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Abstract

We establish a priori bounds for positive solutions of semilinear elliptic systems of the form8>>>>><>>>>>:
−∆u = g(x, v) , in Ω

−∆v = f(x, u) , in Ω

u > 0 , v > 0 in Ω

u = v = 0 on ∂Ω

where Ω is a bounded and smooth domain inR2. We obtain results concerning such bounds
when f and g depend exponentially with respect to u and v.
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1 Introduction

In this paper we establish the existence of a priori bounds for positive solutions of
semilinear elliptic systems of the form





−∆u = g(x, v) , in Ω

−∆v = f(x, u) , in Ω

u > 0 , v > 0 in Ω

u = v = 0 on ∂Ω

(1.1)

where Ω is a bounded domain in R2 with smooth boundary ∂Ω, and ∆ is the Laplace
operator. Let λ1 denote the first eigenvalue of (−∆,H1

0 (Ω)). Throughout the paper the
nonlinearities satisfy the following conditions:

(i) f, g : Ω× R→ R+ are continuous.

(ii) lim inf
t→∞

f(x, t)
t

≥ a1 > 0 and lim inf
t→∞

g(x, t)
t

≥ a2 > 0 , with a1 a2 > λ2
1.

(iii) ∂
∂tf(x, t) ≥ 0 and ∂

∂tg(x, t) ≥ 0 in Ωr × R, where, for some r > 0,

Ωr := {x ∈ Ω : dist(x, ∂Ω) ≤ r}. (1.2)

We note that condition (iii) allows the use of the Maximum Principle for cooperative
systems; this is a basic tool to apply the Moving Planes technique (cf. [6], [12]).

To start with, we consider here solutions in the sense of distributions, more precisely,
we assume that u, v, f(x, v), g(x, u) ∈ L1(Ω) and

−
∫

Ω

u∆ϕ dx =
∫

Ω

g(x, v)ϕ dx and −
∫

Ω

v∆ϕ dx =
∫

Ω

f(x, u)ϕ dx, ϕ ∈ C2
0 (Ω),

where C2
0 (Ω) is the class of C2 functions in Ω which vanish on the boundary ∂Ω.

Before stating our main results on a priori bounds, we state a result on the regularity
of the distribution solutions of (1.1). For this, a growth assumption on only one of the
nonlinearities suffices. Making the following hypotheses

(H1) f(x, t) ≤ c ept , for some constants c > 0 and some p > 0

(H ′
1) g(x, t) ≤ c eqt , for some constants c > 0 and some q > 0

we have
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Theorem 1.1 (Regularity of distribution solutions) Assume (H1) (or (H ′
1)). Then

the distribution solutions of system (1.1) are in fact in L∞(Ω).

It follows from Theorem 1.1 that, for any solution (u, v) of system (1.1),∫
Ω

g(x, u) dx < ∞,
∫
Ω

f(x, u) dx < ∞. Our next result states that there is a uniform
bound for those integrals. For that matter, due to the fact that we are considering non-
autonomous problems, we need in the theorems below geometric assumptions concerning
the behavior of f and g near the boundary. So,

(H2) (For the case of a convex domain) There exist r, δ > 0 such that
g(·, t), f(·, t) ∈ C1(Ωr) for all t ≥ 0, and

∇x g(x, t) · θ ≤ 0 and ∇x f(x, t) · θ ≤ 0

for all x ∈ Ωr, t ≥ 0, and unit vectors θ such that |θ − ν(x)| < δ; ν(x) denotes the unit
external normal to ∂Ω in the point x.

With assumption (H2) one can use the Moving Planes technique to get bounds for the
functions u and v near the boundary. On the other hand, if Ω is not convex we use the
Kelvin transform as in [7] and [5] to reduce the problem to a situation as in the convex
case. So we follow [5] and assume

(H3) (For the case of a general domain) There exists r, C > 0 such that
g(·, t), f(·, t) ∈ C1(Ωr) for all t ≥ 0 and

|∇x g(x, t)| ≤ Cg(x, t) and |∇x f(x, t)| ≤ Cf(x, t), for all x ∈ Ωr, t ≥ 0.

