vn)| dx ≤ Cδ and

∫

|x|>R
|F (u0)| dx ≤ Cδ.

Since
∣∣∣∣
∫

R2
F (vn) dx−

∫

R2
F (u0) dx

∣∣∣∣ ≤
∣∣∣∣
∫

BR

F (vn) dx−
∫

BR

F (u0) dx

∣∣∣∣

+
∫

|x|>R
|F (vn)| dx +

∫

|x|>R
|F (u0)| dx,

we get

lim
n→∞

∣∣∣∣
∫

R2
F (vn) dx−

∫

R2
F (u0) dx

∣∣∣∣ ≤ Cδ.

Since δ is arbitrary, the lemma is proved.

4 Proof of the main results

In order to obtain a solution with negative energy, observe by Lemma 3.3 and
inequality (3.19) that

−∞ < c0 ≡ inf
‖u‖≤η

I(u) < 0. (4.22)
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4.1 Subcritical case

In this subsection we will give the proof of Theorem 1.1. Thus we are assuming
that V satisfies (V1) − (V2) and f satisfies (f0), (f1) and (f3). To prove
the existence of a local minimum type solution we will use the Ekeland’s
variational principle.

Lemma 4.1 The functional I satisfies the Palais-Smale condition.

Proof. Let (un) be a (P.− S.) sequence. By Lemma 3.4, (un) is bounded, so,
up to subsequence, we may assume that un ⇀ u0 in E, un → u0 in Lq(R2) for
all q ≥ 1 and un(x) → u0(x) almost everywhere in R2. We claim that

∫

R2
(f(un)− f(u0))(un − u0) dx → 0 as n →∞. (4.23)

Indeed, using inequality (3.14), for all α > 0 we obtain

|f(un)− f(u0)||un − u0| ≤ C1

[
|un|+ |u0|+ (eαu2

n − 1) + (eαu2
0 − 1)

]
|un − u0|.

This together with the Hölder inequality and Lemmas 2.1 and 2.2 implies the
claim (4.23). Now, observing that

‖un − u0‖2 = 〈I ′(un)− I ′(u0), un − u0〉+
∫

R2
(f(un)− f(u0))(un − u0) dx.

We conclude that un → u0 and the result follows.

In view of Lemmas 3.1 and 3.2 we can apply the mountain-pass theorem to
obtain the following result

Proposition 4.2 There exists η1 > 0 such that if ‖h‖H−1 ≤ η1 then the
functional I has a critical point uM at the minimax level

cM = inf
g∈Γ

max
t∈[0,1]

I(g(t)),

where
Γ = {g ∈ C([0, 1], E) : g(0) = 0, I(g(1)) < 0}.

Proposition 4.3 For each h ∈ H−1 with h 6= 0, the equation (1.1) has a
minimum type solution u0 with I(u0) = c0 < 0, where c0 is defined in (4.22).

Proof. Let ρh be as in Lemma 3.1. Since Bρh
is a complete metric space with

the metric given by the norm of E, convex and the functional I is of class C1

and bounded below on Bρh
, by Ekeland’s variational principle there exists a

sequence (un) in Bρh
such that

I(un) → c0 = inf
‖u‖≤ρh

I(u) < 0 and ‖I ′(un)‖E′ → 0,
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and the proof follows by Lemma 4.1.

Proof of Theorem 1.1: The proof follows from Propositions 4.2 and 4.3.

4.2 Critical case

In order to get a more precise information about the minimax level obtained
by the mountain-pass theorem, let us consider the following sequence of scaled
and truncated Green’s functions also considered by Moser (see [20]):

M̃n(x, r) = (2π)−1/2





(log n)1/2 if |x| ≤ r/n

log ( r
|x|)

(log n)1/2
if r/n ≤ |x| ≤ r

0 if |x| ≥ r.

