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1. Introduction

We establish existence, non-existence, and multiplicity of positive solutions for the
second-order ordinary differential equation

−u′′ = λg(t, u(t), a, b) in (0, 1) ,
u(0) = u(1) = 0,

(Pa,b,λ)

where a, b and λ are nonnegative parameters, and g∈C([0, 1]× [0, +∞)3, [0, +∞))
is a nondecreasing function in the last three variables.

Our first result treats the case where λ = 1 and the function g has a local
superlinear growth at infinity. The behavior at zero of the function g may change
according to the parameters a, b considered. (See assumptions (H1) and (H2)
below.) We show that there exists a continuous curve Γ which splits the positive
quadrant of the (a, b)−plane into two disjoint sets, say S and R , so that (Pa,b,1)
has at least two positive solutions in S ; at least one positive solution on the
boundary of S ; and no positive solutions in R . (See Theorem 1.1 below.)

Our second result treats the case where the function g has sublinear growth at
infinity. Again, the behavior at zero of the function g may change according to the
parameters a, b considered. We show that (Pa,b,λ) has at least one positive solution,
for all a, b, λ > 0 . Further, we show that there exists ρ > 0 such that (Pa,b,λ) has
at least three positive solutions, for all 0 < |(a, b)| < ρ and λ sufficiently large.
(See Theorem 1.2 below.)

We subsequently give applications of our main results to semilinear elliptic
equations in annular domains.

The approach taken to prove our main results is based on a well known
fixed point theorem of cone expansion and compression type, the lower and upper
solution method and some topological degree arguments.

We will assume the following six basic hypotheses:

(H0) g ∈ C([0, 1]× [0, +∞)3, [0, +∞)) is a nondecreasing function in the last
three variables. In other words,

g(t, u1, a1, b2) ≤ g(t, u2, a2, b2)

whenever (u1, a1, b1) ≤ (u2, a2, b2) . The above inequality is understood inside
every component. Furthermore, there exist constants 0 < δ0 < ε0 < 1 such that,
for all t ∈ [δ0, ε0] , we have g(t, 0, a, b) > 0 whenever a + b > 0 .

(H1) There exist constants 0 < δ1 < ε1 < 1 such that, for all (a, b) ∈
[0, +∞)2 \ {(0, 0)} , we have

lim
u→0

g(t, u, a, b)
u

= +∞ uniformly in t ∈ [δ1, ε1] .

(H2) lim
|(u,a,b)|→0

g(t, u, a, b)
|(u, a, b)| = 0 uniformly in t ∈ [0, 1] . Here we use the

notation |(z1, z2, z3)| = (z2
1 + z2

2 + z2
3)1/2 .



Elliptic Equations in Annular Domains 235

(H3) There exist constants 0 < δ2 < ε2 < 1 such that

lim
u→+∞

g(t, u, 0, 0)
u

= +∞ uniformly in t ∈ [δ2, ε2] .

(H4) There exist constants 0 < δ3 < ε3 < 1 such that

lim
|(a,b)|→+∞

g(t, 0, a, b) = +∞ uniformly in t ∈ [δ3, ε3] .

(H5) For all (a, b) ∈ [0, +∞)2, we have

lim
u→+∞

g(t, u, a, b)
u

= 0 uniformly in t ∈ [0, 1] .

(H6) There exist constants R > 0 and 0 < δ4 < ε4 < 1 such that

0 < g(t, u, 0, 0) , for all 0 < u < R and t ∈ [δ4, ε4] .

Our main results are the following.

Theorem 1.1 (Superlinear case at +∞). Suppose that λ = 1 and that g(t, u, a, b)
satisfies assumptions (H0) through (H4). Then there exist a > 0 and a non-
increasing continuous function Γ : [0, a] → [0, +∞) so that, for all a ∈ [0, a] ,
we have:

(i) (Pa,b,1) has at least one positive solution if 0 ≤ b ≤ Γ(a) .
(ii) (Pa,b,1) has no solution if b > Γ(a) .
(iii) (Pa,b,1) has a second positive solution if 0 < b < Γ(a) .

Theorem 1.2 (Sublinear case at +∞). Suppose that g(t, u, a, b) satisfies assump-
tions (H0) through (H2), as well as assumptions (H5) and (H6) . Then:

(i) (Pa,b,λ) has at least one positive solution for all a, b, λ > 0 .
(ii) There exists a positive constant ρ sufficiently small such that, for all 0 <

|(a, b)| < ρ , (Pa,b,λ) has at least three positive solutions for λ sufficiently
large.

Remark 1.3. We would like to call attention to the local character of assumptions
(H1) , (H3) , (H4) , and (H6) on the nonlinearity g in the variable t. More precisely,
in this paper some sort of sublinearity and some sort of superlinearity is required
to hold uniformly in t only on open sub-intervals of (0, 1) which may be small and
possibly disjoints.