Theorem 1.2 (Uniform Estimates) Assume (H1) (or (H ′
1)), and (H2) or (H3) Then

there exists a positive constant C, depending only on f, g and Ω, such that
∫

Ω

g(x, v) dx ≤ C ,

∫

Ω

f(x, u) dx ≤ C,

for all (u, v) solution of (1.1).

Remark 1.1 One example where this theorem applies is when Ω = B(0, 1) and f(x, t) =
a(|x|)ept and g(x, t) = b(|x|)h(t). Here a and b are C1-functions with a′(r), b′(r) ≤ 0 if
r ∈ [1− ε, 1] and h : R→ R+ is any continuous function.

In order to obtain a priori bounds for the solutions of system (1.1) we have to assume
further conditions regarding the growth at infinity of the nonlinearities f and g. For that
matter we introduce the following conditions:

(H4) f(x, t) ≤ c etα

, for some constants c > 0 and α > 0,

(H ′
4) g(x, t) ≤ c etβ

, for some constants c > 0 and β > 0.

For the first result on a priori estimates of solutions of system (1.1), we consider
nonlinearities satisfying (H4) and (H ′

4), with

(H5) α + β < 2.



202 D.G. de Figueiredo, J.M. do Ó, B. Ruf

Remark 1.2 Conditions (H4), (H ′
4) and (H5) will be satisfied if f(x, t) ≤ c eptα′

and
g(x, t) ≤ c eqtβ′

, for any constants p, q > 0, where c > 0 and α′, β′ > 0 with α′+β′ < 2.

Theorem 1.3 Assume (H4), (H ′
4) and (H5). Then there exists a constant C > 0

such that
‖u‖L∞ ≤ C and ‖v‖L∞ ≤ C,

for all eventual solutions (u, v) of system (1.1).

Note that hypothesis (H5) allows that one nonlinearity has a growth faster than the pure
exponential, provided the other nonlinearity “compensates” with a suitable growth lower
than the pure exponential. The proof of this theorem is quite direct, using a Hölder type
inequality in a suitable Orlicz space setting.

The next theorems concern a limiting case of Theorem 1.3, namely the case when both
nonlinearities have at most exponential growth: f(x, t) , g(x, t) ≤ c1e

t; that is, we have
α = β = 1.

Remark 1.3 The limiting cases α 6= β , α + β = 2, remain open.

Our method of proving the two results below requires that one of the nonlinearities
should have a precise exponential growth. Namely, one of the next two assumptions should
hold:

(H6) f(x, t) ≥ c et , for some constant c > 0,

(H ′
6) g(x, t) ≥ c et , for some constant c > 0.

Theorem 1.4 (A priori bounds - convex domain) Assume (H4) and (H ′
4) with α =

β = 1, and either (H6) or (H ′
6). Assume furthermore that Ω is convex and that

(H2) holds. Then there exists a constant C > 0 such that

‖u‖L∞ ≤ C and ‖v‖L∞ ≤ C,

for all eventual solutions (u, v) of system (1.1).

Theorem 1.5 (A priori bounds - general domain) Assume (H4) and (H ′
4) with α =

β = 1, and either (H6) or (H ′
6). Furthermore, assume (H3). Then there exists a

constant C > 0 such that

‖u‖L∞ ≤ C and ‖v‖L∞ ≤ C,

for all eventual solutions (u, v) of system (1.1).

