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Abstract

This paper deals with a semilinear Schrödinger equation whose nonlinear term involves a positive parameter λ and a real function
f (u) which satisfies a superlinear growth condition just in a neighborhood of zero. By proving an a priori estimate (for a suitable
class of solutions) we are able to avoid further restrictions on the behavior of f (u) at infinity in order to prove, for λ sufficiently
large, the existence of one-sign and sign-changing solutions. Minimax methods are employed to establish this result.
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1. Introduction

In this paper we are concerned with nonlinear Schrödinger equations of the form

i
∂ψ

∂t
= −�ψ + W(x)ψ − λ|ψ |−1g

(|ψ |)ψ in R
N,

or nonlinear equations of the Klein–Gordon type

∂2ψ

∂t2
= �ψ + W(x)ψ − λ|ψ |−1g

(|ψ |)ψ in R
N,

where ψ : R × R
N → C, λ is a positive parameter, W : R

N → R is a given potential and g : R → R is a nonlinear
term. Here our special interest is in the existence of standing wave solutions, namely, solutions of type

ψ(t, x) = exp(−iEt)u(x),
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where E ∈ R and u > 0 is a real function. It is known that if we seek for standing wave solutions we are led to look
for solutions of nonlinear elliptic equations of the form

−�u + V (x)u = λf (u) in R
N, (Pλ)

where V : R
N → R is the new potential for which is assumed to be uniformly positive, λ is a positive parameter and

f : R → R is the new nonlinearity. Such equations arise in various branches of mathematical physics and mathematical
biology and they have been subject of extensive study in the past years, among others we refer to [8,9,18,25,28–30]
and references therein.

The main purpose of the present paper is to establish the existence of signed and sign-changing solutions for
problem (Pλ) with the nonlinearity f (u) satisfying a superlinear growth condition just in a neighborhood of zero. This
result can be considered as an extension of the main result in [13] concerning the nonlinear eigenvalue problem −�u =
λf (u) with homogeneous Dirichlet boundary condition on a bounded domain Ω ⊂ R

N . See also [11] where the
authors proved a multiplicity result for this class of problems. For related results under global superlinear conditions
we refer to [1,14,22–24] and references therein. The approach proposed here is in the spirit of [25] and based on a
global variational point of view. Throughout the paper, we assume the following basic hypotheses on the potential:

(V1) V ∈ C(RN,R) and infx∈RN V (x) > 0.

We consider the situation in which the potential V (x) is possibly unbounded from above and also the case when
actually the potential is “large” at infinity. Indeed, we prove the existence under either of the following assumptions
on the potential:

(V2) V (x) → ∞ as |x| → ∞; or more generally, for every M > 0, the set{
x ∈ R

N : V (x) � M
}

has finite Lebesgue measure;
(V3) The function [V (x)]−1 belongs to L1(RN).

We assume that f : R → R is a function of class C1 with primitive F(s) = ∫ s

0 f (t) dt satisfying the following condi-
tions:

(f1) there exists p ∈ (2,2∗) such that

lim sup
|s|→0

f (s)s

|s|p < +∞;

(f2) there exists q ∈ (2,2∗) such that

lim inf|s|→0

F(s)

|s|q > 0;
(f3) there exists θ ∈ (2,2∗) such that

0 < θF(s) � sf (s) for |s| �= 0 small.

Here N � 3, 2∗ = 2N/(N − 2) is the critical Sobolev exponent. Of course, it follows from (f1) and (f2) that p � q .
Assumptions like (f1)–(f3) were already used in [11] and [13] in order to prove multiplicity results for a class of
nonlinear eigenvalue problems on a bounded domain. Condition (f3) is a local version of the classical Ambrosetti–
Rabinowitz condition.

A main difficulty in treating this class of semilinear Schrödinger equations (Pλ) is the possible lack of compactness
due to the unboundedness of the domain besides that ours assumptions on the nonlinear term f (u) refer solely to
its behavior in neighborhood of zero. By using minimax methods and proving an a priori estimate (for a suitable
class of solutions) we are able to avoid further restrictions on the behavior of f (u) at infinity in order to prove, for λ

sufficiently large, the existence of three solutions of problem (Pλ). Next, we state our main result in a more precise
way.



434 J.M. do Ó et al. / J. Math. Anal. Appl. 342 (2008) 432–445
Theorem 1.1. Assume (V1)–((V2) or (V3)) and (f1)–(f3). Then problem (Pλ) has at least one positive solution, one
negative solution and a sign-changing solution for all λ sufficiently large.