Notice that M̃n(·, r) ∈ H1(R2), supp(M̃n(x, r)) = Br,
∫

R2
|∇M̃n(x, r)|2 dx = 1 and

∫

R2
|M̃n(x, r)|2 dx = O(1/ log n) as n →∞.

(4.24)

Moreover, considering Mn(x, r) = M̃n(x, r)/‖M̃n‖, we can write

M2
n(x, r) = (2π)−1 log n + dn, for all |x| ≤ r/n,

where dn = (2π)−1 log n(‖M̃n‖−1−1). Using (4.24), we conclude that ‖M̃n‖ →
1 as n →∞. Consequently,

dn

log n
→ 0 as n →∞. (4.25)

Lemma 4.4 Suppose that (f2), (f3), (f
+
4 ) hold. Then there exists n ∈ N such

that

max
t≥0

[
t2

2
−

∫

R2
F (tMn) dx

]
<

2π

α0

.

Proof. Let us fix r > 0 such that

β0 >
2

r2α0

, (4.26)

where β0 has been given in the assumption (f+
4 ). Suppose, by contradiction,

that for all n we have

max
t≥0

[
t2

2
−

∫

R2
F (tMn) dx

]
≥ 2π

α0

, (4.27)
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where Mn(x) = Mn(x, r). In view of (1.11) we get
∫

R2
F (tMn) dx ≥ −C1 +

∫

{tMn≥s1}
F (tMn) dx ≥ −C1 + C2

∫

{tMn≥s1}
etMn/Mdx.

If t > 0 is sufficiently large and m > 2 we have
∫

{tMn≥s1}
etMn/Mdx ≥ C3t

m
∫

{tMn≥s1}
(Mn)mdx ≥ C3t

m
∫

{Mn≥s1}
(Mn)mdx.

Thus, for each n there exists tn > 0 such that

t2n
2
−

∫

R2
F (tnMn) dx = max

t≥0

[
t2

2
−

∫

R2
F (tMn) dx

]
. (4.28)

Since at t = tn holds

d

dt

(
t2

2
−

∫

R2
F (tMn) dx

)
= 0,

it follows that

t2n =
∫

R2
tnMnf (tnMn) dx =

∫

|x|≤r
tnMnf (tnMn) dx. (4.29)

Now, using hypothesis (f+
4 ), for each ε > 0 there exists Rε > 0 such that

uf(u) ≥ (β0 − ε)eα0u2

for all u ≥ Rε and |x| ≤ r. (4.30)

From (4.29) and (4.30), for n large, we obtain

t2n ≥ (β0 − ε)
∫

|x|≤r/n
eα0(tnMn)2 dx

= (β0 − ε)π
(

r

n

)2

eα0(2π)−1 log ntn+α0t2ndn .
(4.31)

Thus,
1 ≥ (β0 − ε)πr2eα0(2π)−1 log nt2n+α0t2ndn−2 log tn−2 log n.

Consequently, the sequence (tn) is bounded.

We claim that

t2n →
4π

α0

as n →∞. (4.32)

Indeed, condition (f1) together with (4.27)-(4.28) imply that

t2n
2
≥ 2π

α0

+
∫

{tnMn≤s1}
F (tnMn) dx.

Since (tn) is bounded, using (3.18) we obtain

∣∣∣∣
∫

{tnMn≤s1}
F (tnMn) dx

∣∣∣∣ ≤ C
∫

R2
M2

ndx = C
1

‖M̃n‖2

∫

R2
M̃n

2
dx.
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By using (4.24) and the fact that ‖M̃n‖ → 1, we obtain

∫

{tnMn≤s1}
F (tnMn) dx = on(1).

Consequently

t2n ≥
4π

α0

+ on(1).

Now suppose by contradiction that limn→+∞ t2n > 4π/α0. By (4.31) we get

t2n ≥ (β0 − ε)πr2e(α0(4π)−1t2n−1)2 log n+α0t2ndn

which together with (4.25) contradicts the boundedness of (tn) and the claim
follows.