Remark 1.4 If the nonlinearities satisfy both conditions (H1) and (H ′
1) for some constants

p, q > 0, we make a change of the variables z = qv and w = pu and the new equations
satisfy conditions (H4) and (H ′

4) with α = β = 1.
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Remark 1.5 It is well known that in the use of Topological methods (Leray-Schauder
degree theory) for the existence of solutions of elliptic equations or systems, the main
difficulty lies in obtaining a priori bounds for solutions. This is our main concern in the
present paper. With some natural assumptions on the nonlinearities f(x, t) and g(x, t) near
t = 0 one can prove that a certain Leray-Schauder index is not zero. The a priori bound
proves that the Leray-Schauder index in a large ball is zero. Therefore, by excision, one
proves that there exists a non trivial solution.

Remark 1.6 Existence of solutions for systems like (1.1) in dimension two has been
studied before by variational methods under a different set of assumptions on the
nonlinearities f(x, t) and g(x, t) (see [8], [9], [11]). Observe that here we are dealing
with non autonomous problems that, as far as we know, have not been considered before.

For the proofs of Theorems 1.4 and 1.5 we adapt to the case of systems the methods
introduced by Brezis-Merle [4] to treat the scalar case. This will be done in section 5.

2 Regularity of distribution solutions

Next, for easy reference, we state a result due to Brezis-Merle [4] which will be used to
prove Theorem 1.1 above, and also in the proofs of Theorems 1.4 and 1.5.

Proposition 2.1 (Brezis-Merle) Let u be a distribution solution of the linear equation
{ −∆u = h(x) in Ω

u = 0 on ∂Ω ,
(2.1)

where Ω is a bounded domain in R2, and h ∈ L1(Ω). Then

i) for every δ ∈ (0, 4π), we have
∫

Ω

exp[
(4π − δ)|u(x)|

‖h‖L1
]dx ≤ 4π2

δ
(diamΩ)2 .

ii) for every k > 0, eku ∈ L1(Ω) .

Proof of Theorem 1.1. Let (u, v) be a given solution of (1.1). Let us assume condition
(H ′

1). Since −∆v = f(x, u) in Ω, v = 0 on ∂Ω and f(x, u) belongs to L1(Ω), it follows
from Proposition 2.1 that ∫

Ω

ekv dx < ∞, ∀ k > 0 .

Next, using the other equation in (1.1), namely−∆u = g(x, v) in Ω, u = 0 on ∂Ω, together
with the assumption (H ′

1), we conclude that u ∈ W 2,p(Ω) for every p > 1. Therefore,
u ∈ L∞(Ω). Finally, coming back to the equation −∆v = f(x, u), we conclude that also
v ∈ L∞(Ω). Using similar arguments we come to the same conclusions, if (H1) is assumed
instead of (H ′

1).

Remark 2.1 As a consequence of Theorem 1.1 and standard regularity results for elliptic
equations we have that solutions of (1.1) in the distribution sense are, in fact, classical
solutions.
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3 Proof of Theorem 1.2 (uniform estimates)

Let ϕ1 be an eigenfunction associated to the first eigenvalue λ1 of (−∆,H1
0 (Ω)), which is

chosen in such a way that ϕ1 > 0 and
∫
Ω

ϕ2
1 = 1.

Lemma 3.1 For each (u, v) solution of system (1.1) we have
∫

Ω

g(x, v)ϕ1 dx ≤ C ,

∫

Ω

f(x, u)ϕ1 dx ≤ C , (3.1)

where the constant C depends only on f, g and Ω.

Proof. From our basic assumptions (i) and (ii) it follows that, given ε > 0, there is a
constant c > 0 such that

f(x, t) ≥ (a1 − ε) t− c and g(x, t) ≥ (a2 − ε) t− c . (3.2)

Next, multiplying the equations in (1.1) by ϕ1, integrating by parts and using (3.2), we
obtain

∫

Ω

g(x, v)ϕ1 dx = λ1

∫

Ω

uϕ1 dx ≥ (a1 − ε)
∫

Ω

vϕ1 dx− c1

∫

Ω

f(x, u)ϕ1 dx = λ1

∫

Ω

vϕ1 dx ≥ (a2 − ε)
∫

Ω

uϕ1 dx− c1. (3.3)

Thus

λ1

∫

Ω

uϕ1 dx ≥ (a1 − ε)(a2 − ε)
λ1

∫

Ω

uϕ1 dx− c1

which implies ∫

Ω

uϕ1 dx ≤ C,

and therefore, ∫

Ω

g(x, v)ϕ1 dx ≤ C.