Example 1.2. Note that the hypotheses of our main result are satisfied by nonlinear functions of the form

(a) f (s) = s|s|α−1 ln(1 + |s|) with 0 < α < 1 and α + 2 < 2∗. Since lims→0 sf (s)/F (s) = α + 2, lim|s|→∞ sf (s)/

F (s) = α + 1 and lims→+∞ f (s)/s = 0 we see that this nonlinear function satisfies the Ambrosetti–Rabinowitz
condition (f3) near the origin but does not satisfy the usual global superlinear condition.

(b) f ∈ C1(R) such that f (s) = |s|p−2s for |s| � 1 and f (s) = es2
for |s| � 2 with p ∈ (2,2∗).

(c) f (s) = a|s|p−2s + b|s|r−2s where 2 < p < 2∗ < r and a, b are positive constants.
(d) f (s) = a|s|p−2s + b|s|q−2ses2

where 2 < p < q < 2∗ and a, b are positive constants.

Here, the nonlinear functions given in (b)–(d) do not satisfy the usual global subcritical conditions.

Remark 1.3. It is readily seen that using classical regularity arguments for elliptic equations one can see that weak
solutions of (Pλ) are indeed classical (see [16]).

The existence of a positive and a negative solution for the semilinear elliptic partial differential equation −�u +
V (x)u = f (x,u) in R

N can be found in [25] provided that V (x) → ∞ as |x| → ∞, and f (x,u) is subcritical and
superlinear. In [6], among other things, the authors weakened the conditions on the potential V and still obtained
a positive and a negative solution. These results have been generalized in [5] and [7] where the existence of a sign
changing solution has been obtained. Note that sign-changing solutions for elliptic semilinear problems have attracted
much attention in the last decade and numerous papers were published; see, for instance [4,15,20,22,26,27,33] and
references therein. To study sign-changing solutions, several authors have established an abstract critical point theory
in partially ordered Hilbert space. The methods and the abstract critical point theory of [2,18] involve the density of
the Banach space C(Ω) of continuous functions in the Hilbert space H 1

0 (Ω), where the cone of the positive functions
has nonempty interior and this framework imposes stronger hypotheses on the nonlinearity and the domain. Indeed,
it is required the boundedness of the domain and the stronger smoothness on the nonlinearity. The existence of sign
changing solutions using properties of invariants set of descending flow defined by a pseudogradient field has been
investigated by several authors (see [4,19,26]). Our results can also be considered as an extension of the above mention
papers in the sense that we are considering only superlinear conditions in a neighborhood of the origin. Finally we
mention that existence of sign-changing solutions for problems involving the p-Laplacian was studied recently in [3],
and see also [32] for Kirchhoff type problems.

The outline of the paper is as follows: In the forthcoming section we have the modified problem and some pre-
liminary results. In the third section we shall deal with the existence of signed solutions, while the fourth section is
devoted to prove the existence of a sign-changing solution by using a linking type theorem together with an appropri-
ated energy estimate.

Notation. In this paper we make use of the following notation:

• C, C0, C1, C2, . . . denote positive (possibly different) constants.
• BR denotes the open ball centered at origin and radius R > 0.
• C∞

0 (RN) denotes the functions infinitely differentiable with compact support in R
N .

• For 1 � p � ∞, Lp(RN) denotes the usual Lebesgue space with norms

|u|p :=
( ∫

RN

|u|p dx

)1/p

, 1 � p < ∞;

|u|∞ := inf
{
C > 0:

∣∣u(x)
∣∣ � C almost everywhere on R

N
}
.

• H 1(RN) denotes the Sobolev space modeled in L2(R) with its usual norm

‖u‖1,2 := (|∇u|22 + |u|22
)1/2

.
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• By 〈·,·〉 we denote the duality pairing between X and its dual X′.
• We denote the weak convergence in X and X′ by “⇀” and the strong convergence by “→.”

2. Preliminaries and reformulation of the problem

At this stage, in order to apply variational methods, we consider the subspace of H 1(RN),

E =
{
u ∈ H 1(

R
N

)
:

∫

RN

V (x)u2 dx < ∞
}
,

which is a Hilbert space when endowed with the inner product

〈u,v〉 =
∫

RN

(∇u∇v + V (x)uv
)
dx, u, v ∈ E,

and its correspondent norm ‖u‖ = 〈u,u〉1/2.
Notice that, under assumption (V1), for all 2 � r � 2∗ we have

E ↪→ Lr
(
R

N
)

with continuous embedding and with compact embedding if 2 � r < 2∗ and V satisfies condition (V2) or (V3) (these
facts can be found in [6,12,17,21]).