In order to estimate (4.29) more precisely, we consider the sets (see (4.29) and
(4.30))

An = {x ∈ Br : tnMn(x) ≥ Rε} and Cn = Br \ An.

From (4.29) and (4.30) we achieve

t2n ≥ (β0 − ε)
∫

|x|≤r
eα0(tnMn)2dx +

∫

Cn

tnMnf (tnMn) dx

− (β0 − ε)
∫

Cn

eα0(tnMn)2dx.
(4.33)

Notice that Mn(x) → 0 and the characteristic functions χCn → 1 for almost
every x such that |x| ≤ r. Therefore, the Lebesgue dominated convergence
theorem implies

∫

Cn

tnMnf (tnMn) dx → 0 and
∫

Cn

eα0(tnMn)2 dx → πr2 as n →∞.

Since t2n ≥ 4π/α0, we also have

∫

|x|≤r
eα0(tnMn)2 dx ≥

∫

|x|≤r
e4πM2

n dx

=
∫

|x|≤r/n
e4πM2

n dx +
∫

r/n≤|x|≤r
e4πM2

n dx.
(4.34)

For the first integral in (4.34), we notice that

∫

|x|≤r/n
e4πM2

n dx =
∫

|x|≤r/n
e2 log n+4πdn dx

= π
r2

n2
n2+4π(log n)−1

dn → πr2 as n →∞,

where we have used (4.25).

19



For the second integral, using the change of variable τ = log(r/s)/(ζn log n)
with ζn = ‖M̃n‖ > 1, we obtain

∫

r/n≤|x|≤r
e4πM2

n dx = 2πr2ζn log n
∫ ζ−1

n

0
e2 log n(t2−ζnt)dt.

Since

t2 − ζnt ≥





−ζnt if 0 ≤ t ≤ ζ−1
n

2

(2ζ−1
n − ζn)(t− ζ−1

n ) + (ζ−2
n − 1) if

ζ−1
n

2
≤ t ≤ ζ−1

n ,

By straightforward calculation we can see that

lim
n→∞

∫

r/n≤|x|≤r
e4πM2

n dx ≥ 2πr2.

Finally, taking n →∞ in (4.33) and using (4.32) we obtain

4π

α0

≥ (β0 − ε)2πr2

which yields β0 ≤ 2/(α0r
2), contradicting (4.26), and the proof is finished.

Corollary 4.5 Under the hypotheses (V1) and (f2) − (f+
4 ), if ‖h‖H−1 is

sufficiently small then

max
t≥0

I(tMn) = max
t≥0

{
t2

2
−

∫

R2
F (tMn) dx− t

∫

R2
hMn dx

}
<

2π

α0

.

Proof. Notice that ‖hMn‖1 ≤ ‖h‖H−1 . Thus, taking ‖h‖H−1 sufficiently small
and using Lemma 4.4 the result follows.

In order to obtain convergence results, we need to improve the estimate of
Lemma 4.4.

Corollary 4.6 Under the hypotheses (f2)−(f+
4 ), there exists δ2 > 0 such that

for all h ∈ H−1 with 0 < ‖h‖H−1 < δ2 there exists u ∈ H1(R2) with compact
support verifying

I(tu) < c0 +
2π

α0

, for all t ≥ 0.

Proof. It is possible to raise the infimum c0 by reducing ‖h‖H−1 . By Lemma
3.1, ρh → 0 as ‖h‖H−1 → 0. Consequently, c0 increases as ‖h‖H−1 decreases and
c0 → 0 as ‖h‖H−1 → 0. Thus, there exists δ2 > 0 such that if 0 < ‖h‖H−1 < δ2
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then, by Corollary 4.5, we have

max
t≥0

I(tMn) < c0 +
2π

α0

.

Taking u = Mn ∈ H1(R2), the result is proved.