The other inequality in (3.1) is obtained in a similar way.

Lemma 3.2 Assume condition (H2) and Ω convex. Then there exist r, δ > 0 such
that

∇u(x) · θ ≤ 0 and ∇v(x) · θ ≤ 0 for all x ∈ Ωr, |θ − ν(x)| < δ,

for each (u, v) solution of (1.1), where Ωr is defined in (1.2); θ and ν are as in
(H2).

Proof. We can assume, without loss of generality, that Ω ⊂ R2
+ := {(x, y) ∈ R2 : x > 0}

and (0, 0) ∈ ∂Ω. Now, we consider Tλ := {(x, y) : x = λ}, the cap Σλ := {(x, y) ∈ Ω :
x < λ} and reflected cap Σ′λ := {(2λ− x, y) : (x, y) ∈ Σλ}. It follows that there exists λ
such that Σλ ∪ Σ′λ ⊂ Ωr for each 0 < λ < λ. In fact this λ depends only on r and not on
the particular point on the boundary.
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For 0 < λ < λ , define in Σλ the auxiliary functions

wλ(x, y) = u(2λ− x, y)− u(x, y),
zλ(x, y) = v(2λ− x, y)− v(x, y).

Using condition (H3) we have

∆wλ = −g((2λ− x, y), v(2λ− x, y)) + g((x, y), v(x, y))
≤ −g((x, y), v(2λ− x, y)) + g((x, y), v(x, y))

Now, using the Mean Value Theorem wee see that

∆wλ ≤ c(x, y)(v(x, y)− v(2λ− x, y)),

where
c(x, y) =

∂g

∂t
((x, y), η(x, y)) ≥ 0

and η(x, y) is a real number between v(x, y) and v(2λ− x, y). Thus

∆wλ + c(x, y)zλ ≤ 0.

Similarly we can prove that
∆zλ + c̃(x, y)wλ ≤ 0,

where
c̃(x, y) =

∂f

∂t
((x, y), ζ(x, y)) ≥ 0

and ζ(x, y) is a real number between u(x, y) and u(2λ− x, y).
For λ sufficiently small and positive we have that Σλ has small measure, and so we can

use the Maximum Principle for cooperative elliptic systems in small domains (see [6] and
[2]) to conclude that

wλ ≥ 0 and zλ ≥ 0 in Σλ.

Using similar arguments as in [6] we can also prove that

wλ ≥ 0 and zλ ≥ 0 in Σλ.

Therefore, there exists ε > 0 such that u and v are increasing in Ωε. Finally, the conclusion
follows in a standard way as in [7].

The next two lemmas are straightforward adaptations to the case of systems of well
known results in the scalar case.

Lemma 3.3 Assume condition (H3). Then the same conclusion of Lemma 3.2 holds.

Proof. The use of Moving Planes as in the previous proof is possible after using a Kelvin
transform about the points on the boundary where the domain is not convex, see [7] and
[5]. Condition (H3) implies that the transformed equations have nonlinearities with right
monotonicity near the boundary, see details in [5].
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Lemma 3.4 Assume the hypotheses of either Lemma 3.2 or Lemma 3.3. Then
there exist ε > 0 and C > 0 which depend only on f, g and Ω such that
‖u‖L∞(Ωε), ‖v‖L∞(Ωε) ≤ C, for each (u, v) solution of (1.1).

Proof. The proof follows by the same arguments as in [7] (see Step 2 in the proof of
Theorem 1.1, page 45 of [7]), using Lemmas 3.2 and 3.3 above.