Remark 2.1. It is readily seen that our method applies to other potentials, although we focus our attention on the case
where the potential satisfies condition (V2) or (V3); this does not require significant changes in our argument.

We observe that formally (Pλ) is the Euler–Lagrange equation associated to the following functional:

Ψλ(u) = 1

2
‖u‖2 − λ

∫

RN

F (u)dx.

From the variational point of view, the first difficulty we have to deal with this problem, is the fact that since (f1)–(f3)

give the behavior of f (s) just in a neighborhood of zero, the functional Ψλ is not well defined in E. To overcome
this difficulty we use here a penalization technique in the spirit of the argument developed by Costa and Wang in [13]
to obtain a new functional well defined in E. To this end, we first observe that (f1) and (f2) imply the existence of
positive constants C0,C1 such that for |s| small,

F(s) � C0|s|p (2.1)

and

F(s) � C1|s|q . (2.2)

Let ρ(s) be an even cut-off function verifying sρ′(s) � 0, |sρ′(s)| � 2/δ and

ρ(s) =
{

1 if |s| � δ,

0 if |s| � 2δ,

where δ is chosen such that (2.1), (2.2) and (f3) hold for |s| � 2δ.
Now, setting⎧⎨

⎩
F∞(s) = C0|s|p,

G(s) = ρ(s)F (s) + (
1 − ρ(s)

)
F∞(s),

g(s) = G′(s),
we introduce the auxiliary problem

−�u + V (x)u = λg(u) in R
N, (2.3)
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with variational structure. More precisely, weak solutions of (2.3) are critical points of the C2 functional Iλ : E → R,

Iλ(u) = 1

2
‖u‖2 − λ

∫

RN

G(u)dx.

This fact is a consequence of the following result (see also [10,24,25] and [31] for regularity properties of the associ-
ated functional).

Lemma 2.2.

(1) There exists C > 0 such that
∣∣g(s)

∣∣ � C|s|p−1 for all s ∈ R. (2.4)

(2) The Ambrosetti–Rabinowitz condition:

0 < αG(s) � sg(s) for all s ∈ R \ {0},
where α = min{p, θ}.

Proof. If |s| � δ, we have G(s) = F(s). It follows from (f1) and (f3) that∣∣g(s)
∣∣ = ∣∣F ′(s)

∣∣ = ∣∣f (s)
∣∣ � C1|s|p−1.

For |s| � 2δ, we have G(s) = F∞(s) = C0|s|p , consequently |g(s)| � C2|s|p−1. By definition

g(s) = ρ(s)f (s) + ρ′(s)
(
F(s) − F∞(s)

) + (
1 − ρ(s)

)
F ′∞(s). (2.5)

Since |ρ′(s)s| � 2
δ
, by (2.1) we get |ρ′(s)F (s)| � C3|s|p−1 for all δ � |s| � 2δ. Choosing C = max{C1,C2,C3}, we

obtain (2.4).
In order to prove (2) we observe that for α = min{p, θ} and |s| � 2δ we have

αG(s) = αρ(s)F (s) + α
(
1 − ρ(s)

)
F∞(s)

� α

θ
ρ(s)sf (s) + α

p

(
1 − ρ(s)

)
sF ′∞(s)

� ρ(s)sf (s) + (
1 − ρ(s)

)
sF ′∞(s)

which together with (2.5) implies that

αG(s) − sg(s) � ρ′(s)s
(
F∞(s) − F(s)

)
� 0,

since ρ′(s)s � 0 and F∞(s) � F(s). This shows (2) for |s| � 2δ. If |s| � 2δ the inequality (2) is immediate and the
proof is finished. �
Lemma 2.3. The functional Iλ exhibits the mountain-pass geometry:

(1) There exist ρ > 0 and C = C(ρ,λ) > 0 such that

Iλ(u) � C for ‖u‖ = ρ.

(2) There exists e ∈ E with ‖e‖ > ρ and Iλ(e) � 0.