Lemma 4.7 If (un) is a (P.-S.) sequence for I at any level with

lim inf
n→∞ ‖un‖2 <

4π

α0

,

then (un) possesses a subsequence which converges strongly to a solution u0 of
(1.1).

Proof. Since ‖un‖ is bounded, up to a subsequence if necessary, we may
assume that

lim inf
n→∞ ‖un‖ = lim

n→∞ ‖un‖.
By Lemma 3.4, we may assume that un ⇀ u0 weakly in E, un → u0 in
Lq(R2) for all q ≥ 1 and un(x) → u0(x) almost everywhere in R2. Moreover,
by Lemma 2.8,

f(un) → f(u0) in L1
loc(R2).

Passing to the limit in (3.20), we have

∫

R2
(∇u0∇ϕ + V (x)u0ϕ) dx−

∫

R2
f(u0)ϕ dx−

∫

R2
hϕ dx = 0,

for all ϕ ∈ C∞
0 (R2). Since C∞

0 (R2) is dense in E, we conclude that u0 is a
weak solution of (1.1).

We claim that un → u0. Indeed, writing un = u0 + wn, it follows that wn ⇀ 0
in E. Thus wn → 0 in Lq(R2) for all 1 ≤ q < ∞. By the Brezis-Lieb Lemma
(see [7]), we get

‖un‖2 = ‖u0‖2 + ‖wn‖2 + on(1). (4.35)

We first claim that
∫

R2
f(un)u0 dx →

∫

R2
f(u0)u0 dx as n →∞. (4.36)

In fact, since C∞
0 (R2) is dense in E, for all τ > 0 there exists ϕ ∈ C∞

0 (R2)
such that ‖ϕ− u0‖ < τ . Observe that

∣∣∣∣
∫

R2
f(un)u0 dx−

∫

R2
f(u0)u0 dx

∣∣∣∣ ≤
∣∣∣∣
∫

R2
f(un)(u0 − ϕ) dx

∣∣∣∣

+
∣∣∣∣
∫

R2
f(u0)(u0 − ϕ) dx

∣∣∣∣

+ ‖ϕ‖∞
∫

suppϕ
|f(un)− f(u0)| dx.
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To estimate the first integral we use that |〈I ′(un), u0−ϕ〉| ≤ τn‖u0−ϕ‖ with
τn → 0 and we conclude that

∣∣∣∣
∫

R2
f(un)(u0 − ϕ) dx

∣∣∣∣ ≤ τn‖u0 − ϕ‖+
(∫

R2
|∇un|2 dx

)1/2

‖u0 − ϕ‖

+
(∫

R2
V (x)|un|2 dx

)1/2

‖u0 − ϕ‖
+ ‖h‖H−1‖u0 − ϕ‖

≤ C‖u0 − ϕ‖ < Cτ,

where C is independent of n and τ . Similarly, using that 〈I ′(u0), u0 − ϕ〉 = 0,
we can estimate the second integral obtaining

∣∣∣∣
∫

R2
f(u0)(u0 − ϕ) dx

∣∣∣∣ < Cτ.

To estimate the last integral we use that f(un) → f(u0) in L1
loc(R2) and

conclude by the previous inequalities that

lim
n→∞

∣∣∣∣
∫

R2
f(un)u0 dx−

∫

R2
f(u0)u0 dx

∣∣∣∣ < 2Cτ ;

this implies (4.36) because τ is arbitrary.

From (4.35) and (4.36), we can write

〈I ′(un), un〉 = 〈I ′(u0), u0〉+ ‖wn‖2 −
∫

R2
f(un)wn dx + on(1),

that is,

‖wn‖2 =
∫

R2
f(un)wn dx + on(1). (4.37)

From (3.15), Hölder inequality and Lemma 2.2, for any α > α0, we get

∣∣∣∣
∫

R2
f(un)wn dx

∣∣∣∣ ≤ b1

∫

R2
|un||wn| dx + b2

∫

R2
(eαu2

n − 1)|wn| dx

≤ C1‖wn‖2 + b2

[∫

R2
(eα‖un‖2(un/‖un‖)2 − 1)r dx

]1/r

‖wn‖p

≤ C1‖wn‖2 + C2

[∫

R2
(eαq‖un‖2(un/‖un‖)2 − 1) dx

]1/r

‖wn‖p.