Now, we complete the proof of Theorem 1.2. Let a := inf{ϕ1(x) : x ∈ Ω\Ωε}. Using
Lemma 3.4 we obtain that f(x, v) is bounded in Ωε. Thus

∫

Ω

f(x, v) dx =
∫

Ωε

f(x, v) dx +
∫

Ω\Ωε

f(x, v) dx

≤ C +
1
a

∫

Ω\Ωε

ϕ1f(x, v) dx

= C +
1
a

∫

Ω

ϕ1f(x, v) dx ≤ C,

where we have used Lemma 3.1 to estimate the last integral. Using a similar argument we
can prove the result for g(x, u).

4 Proof of Theorem 1.3

In this section we rely on an inequality which was introduced in [8] to treat elliptic systems
in dimension two; it is a sort of Young’s inequality.

Proposition 4.1

st ≤
{

et2 − 1 + s(log+s)1/2, t ≥ 0, s ≥ e1/4,

et2 − 1 + 1
2s2, t ≥ 0, 0 ≤ s ≤ e1/4.

First we recall that Theorem 1.1 gives that each (u, v) solution of (1.1) belongs to
(L∞(Ω))2, and then it follows that it belongs to (W 1,2(Ω))2. Using the first equation of
system (1.1) we obtain ∫

Ω

|∇u|2 dx =
∫

Ω

ug(x, v) dx.

Now, by Proposition 4.1, with t = u
‖u‖

√
4π and s = g(x, v), we get

∫

Ω

ug(x, v) dx =
‖u‖√
4π

∫

Ω

u

‖u‖
√

4πg(x, v) dx

≤ ‖u‖√
4π

{ ∫

Ω

e4π
(

u
‖u‖

)2

dx− |Ω|+
∫

Ω

g(x, v)(log+ g(x, v))1/2 dx +

+
1
2

∫

{g(x,v(x))≤e1/4}
g(x, v)2 dx

}

≤ ‖u‖√
4π

{
C +

∫

Ω

g(x, v)(log+ g(x, v))1/2 dx

}
,
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where in the last estimate we have used the Trudinger-Moser inequality (see [1] and [10]).
So we have proved that

‖u‖ ≤ 1√
4π

{
C +

∫

Ω

g(x, v)(log+ g(x, v))1/2 dx
}

. (4.1)

Since g(x, t) ≤ c edvβ

, we have log+ g(x, v) ≤ log c + dvβ and (log+ g(x, v))1/2 ≤
c + d1/2vβ/2. So,

∫
Ω

g(x, v)(log+ g(x, v))1/2 dx ≤ ∫
Ω

c g(x, v) dx + d1/2
∫
Ω

g(x, v)vβ/2 dx

≤ C
(
1 +

∫
Ω

χ[v≥1]g(x, v)vβ/2 dx
)
,

(4.2)

where we have used Theorem 1.2. It remains to estimate
∫
Ω

χ[v≥1]g(x, v)vβ/2 dx. For that
matter we use Hölder’s inequality in Orlicz spaces (see [1]) for the Young pair:

ϕ(t) := etγ

and ψ(s) := s
(
(log s)1/γ − 1

)
, (4.3)

where γ > 0 will be chosen later. So we can proceed as follows:
∫

Ω

χ[v≥1]g(x, v) vβ/2 dx =
∫

Ω

χ[v≥1]
g(x, v)

(v + 1)η
vβ/2(v + 1)η dx

≤ ‖χ[v≥1]v
β/2(v + 1)η‖Lϕ‖ g(x, v)

(v + 1)η
‖Lψ ,

where η > 0 will also be chosen later. Recall that ‖ · ‖Lϕ stands for the gauge norm in
the Orlicz space Lϕ, which is defined as follows

‖u‖Lϕ = inf
{

k > 0 :
∫

Ω

ϕ
(u

k

) ≤ 1
}

.

Next we estimate the two gauge norms:

‖χ[v≥1]v
β/2(v + 1)η‖Lϕ ≤ c‖vβ/2+η‖Lϕ = inf

{
k > 0 :

∫

Ω

e( vη+β/2
k )γ ≤ 1

}
.