Proof. Using Lemma 2.2 together with the Sobolev embedding we obtain

Iλ(u) � 1

2
‖u‖2 − λC2|u|pp � ‖u‖2

(
1

2
− λC4‖u‖p−2

)
,

for ‖u‖ = ρ sufficiently small. Hence (1) holds, since p > 2.
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Next we prove (2). Using property (2) in Lemma 2.2 we obtain

G(u) � C1|u|α − C2 for all s ∈ R.

Thus, for any ϕ ∈ C∞
0 (RN) and t > 0, we have

Iλ(tϕ) � t2

2
‖ϕ‖2 − λC1t

α|ϕ|αα − C2,

which implies that Iλ(tϕ) → −∞ as t → +∞, since α > 2. Hence Iλ(e) � 0 for e = tϕ and t large enough. �
In order to show that solutions of penalized problem (2.3) are solutions of the original problem (Pλ), we will use

the following L∞ estimate.

Lemma 2.4. If u ∈ E is a weak solution of problem (2.3), then u ∈ L∞(RN). Moreover, there exists C = C(p,N) > 0
such that

|u|∞ � C
(
λ‖u‖p−2)1/(2∗−p)‖u‖. (2.6)

Proof. Let u ∈ E be a weak solution of problem (2.3), that is,∫

RN

∇u∇ϕ dx +
∫

RN

V (x)uϕ dx = λ

∫

RN

g(u)ϕ dx, ϕ ∈ E. (2.7)

We can assume, without lost of generality, that u is nonnegative. Otherwise, we argue with the positive and negative
parts of u separately. For each k > 0, we define vk = u

2(β−1)
k u and wk = uu

β−1
k with β > 1 to be determined later,

where

uk =
{

u if u � k,

k if u � k.

Notice that 0 � uk � u, ∇uk∇u � 0 and |∇uk| � |∇u|. Taking vk as a test function in (2.7) and using (2.4), we
obtain∫

RN

u
2(β−1)
k |∇u|2 dx � −

∫

RN

V (x)u
2(β−1)
k u2 dx − 2(β − 1)

∫

RN

u
2(β−1)−1
k u∇uk∇udx + Cλ

∫

RN

upu
2(β−1)
k dx.

Now, observing that the first and the second terms in the right-hand side of the inequality above are nonpositive, we
have ∫

RN

u
2(β−1)
k |∇u|2 dx � λC

∫

RN

upu
2(β−1)
k dx = λC

∫

RN

up−2w2
k dx.

This together with the Gagliardo–Nirenberg–Sobolev inequality implies that

( ∫

RN

w2∗
k dx

)2/2∗

� C1

∫

RN

|∇wk|2 dx

� C2

∫

RN

[
u

2(β−1)
k |∇u|2 dx + (β − 1)2u2u

2(β−2)
k |∇uk|2

]
dx

� C4β
2
∫

RN

u
2(β−1)
k |∇u|2 dx

� λC5β
2
∫
N

up−2w2
k dx,
R
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where we have used that 1 + (β − 1)2 � β2 for β � 1. Using the Hölder inequality, we get
( ∫

RN

w2∗
k dx

)2/2∗

� λβ2C5

( ∫

RN

u2∗
dx

)(p−2)/2∗( ∫

RN

w
22∗/(2∗−p+2)
k dx

)(2∗−p+2)/2∗

.

Observing that |wk| � |u|β and since the embedding E ↪→ L2∗
(RN) is continuous, we conclude that

( ∫

RN

∣∣uu
β−1
k

∣∣2∗
dx

)2/2∗

� λβ2C6‖u‖p−2
( ∫

RN

uβ22∗/(2∗−p+2) dx

)(2∗−p+2)/2∗

.

Choosing β = 1 + (2∗ − p)2−1, we have 2β(2∗ − p + 2)−1 = 1. Thus,
( ∫

RN

∣∣uu
β−1
k

∣∣2∗
dx

)2/2∗

� λβ2C6‖u‖p−2|u|2β
βα∗ ,

where α∗ = 2(2∗)(2∗ − p + 2)−1. By the Fatou’s lemma in k, we obtain

|u|β2∗ �
(
λβ2C6‖u‖p−2)1/2β |u|βα∗ . (2.8)

Taking β0 = β and inductively βm+1α∗ = 2∗βm for m = 1,2, . . . , and applying the previous processes for β1, by (2.8)
we have

|u|β12∗ �
(
λβ2

1C6‖u‖p−2)1/2β1 |u|β1α
∗

�
(
λβ2

1C6‖u‖p−2)1/2β1
(
λβ2C6‖u‖p−2)1/2β |u|βα∗

�
(
λC6‖u‖p−2)1/2β1+1/2β

(β)1/β(β1)
1/β1 |u|2∗ .