where r > 1, p = r/(r − 1) and q > r. By hypothesis, α0‖un‖2 < 4π for n
sufficiently large. Now, we consider α > α0 and q > r, with r > 1 close to
1, such that we still have αq‖un‖2 < 4π. Using Lemma 2.1 and the compact
embedding (1.8), we conclude that

∫

R2
f(un)wn dx → 0.

This together with (4.37) implies that ‖wn‖ → 0 and the result follows.
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Next, we will prove the existence of a local minimum type solution.

Lemma 4.8 For each h ∈ H−1 with 0 < ‖h‖H−1 < δ1, the equation (1.1) has
a minimum type solution u0 with I(u0) = c0 < 0, where c0 is defined in (4.22).

Proof. Let ρh be as in Lemma 3.1. We can choose ‖h‖H−1 sufficiently small
such that ρh < (4π/α0)

1/2. Since Bρh
is a complete metric space with the

metric given by the norm of E, convex and the functional I is of class C1

and bounded below on Bρh
, by Ekeland’s variational principle there exists a

sequence (un) in Bρh
such that

I(un) → c0 = inf
‖u‖≤ρh

I(u) and ‖I ′(un)‖E′ → 0.

Observing that ‖un‖2 ≤ ρ2
h < 4π/α0, by Lemma 4.7, there exists a subsequence

of (un) which converges strongly to a solution u0 of (1.1). Therefore, I(u0) =
c0 < 0.

Lemma 4.9 Under the assumptions (V1)− (V2) and (f2)− (f+
4 ), if ‖h‖H−1 <

δ1 the problem (1.1) has a mountain-pass type solution uM .

Proof. By Lemmas 3.1 and 3.2 we have that I has a mountain-pass geometry.
Thus, using the mountain-pass theorem without the (PS) condition (see [26]),
there exists a sequence (un) in E satisfying

I(un) → cM > 0 and ‖I ′(un)‖E′ → 0,

where cM is the mountain-pass level. Now, by Lemma 3.4, the sequence (un) is
bounded and using the density of C∞

0 (R2) in E, it follows that (un) converges
weakly to a solution uM of (1.1).

Remark 4.10 By Corollary 4.6, we can conclude that

0 < cM < c0 +
2π

α0

.

Proposition 4.11 If δ2 > 0 is small enough, then the solutions of (1.1)
obtained in Lemma 4.8 and Lemma 4.9 are distinct.

Proof. By Lemmas 4.8 and 4.9, there exist sequences (un) and (vn) in E such
that

un → u0, I(un) → c0 < 0, 〈I ′(un), un〉 → 0, (4.38)

and
vn ⇀ uM , I(vn) → cM > 0, 〈I ′(vn), vn〉 → 0. (4.39)

Now, suppose by contradiction that u0 = uM . Since we also have vn ⇀ u0 in
H1(R2), up to subsequence, limn→∞ ‖vn‖1,2 ≥ ‖u0‖1,2 > 0. Setting

wn
.
=

vn

‖vn‖1,2

and w0
.
=

u0

limn→∞ ‖vn‖1,2

,
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we get ‖wn‖1,2 = 1 and wn ⇀ w0 in H1(R2).

Now, we consider two possibilities:
(i) ‖w0‖1,2 = 1 and (ii) ‖w0‖1,2 < 1.

If (i) happens, we have lim
n→∞ ‖vn‖1,2 = ‖u0‖1,2, so that vn → u0 in H1(R2). By

Proposition 2.7, there exists g ∈ H1(R2) such that

|vn| ≤ g almost everywhere in R2.