Now, viewing to use Trudinger-Moser estimate, γ and η should satisfy γ(η + β/2) = 2.
Then, if we take k = ‖v‖2/γ , we have

∫
Ω

e
v2
kγ ≤ const, and this implies

‖χ[v≥1]v
β/2(v + 1)η‖Lϕ ≤ c‖v‖2/γ . (4.4)

Now we estimate the other gauge norm:

‖ g(x, v)
(v + 1)η

‖Lψ = inf
{

k :
∫

Ω

g(x, v)
k(v + 1)η

[(
log+ g(x, v)

k(v + 1)η

)1/γ

− 1
]

dx ≤ 1
}

(4.5)

Notice that
g(x, v)

(v + 1)η
≤ Cedvβ
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which implies that (
log+ g(x, v)

k(v + 1)η

)1/γ

≤ C + d1/γvβ/γ .

Continuing the estimate of the integral in (4.5) we obtain

g(x, v)
k(v + 1)η

[(
log+ g(x, v)

k(v + 1)η

)1/γ]
≤ Cg(x, v)

k(v + 1)η
+

g(x, v)
k(v + 1)η

d1/γvβ/γ ≤ Cg(x, v)
k

,

if we choose η = β/γ. Thus,

‖ g(x, v)
(v + 1)η

‖Lψ ≤ C

∫

Ω

g(x, v) dx ≤ C. (4.6)

Finally, using (4.1), (4.4) and (4.6) we have

‖u‖ ≤ C
1√
4π

{
C + ‖v‖2/γ

}
(4.7)

where γ and η have to be chosen in order to satisfy the two conditions above, namely
γ(η + β/2) = 2 and η = β/γ. So γ = 2(2− β)/β.

Using an argument similar to the one we have just completed, we can prove

‖v‖ ≤ C
1√
4π

{
C + ‖u‖2/γ′} (4.8)

where γ′ = 2(2− α)/α.
It follows then from (4.7) and (4.8) that

‖u‖ ≤ C(C + ‖u‖ 4
γγ′ ) .

So, in order to conclude the proof of Theorem 1.3, we observe that the condition α+β < 2
implies that 4/(γγ′) < 1.

5 Proofs of Theorems 1.4 and 1.5

Once the uniform estimates in Theorem 1.2 are established, the proofs of Theorems 1.4 and
1.5 are the same. So from now on we assume conditions (H4) and (H ′

4) with α = β = 1.
Assume that ((un, vn)) is a sequence of solutions of (1.1). Theorem 1.2 says that

the sequences (f(x, vn)) and (g(x, un)) are bounded in L1(Ω). So it follows, passing to
subsequences if necessary, (see [3]) that there are measures µ and ν such that

f(x, un) → µ and g(x, vn) → ν . (5.1)

Since f and g are positive functions it follows that µ and ν are nonnegative measures.
We also observe that, as a consequence of Theorem 1.2, the solutions ((un, vn)) of (1.1)
are bounded in L1(Ω):

‖un‖L1 , ‖vn‖L1 ≤ C, ∀n. (5.2)
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Definition 5.1 We say that x0 ∈ Ω is a regular point of the measure µ if there is a
function ψ ∈ Cc(Ω), 0 ≤ ψ ≤ 1, with ψ ≡ 1 in some neighborhood of x0 and such that

∫
ψ dµ < 4π.

We denote by Σµ the set of non-regular points in Ω for the measure µ.

Remark 5.1 For a bounded non-negative measure µ, Σµ is a finite set. Indeed, if x0 ∈ Σµ,
we have that ∫

ψdµ ≥ 4π,

for each function ψ ∈ Cc(Ω), 0 ≤ ψ ≤ 1, with ψ ≡ 1 in some neighborhood of x0. Thus,
µ({x0}) ≥ 4π. Finally, since

∫
dµ ≤ C, it follows that Σµ is a finite set.