Observing that βm = χmβ where χ = 2∗/α∗, by iteration we obtain

|u|βm2∗ �
(
λC6‖u‖p−2)1/2β

∑m
i=0 χ−i

β1/β
∑m

i=0 χ−i

χ1/β
∑m

i=0 iχ−i |u|2∗ .

Since χ > 1 and

lim
m→∞

1

2β

m∑
i=0

χ−i = 1

2∗ − p
,

we can take the limit as m → ∞ to get

|u|∞ � C7
(
λ‖u‖p−2)1/(2∗−p)‖u‖.

Thus, the proof is completed. �
In order to get estimates on the critical level of the functional Iλ, important role will be played by the following

energy functional:

Jλ(u) = 1

2
‖u‖2 − λ

∫

RN

C1|u|q dx,

where q ∈ (2,2∗) and C1 is the positive constant given in (2.2). It is clear that Jλ is a C1-functional and enjoys the
mountain-pass geometry. Moreover, in view of the compact embedding E ↪→ Lq(RN) we can apply the mountain-
pass theorem (see [1,10,24,25,31]) to conclude that the minimax level

bλ = inf
u �=0

max
t�0

Jλ(tu)

is a critical value of Jλ. Besides, we have the following estimate.
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Lemma 2.5. There exists C = C(N,q,V ) > 0 independent of λ such that

bλ � Cλ−2/(q−2). (2.9)

Proof. Using one more time the compact embedding E ↪→ Lq(RN) it is easy to see that the infimum

SV

(
R

N
) := inf

{‖u‖2

|u|2q
: u ∈ E \ {0}

}

is attained. Let u0 ∈ E be such that

SV

(
R

N
) = ‖u0‖2

|u0|2q
.

Then we can obtain through straightforward calculations that

max
t�0

Jλ(tu0) =
(

q − 2

2q

)
(C1λ)−2/(q−2)

(‖u0‖2

|u0|2q

)q/(q−2)

.

Consequently, bλ � C2λ
−2/(q−2)SV (RN)q/(q−2), which completes the proof. �

The next result will be used in several arguments through this paper.

Lemma 2.6. If u ∈ E is a critical point of Iλ, then

‖u‖2 � 2α

α − 2
Iλ(u). (2.10)

Proof. Let u ∈ E be a critical point of Iλ. By Lemma 2.2 we have

‖u‖2 = λ

∫

RN

g(u)udx � λα

∫

RN

G(u)dx

which implies that

Iλ(u) = 1

2
‖u‖2 − λ

∫

RN

G(u)dx �
(

1

2
− 1

α

)
‖u‖2,

and (2.10) is proved. �
3. Signed solution via mountain-pass

In order to obtain positive and negative solutions of (Pλ) we consider the following auxiliary functions:

G1(s) =
{

G(s) if s > 0,

0 if s � 0,
and G2(s) =

{
G(s) if s < 0,

0 if s � 0,

and the associated functionals

Ii,λ(u) = 1

2
‖u‖2 − λ

∫

RN

Gi(u)dx for i = 1,2.

From Lemma 2.3, applying the mountain-pass theorem (see [1,10,24,25,31]), there exists a sequence (un
i,λ) ⊂ E such

that

Ii,λ

(
un

i,λ

) → ci,λ and
∥∥I ′

i,λ

(
un

i,λ

)∥∥
E′ → 0,

where ci,λ is the mountain-pass level

ci,λ = inf max Ii,λ

(
h(t)

)

h∈Γi t∈[0,1]
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and

Γi = {
h ∈ C

([0,1],E)
: h(0) = 0, Ii,λ

(
h(1)

)
< 0

}
for i = 1,2. It is straightforward to verify as consequence of Lemma 2.2 that the sequence above is bounded in E and
since the embedding E ↪→ Lr(RN) is compact for 2 � r < 2∗, so that passing to the subsequence if necessary, we can
assume that un

i,λ ⇀ ui,λ weakly in E and un
i,λ → ui,λ in Lr(RN). Observe that

∥∥un
i,λ − ui,λ

∥∥2 = 〈
I ′
i,λ

(
un

i,λ

) − I ′
i,λ(ui,λ), u

n
i,λ − ui,λ

〉 +
∫

RN

(
gi

(
un

i,λ

) − gi(ui,λ)
)(

un
i,λ − ui,λ

)
dx,

where gi(s) = G′
i (s). Since |gi(s)| � C|s|p−1, by Hölder’s inequality we find∫

RN

∣∣(gi

(
un

i,λ

) − gi(ui,λ)
)(

un
i,λ − ui,λ

)∣∣dx � C
(∣∣un

i,λ

∣∣p−1
p

+ |ui,λ|p−1
p

)∣∣un
i,λ − ui,λ

∣∣
p

→ 0 as n → ∞.