This together with (3.15) implies that

|f(vn)vn| ≤ c1|g|2 + c2|g|(eαg2 − 1) almost everywhere in R2,

for each α > α0. By Remark 2.3, the function c1|g|2 + c2|g|(eαg2 − 1) ∈ L1(R2)
and using Lebesgue dominated convergence theorem we conclude that

∫

R2
f(vn)vn dx →

∫

R2
f(u0)u0 dx.

Similarly, ∫

R2
f(un)un dx →

∫

R2
f(u0)u0 dx,

because un → u0 in E. Since

〈I ′(un), un〉 = ‖un‖2 −
∫

R2
f(un)un dx−

∫

R2
hun dx → 0

and
〈I ′(vn), vn〉 = ‖vn‖2 −

∫

R2
f(vn)vn dx−

∫

R2
hvn dx → 0,

we conclude that
lim

n→∞ ‖vn‖2 = lim
n→∞ ‖un‖2 = ‖u0‖2.

Therefore, vn → u0 in E and consequently I(vn) → I(u0) = c0. This is a
contradiction with (4.38) - (4.39).

Now, suppose that (ii) happens. We claim that there exists δ > 0 such that

qα0‖vn‖2
1,2 ≤ 4π

1

1− ‖w0‖2
1,2

− δ (4.40)

for n large. Indeed, by Remark 4.10, we have

α0 <
2π

cM − I(u0)
.

Thus, we can choose q > 1 sufficiently close to 1 and δ > 0 such that

qα0‖vn‖2
1,2 ≤

2π

cM − I(u0)
‖vn‖2

1,2 − δ.
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Since vn ⇀ u0, by Lemma 3.5 and the compactness embedding (1.8), up to a
subsequence, we conclude that

1

2
‖vn‖2

1,2 =

cM − 1

2
lim

n→∞

∫

R2
V (x)v2

ndx +
∫

R2

[
F (u0) + hu0 +

1

2
u2

0

]
dx + on(1).

(4.41)

Thus, for n sufficiently large we get

qα0‖vn‖2
1,2

≤ 4π
cM − 1

2
lim

n→∞

∫

R2
V (x)v2

ndx +
∫

R2

[
F (u0) + hu0 +

1

2
u2

0

]
dx + on(1)

cM − I(u0)
− δ.

(4.42)

Notice that

{
cM − 1

2
lim

n→∞

∫

R2
V (x)v2

ndx +
∫

R2

[
F (u0) + hu0 +

1

2
u2

0

]
dx

}
(1− ‖w0‖2

1,2)

= cM − cM‖w0‖2
1,2 − I(u0) +

1

2
‖u0‖2

1,2 +
1

2

∫

R2
V (x)u2

0dx− 1

2
lim

n→∞

∫

R2
V (x)v2

ndx

−
{
−1

2
lim

n→∞

∫

R2
V (x)v2

ndx +
∫

R2

[
F (u0) + hu0 +

1

2
u2

0

]
dx

}
‖w0‖2

1,2

≤ cM − I(u0),

where we have used that

∫

R2

[
F (u0) + hu0 +

1

2
u2

0

]
dx = −I(u0) +

1

2
‖u0‖2

1,2 +
1

2

∫

R2
V (x)u2

0 dx,
∫

R2
V (x)u2

0dx ≤ lim
n→∞

∫

R2
V (x)v2

ndx,

the equality (4.41) and the definition of w0. This, together with (4.42) implies
(4.40) for n large.