Let Su be the blow-up set for the sequence (un), that is

Su := {x ∈ Ω : ∃ (xn) ⊂ Ω such that xn → x and un(xn) → +∞}.

The assertions of Theorems 1.4 and 1.5 will be proved if we show that Su = Sv = ∅.
This will be achieved in the next lemmas.

Lemma 5.1 Assume that x0 is a regular point for the measure µ (or for the measure
ν). Then there exist constants ρ > 0 and C, independent of n, such that

‖un‖L∞(Bρ(x0)) ≤ C , ‖vn‖L∞(Bρ(x0)) ≤ C .

Proof. Using the fact that x0 is a regular point of the measure µ we have a function
ψ ∈ Cc(Ω), 0 ≤ ψ ≤ 1, with ψ ≡ 1 in some neighborhood Vx0 of x0, such that∫

ψdµ < 4π. Thus,
∫

Vx0
dµ < 4π, which implies that there exist R > 0, δ > 0 and n0

such that for all n ≥ n0 ∫

BR(x0)

f(x, un) dx ≤ 4π − δ . (5.3)

Using this estimate, we first work with the second equation in (1.1). Let us write
vn := v1,n + v2,n, where

−∆v1,n = f(x, un), in BR(x0) and v1,n = 0 for |x− x0| = R .

Notice that −∆v2,n = 0 in BR(x0).
Using Proposition 2.1 and (5.3), we obtain

c ≥
∫

BR

e
(4π− δ

2 )
v1,nR |f| ≥

∫

BR

e(4π− δ
2 )

v1,n
4π−δ =

∫

BR

ep v1,n , (5.4)

where p > 1 is a constant depending only on δ. Using the fact that t ≤ et we get

‖v1,n‖Lp(BR(x0)) ≤ C . (5.5)
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Since the function v2,n is harmonic in BR(x0), it follows from the Mean Value Theorem
for harmonic functions that

‖v2,n‖L∞(BR/2) ≤ C‖v2,n‖L1(BR) .

On the other hand, using (5.2) and (5.5) we obtain

‖v2,n‖L1(BR) ≤ ‖vn‖L1(BR) + ‖v1,n‖L1(BR) ≤ C ,

and so

‖v2,n‖L∞(BR/2) ≤ C . (5.6)

Let us now use assumption (H ′
4) with β = 1. Then g(x, vn) ≤ c ev1,n+v2,n =

c ev1,nev2,n . So it follows from (5.4) and (5.6) that

‖g(x, vn)‖Lp(BR/2(x0)) ≤ c ‖evn‖Lp(BR/2(x0)) ≤ C , for some p > 1 . (5.7)

In order to prove that ‖vn‖L∞(Bρ(x0)) ≤ C, for some ρ < R/2, it is now enough to prove
a similar bound as (5.6) for v1,n, namely

‖v1,n‖L∞(Bρ(x0)) ≤ C . (5.8)

For that matter, we use the first equation in (1.1). Let us write un = u1,n + u2,n where

−∆u1,n = g(x, vn), in BR/2(x0) and u1,n = 0 for |x− x0| = R/2 .

Observe that in view of (5.7), the assumption on g, and by elliptic regularity we have

‖u1,n‖L∞(BR/2(x0)) ≤ C . (5.9)

Notice that −∆u2,n = 0 in BR/2(x0). Thus u2,n is harmonic in BR/2(x0), and it follows
from the Mean Value Theorem for harmonic functions that

‖u2,n‖L∞(BR/4) ≤ ‖u2,n‖L1(BR/2) ≤ ‖un‖L1(BR/2) + ‖u1,n‖L1(BR/2) ≤ C . (5.10)

From (5.9) and (5.10) we have

‖un‖L∞(BR/4) ≤ C. (5.11)

Now we go back to the second equation in (1.1). We write vn := ṽ1,n + ṽ2,n, where

−∆ṽ1,n = f(x, un), in BR/4(x0) and ṽ1,n = 0 for |x− x0| = R/4 .