Hence〈
I ′
i,λ

(
un

i,λ

) − I ′
i,λ(ui,λ), u

n
i,λ − ui,λ

〉 → 0,

which implies that ‖un
i,λ − ui,λ‖2 → 0. Therefore, Iλ,i satisfies the Palais–Smale condition and ci,λ is a critical value

of Ii,λ for i = 1,2.

Lemma 3.1. Let ui,λ be a critical point of Ii,λ in the level ci,λ for i = 1,2. Then there exists C > 0 such that

‖ui,λ‖ � Cλ−1/(q−2). (3.11)

Proof. For i = 1,2 we have

ci,λ � di,λ = inf
u>0

max
t�0

Ii,λ(tu). (3.12)

We are going to show (3.11) for u1,λ. One can use the same argument to u2,λ. Since I1,λ(u) = Iλ(u) for u > 0, we
deduce from Lemma 2.6 and (3.12) that

‖u1,λ‖2 � C1Iλ(u1,λ) = C1c1,λ � C1d1,λ. (3.13)

We claim that there exists C > 0 such that d1,λ � Cλ−2/(q−2). Indeed, by Lemma 2.5, Jλ has a critical point u∗
λ in the

level bλ satisfying(
1

2
− 1

q

)∥∥u∗
λ

∥∥2 = Jλ

(
u∗

λ

) = bλ � C2λ
−2/(q−2). (3.14)

This implies that λ‖u∗
λ‖q−2 � C3. The same argument employed in the proof of Lemma 2.4 shows that

∣∣u∗
λ

∣∣∞ � C
(
λ
∥∥u∗

λ

∥∥q−2)1/(2∗−p)∥∥u∗
λ

∥∥
� CC

1/(2∗−p)

3

∥∥u∗
λ

∥∥ � C4λ
−1/(q−2) � 2δ,

for λ > 0 sufficiently large. Also notice that by the choice of δ, we have

G1(u) = G(u) � C1|u|q for 0 < u < 2δ,

and hence

d1,λ � inf
0<u�2δ

max
t�0

I1,λ(tu) � inf
0<u�2δ

max
t�0

Jλ(tu) � max
t�0

Jλ

(
tu∗

λ

)
. (3.15)

We may easily check that maxt�0 Jλ(tu
∗
λ) = Jλ(u

∗
λ). From (3.14) and (3.15) we get d1,λ � Cλ

− 2
q−2 . This inequality

and (3.13) complete the proof of (3.11). �
Now, we immediately deduce:
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Proposition 1. The problem (2.3) has one positive solution u1,λ and one negative solution u2,λ. Furthermore, we can
choose λ sufficiently large such that

|ui,λ|∞ � δ for i = 1,2.

Proof. It is a consequence of Lemmas 2.4 and 3.1. �
4. Sign-changing solution

Using results obtained in Liu and Sun [19], the existence of sign-changing solution for the problem (2.3) was
shown by Bartsch, Liu and Weth [4]. We will use recent results of Schechter and Zou [27] to obtain a solution with
variational characterization. To do this, let us recall some basic results which are useful. We start by one of spectral
theory.

Proposition 2. If (V1) and ((V2) or (V3)) hold, then the eigenvalue problem

−�w + V (x)w = μw in R
N,

possesses a sequence of eigenvalues 0 < μ1 < μ2 � · · · � μk → ∞, where each μk has finite multiplicity, the first
eigenvalue μ1 is simple with positive eigenfunction ϕ1 and the eigenfunctions ϕk correspondent to μk (k � 2) are
sign-changing.

Proof. We sketch the argument here. For every f ∈ L2(RN), there exists a unique w ∈ E such that

−�w + V (x)w = f in R
N.