Now taking p = (q + ε)α0‖vn‖2
1,2, it follows from (4.40) and Lemma 2.5 that

∫

R2
(e(q+ε)α0‖vn‖21,2|wn|2 − 1)dx ≤ C, (4.43)

for ε > 0 sufficiently small. Using (3.15), the Hölder inequality and the Sobolev
embedding we get

∣∣∣∣
∫

R2
f(vn)(vn − u0) dx

∣∣∣∣ ≤b1‖vn‖2‖vn − u0‖2

+ b2‖vn − u0‖q′

[∫

R2
(eα0‖vn‖21,2w2

n − 1)qdx
]1/q

,
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where q′ = q/(q − 1). Now using Lemma 2.2, estimate (4.43) and the
compactness of the embedding (1.8), we obtain

∣∣∣∣
∫

R2
f(vn)(vn − u0) dx

∣∣∣∣ ≤ C1‖vn − u0‖2 + C2‖vn − u0‖q′ → 0

as n →∞. This convergence together with the fact that I ′(vn)(vn − u0) → 0
show that

∫

R2
∇vn(∇vn −∇v0) dx +

∫

R2
V (x)vn(vn − v0) dx → 0.

Since vn ⇀ u0 we have

∫

R2
∇u0(∇vn −∇v0) dx +

∫

R2
V (x)u0(vn − v0) dx → 0.

Consequently, vn → u0 in E. Thus I(vn) → I(u0) = c0, which contradicts
(4.38) - (4.39). Therefore u0 6= uM .

Now, the proof of Theorems 1.4 and 1.5 follows directly from Lemmas 4.8, 4.9
and Proposition 4.11.

4.3 Proof of Theorems 1.2 and 1.6:

In order to prove Theorems 1.2 and 1.6 in the case h(x) ≥ 0, we redefine
f(s) = 0 for s < 0. Thus, in the subcritical case (f1) holds for s ≥ s1 and in
the critical case (f2) holds for s ≥ R0. Notice that hypotheses (f1) and (f2)
was required to help verify the Palais-Smale condition and Lemmas 3.2, 3.4
and 3.5, which are valid also for this modified nonlinearity.

The proof is a consequence of the following result.

Corollary 4.12 If h(x) ≥ 0 almost everywhere in R2, then the weak solutions
of (1.1) are nonnegative.

Proof. Let u ∈ E be a weak solution of (1.1). Setting u+ = max{u, 0}, u− =
max{−u, 0} and taking v = u− in (1.5), we obtain

‖u−‖2 = −
∫

R2
hu−dx ≤ 0,

because f(u(x))u−(x) = 0 in R2. Consequently, u = u+ ≥ 0.

Now, in the case h(x) ≤ 0, in order to prove Theorems 1.2 and 1.6 let us define
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the following function

f̃(s) =




−f(−s), if s < 0

f(s), if s ≥ 0.

In this case, the proof of Theorems 1.2 and 1.6 is given in the following
corollary:

Corollary 4.13 Suppose that (f−4 ) holds and h(x) ≤ 0 almost everywhere in
R2. Then there exist at least two nonpositive weak solutions of (1.1).

Proof. Consider the functional defined by

Ĩ(u) =
1

2
‖u‖2 −

∫

R2
F̃ (u) dx−

∫

R2
(−h)u dx,

where F̃ is the primitive of f̃ . Notice that f̃ satisfies the same hypotheses of
f . Since −h(x) ≥ 0 almost everywhere in R2, by Corollary 4.12, Ĩ(u) has two
nonnegative nontrivial critical points. Let ũ be one such critical point, that is

∫

R2
(∇ũ∇v + V (x)ũv)dx−

∫

R2
f̃(ũ)v dx +

∫

R2
hv dx = 0, ∀ v ∈ E.

Recalling the construction of f̃ , we have that f̃(ũ) = −f(−ũ) and replace v
by −v in the last equality, we obtain

∫

R2
[∇(−ũ)∇v + V (x)(−ũ)v]dx−

∫

R2
f(−ũ)v dx−

∫

R2
hv dx = 0, ∀ v ∈ E.

which implies that −ũ is a nonpositive solution of (1.1).

Remark 4.14 Finally, we observe that the same procedures used in this paper,
along with obvious modification, can be used to obtain analogous results for the
problem of the form

−∆u + V (x)u = f(x, u) + h(x), x ∈ R2.
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