Using (5.11) and elliptic regularity we have

‖ṽ1,n‖L∞(BR/4) ≤ C . (5.12)

Notice that −∆ṽ2,n = 0 in BR/4(x0). As before, from the Mean Value Theorem for
harmonic functions we have

‖ṽ2,n‖L∞(BR/8) ≤ C . (5.13)

From (5.12) and (5.13) we have

‖vn‖L∞(BR/8) ≤ C ,

which together with (5.11) proves Lemma 5.1, taking ρ = R/8.
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Lemma 5.2 Su ⊂ Σµ and Sv ⊂ Σν .

Proof. This follows directly from Lemma 5.1 and the definition of the sets Σµ, Su, Sv and
Σν .

Lemma 5.3 Σµ ⊂ Sv and Σν ⊂ Su.

Proof. Let x0 ∈ Σµ. We claim that for each R > 0 we have

lim
n→+∞

‖un‖L∞(BR(x0)) = +∞. (5.14)

Suppose by contradiction that there exists R0 > 0 and a subsequence, which we denote
also by (un), such that

‖un‖L∞(BR0 (x0)) ≤ C.

So,
‖eun‖L∞(BR0 (x0)) ≤ C.

Now using the hypothesis f(x, u) ≤ ceu it follows that

‖f(x, un)‖L∞(BR0 (x0)) ≤ C,

which implies that for R < R0 we have
∫

BR(x0)

f(x, un) ≤ CR2.

Thus, there exists R1 > 0, such that
∫

BR1 (x0)

f(x, un) < 4π.

This implies that x0 is a regular point of µ, which is a contradiction.
Now we observe that, using Remark 5.1, there exists R > 0 such that x0 is the only

non-regular point in BR(x0).
Next, we use (5.14) to prove that x0 ∈ Sv . Indeed, from (5.14) there exists (xn) ⊂

BR(x0) such that xn → x̃ and v(xn) → +∞. So, one needs to prove x̃ = x0. Indeed if
this were not the case, then x̃ would be a regular point, which is not possible, since un is
bounded in a neighborhood of a regular point.

With similar arguments as in the proof we just completed, we can prove that Σν ⊂ Su.

As a consequence of Lemmas 5.2 and 5.3 we conclude that those four sets coincide:

Su = Σµ = Sv = Σν .

Finally, we prove that this set is indeed empty, and this completes the proofs of the
Theorems 1.4 and 1.5.

Lemma 5.4 Su = ∅ .
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Proof. Suppose, by contradiction, that there exists x0 ∈ Su. Since x0 is isolated, we can
take R > 0 such that BR(x0) ∩ (Su \ {x0}) = ∅.

Next, we consider the Dirichlet problem in BR(x0),

−∆zn = f(x, un), in BR(x0) and zn = 0 when |x− x0| = R.

We know that the function un satisfies

−∆vn = f(x, un), in BR(x0) and un ≥ 0 when |x− x0| = R.

Thus, by the Maximum Principle we have

0 ≤ zn ≤ vn in BR(x0)

Taking the limit we have that zn → z, where z is a solution of the problem

−∆z = µ, in BR(x0) and z = 0 when |x− x0| = R.

On the other hand the problem

−∆w = 4πδ0 in BR(x0) and w = 0 when |x− x0| = R.

has the solution
w(x) = 2 log

R

|x− x0| .

Since x0 is not a regular point it follows that µ ≥ 4πδ0. So

z(x) ≥ 2 log |x− x0|−1 + o(1) , x → x0

Now with the hypothesis g(x, t) ≥ Cet, we have

lim
n→∞

∫

BR(x0)

g(x, vn) ≥ lim
n→∞

∫

BR(x0)

g(x, zn)

≥
∫

BR(x0)

g(x, z)

≥ c

∫

BR(x0)

ez

≥ c

∫

BR(x0)

ew = ∞ ,

which is impossible.
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