Denote L = −� + V . Then the operator L has an inverse L−1. Moreover, using the fact that the embedding E ↪→
L2(RN) is compact, we conclude that the operator L : L2(RN) → L2(RN) is compact. Then, from spectral theory of
symmetric compact operators on Hilbert space, we obtain the result. �
Remark 4.1. For each integer positive k, we denote by Nk the eigenspace associated to μk and Ek

.= N1 ⊕ N2 ⊕
· · · ⊕ Nk . Since the norms ‖u‖ and |u|2 are equivalent in Ek , there exists a positive constant νk such that

‖u‖2 � νk|u|22 (4.16)

for all u ∈ Ek .

The following result holds.

Lemma 4.2. Let bk,λ = supu∈Ek
Iλ(u) and 2 < p � q < 2∗. For each λ ∈ [1,∞) we have

bk,λ � C∗Ckλ
−2/(q−2), (4.17)

where Ck = ν
q/(q−2)
k + ν

p/(p−2)
k and C∗ depends only on p,q and k.

Proof. For each u ∈ Ek , we define Ω1 = {x ∈ R
N : |u(x)| � 2δ}, Ω2 = {x ∈ R

N : |u(x)| < 2δ}, u1 = u|Ω1 and u2 =
u|Ω2 . By choice of δ > 0, we have

G(u) � F(u) � C1|u|q if |u| < 2δ, (4.18)

G(u) = F∞(u) = C0|u|p if |u| � 2δ. (4.19)

Since Ek has finite dimension, we deduce from (4.18) and (4.19) that∫

RN

G(u2) dx � C1|u2|qq � C∗|u2|q2 ,

∫

RN

G(u1) dx � C0|u1|pp � C∗|u1|p2 .

From these estimates and (4.16), we obtain
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Iλ(u) � νk

2
|u|22 − λC∗|u1|p2 − λC∗|u2|q2

= νk

2
|u1|22 − λC∗|u1|p2 + νk

2
|u2|22 − λC∗|u2|q2

� C∗νp/(p−2)
k λ−2/(p−2) + C∗νq/(q−2)

k λ−2/(q−2).

Since p � q , we deduce

bk,λ � C∗Ckλ
−2/(q−2), (4.20)

where Ck = ν
p/(p−2)
k + ν

q/(q−2)
k and C∗ = C∗(p, q, k). Hence (4.17) is proved. �

In the following we consider the convex cones P + = {u ∈ E: u(x) � 0} and P − = {u ∈ E: u(x) � 0}. For ε > 0,
we define

D+
ε = {

u ∈ E: dist
(
u,P +)

< ε
}
, D−

ε = {
u ∈ E: dist

(
u,P −)

< ε
}
,

and

Dε = D+
ε ∪D−

ε , Sε = E \Dε .

We set K[a, b] = {u ∈ E: I ′
λ(u) = 0, a � Iλ(u) � b}. Notice that the gradient of Iλ at the point u, I ′

λ(u) : E → E

has the form

I ′
λ = IdE − KIλ,

where KIλ : E → E is given by KIλ(u) = (−� + V )−1[λg(u(.))]. In other words KIλ(u) is uniquely determined by
the relation

(
KIλ(u),ϕ

) = λ

∫

RN

g
(
u(x)

)
ϕ dx for all ϕ ∈ E.

Here, we assume the following assumption:

(a1) KIλ(D±
ε ) ⊂ D±

ε/2.

Next, we consider the following class (see [27]):

Φ :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

h ∈ C([0,1] × E,E) such that h(0, .) = IdE; h(t, .) : E → E is a homeomorphism of E

onto itself for all t ∈ [0,1) and h−1 is continuous on [0,1) × E; there exists x0 ∈ E

such that h(1, x) = x0 for each x ∈ E and that h(t, x) → x0 as t → 1 uniformly

on bounded subsets of E

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

.

Definition 4.3. A subset A of E links a subset B of E if A ∩ B = ∅ and, for each h ∈ Φ , there is t ∈ [0,1] such that
h(t,A) ∩ B �= ∅.

Finally, we define

Φ∗ := {
h ∈ Φ: h(t,Dε) ⊂ Dε

}
.

Notice that h(t, x) = (1 − t)x ∈ Φ∗.
We will achieved the existence of a sign-changing solution by using the following linking theorem (see [27, Theo-

rem 2.1]).

Theorem 4.4. Suppose that (a1) holds. Assume that a compact subset A of E links a closed subset B of Sε and

a0 := sup Iλ � b0 := inf
B

Iλ.

A
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If Iλ satisfies the (PS) condition for all

c ∈
[
b0, sup

(t,u)∈[0,1]×A

Iλ

(
(1 − t)u

)]
,

then K[a∗ − ε, a∗ + ε] ∩ (E \ (P − ∪ P +)) �= ∅ for all ε small, where

a∗ := inf
h∈Φ∗ sup

h([0,1]×A)∩Sε

Iλ(u).

In order to apply Theorem 4.4, we fix m > k + 2 and let us define

Bm = (Nk ⊕ Nk+1 ⊕ · · · ⊕ Nm) ∩ Bρ0 ,

where ρ0 is given in Lemma 2.3. Take ρ0 < R and consider the set

A = {
u = v + sw: v ∈ Ek−1, s � 0, w ∈ Nk, ‖w‖ = 1, ‖u‖ = R

} ∪ W,

where W = Ek−1 ∩ BR . Then A and Bm link each other (see [27]). Note still that A is independent of m for m large.
Let P ±

m = P ± ∩ Em be the positive and negative cone in Em. Since all elements in Em change sign, we have
P ±

m ∩ Bm = ∅. This together with the compactness of Bm imply the existence of εm > 0 such that

dist
(
Bm,P ±

m

) = εm > 0.

Now, define

D±
ε (m) = {

u ∈ Em: dist
(
u,P ±

m

)
< ε

}
.

Taking Gm = GEm , we have

G′
m(u) = u − Proj

m
(KGu), u ∈ Em,

where Projm denotes the projection of E onto Em. In order to verify the condition (a1) in Theorem 4.4, we need the
following lemma which can be found in [27, Lemma 3.11], see also [4, Lemma 3.1].

Lemma 4.5. There exists ε0 ∈ (0, εm) such that

Proj
m

KG

(
D±

ε0
(m)

) ⊂ D±
ε0/2(m).

In particular, the condition (a1) is satisfied.

Proof. The proof is a straightforward adaptation of the proof of [27, Lemma 3.11]. �
Remark 4.6. We can see that condition (a1) holds if |g(u)| � d|u|+C(d)|u|p−1 for u ∈ R, where 2d = infx∈RN V (x)

(see [4, Lemma 3.1]).

Proposition 3. The problem (2.3) has a sign-changing solution uλ. Furthermore, we have the following estimate:

|uλ|∞ � δ (4.21)

for λ sufficiently large.

Proof. We adapt the proof of Theorem 3.1 in [27]. For each integer m > k + 1, let

D(m) := D+
ε0

(m) ∪D−
ε0

(m) and Sm := Em \D(m).

By Theorem 4.4, there exists (um) ⊂ Em \ P ±
m such that I ′

λ(um) = 0 and

Iλ(um) ∈
[
b0 − ε, sup Iλ

(
(1 − t)u

) + ε
]

(t,u)∈[0,1]×A
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for all ε small enough. This implies that (um) is a (PS) sequence. Since Iλ satisfies the (PS) condition, using the
notation u±

m := max{±um,0}, we get

∥∥u±
m

∥∥2 = λ

∫

RN

g
(
u±

m

)
u±

m dx.

This together with inequality (2.4) imply∥∥u±
m

∥∥2 � λC
∣∣u±

m

∣∣p
p
.

Since 2 < p < 2∗, by the Sobolev embedding E ↪→ Lp(RN) we get∥∥u±
m

∥∥ � C > 0.

Thus, the limit uλ of a subsequence of (um) is a sign-changing solution of (2.3).
In view of Lemma 2.6, we have(

α − 2

2α

)
‖uλ‖2 � lim inf

(
α − 2

2α

)
‖um‖2 � lim inf Iλ(um).

Also notice that

Iλ(um) � a∗ = inf
h∈Φ∗ sup

h([0,1]×A)∩S
Iλ(uλ) + ε � sup

(t,u)∈[0,1]×A

Iλ

(
(1 − t)uλ

) + ε.

Since A is independent of m for m large (m > k + 1), we deduce from Lemma 4.2 that

sup
(t,u)∈[0,1]×A

Iλ

(
(1 − t)uλ

)
� bk,λ � C∗Ckλ

−2/(q−2).

Hence, we obtain

‖uλ‖2 � Cλ−2/(q−2) + ε,

which together with Lemma 2.4 imply the required result. �
Proof of Theorem 1.1. This proof is a immediate consequence of Propositions 1 and 3. �
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