Our main results may be applied to several classes of elliptic problems. For
example, we may apply our results to the semilinear elliptic equation

−∆u = λ f̂(|x|, u) in r1 < |x| < r2 ,
u(x) = a on |x| = r1 ,
u(x) = b on |x| = r2 ,

(Qa,b,λ)

where 0 < r1 < r2 and N ≥ 3 . For instance, in the case f̂(|x|, u) = c(|x|)f(u) ,
where c : [r1, r2] → [0, +∞) is a nonnegative, non-trivial continuous function and
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the nonlinearity f is a superlinear continuous function both at zero and infinity,
we may apply Theorem 1.1. Note that a simpler model is given by f(u) = up,
with p > 1. The case f(u) = u(N+2)/(N−2), c ≡ 1 , and a = 0 was studied by C.
Bandle and L. A. Peletier [1]. This result was subsequently improved by M. G. Lee
and S. S. Lin [8]. In fact, using Shooting Methods, the results of [1] were extended
by Lee and Lin to nonlinearities f that are convex and superlinear at both zero
and infinity. Using degree arguments and the lower and upper solution method, D.
D. Hai extends and complements some of the results of [1, 8] to locally Lipschitz
continuous nonlinearities. (See [5, Theorem 3.7].)

Our multiplicity result is an improvement because (Pa,b,λ) is not necessarily
autonomous, and we do not impose either local Lipschitz continuity assumptions
or convexity on the nonlinearity f . In addition, by Theorem 1.2 , we obtain the
existence of three positive solutions of (Qa,b,λ) , a type of result not yet found
in the literature. As an application of Theorem 1.2, a simple model is given by
f(u) = up/(1 + uq) , with max{1, q} < p < q + 1 .

The paper is organized as follows. Section 2 contains preliminary results.
Sections 3, 4 are devoted to proving Theorems 1.1, 1.2, respectively. Finally, in
Section 5 we give more examples and remarks.

Notation. Here is a brief summary of the notation we make use of.
We denote the closed ball of radius R centered at the point p ∈ X by B[p, R] =
{x ∈ X : |x| ≤ R} , and denote the open ball with radius R centered at the point
p ∈ X by B(p, R) . The mapping degree for the equation F (x) = y, x ∈ A , is
denoted by deg(F, A, y) .

2. Preliminary results

In the next section using the lower and upper solution method and fixed point
techniques we will prove Theorem 1.1. For this purpose we observe that if u is a
solution of (Pa,b,λ), then for all t ∈ [0, 1],

u(t) = (1 − t)λ
∫ 1

0

τg(τ, u(τ), a, b) dτ + λ

∫ 1

t

(t − τ)g(τ, u(τ), a, b) dτ,

or, equivalently,

u(t) = λ

∫ 1

0

K(t, τ)g(τ, u(τ), a, b) dτ

where

K(t, τ) =
{

(1 − t)τ, τ < t,
(1 − τ)t, τ ≥ t.

Thus, solutions of (Pa,b,λ) correspond to the fixed points of the operator

Tu(t) = λ

∫ 1

0

K(t, τ)g(τ, u(τ), a, b) dτ (2.1)
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defined in the Banach space X = C([0, 1], R) endowed with the usual norm
‖u‖∞ := supt∈[0,1] |u(t)|.

The following fixed point theorem in cones is due to Krasnoselskii (see [2, 3,
4, 7]).

Lemma 2.1. Let X be a Banach space with norm | · | , and let C ⊂ X be a cone
in X. For R > 0, define CR = C ∩ B[0, R]. Assume that F : CR → C is a
completely continuous map and that there exists 0 < r < R such that

|Fx| < |x|, x ∈ ∂Cr and |Fx| > |x|, x ∈ ∂CR, or
|Fx| > |x|, x ∈ ∂Cr and |Fx| < |x|, x ∈ ∂CR,

where ∂CR = {x ∈ C : |x| = R}. Then F has a fixed point u ∈ C with r < |u| < R.

Let C be the cone defined by

C = {u ∈ C[0, 1] : u is concave and u(0) = u(1) = 0}.
Using the concavity of the function u ∈ C it is not difficult to obtain the following
result.

Lemma 2.2. For each u ∈ C and α, β ∈ (0, 1) with α < β, we have

inf
t∈[α,β]

u(t) ≥ α(1 − β)‖u‖∞.

Remark 2.3. In this work we mainly use fixed points in Cones and Topological
Degree. In this context Lemma 2.2 is crucial in order to obtain estimates of ex-
pansion/compression type as well as when we want to establish a priori bounds.

Lemma 2.4. T : X → X is completely continuous and T (C) ⊂ C.

Proof. The proof of this lemma is standard and we include here only the main
ideas for completeness. The complete continuity of T follows from The Arzela-
Ascoli theorem. It is easy to see that Tu is twice differentiable on (0, 1) with the
second derivative negative. This implies that T (C) ⊂ C. �

3. Proof of Theorem 1.1 (Superlinear case at +∞)

In this section we combine the fixed point theorem, lower and upper solution
method and degree arguments to prove Theorem 1.1. We recall that through this
section λ = 1.

3.1. The first positive solution for Problem (Pa,b,1)
Lemma 3.1. If g(t, u, a, b) satisfies (H0), (H1) and (H2), then there exist positive
parameters a0 and b0 such that (Pa0,b0,1) has at least one positive solution.
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Proof. Let u ∈ C with ||u||∞ = R > 0. In view of assumption (H0), for all t ∈ [0, 1]
we have

Tu(t) =
∫ 1

0

K(t, τ)g(τ, u(τ), a, b)dτ ≤ max
(t,τ)∈[0,1]2

K(t, τ) max
τ∈[0,1]

g(τ, R, a, b).

Hence, using condition (H2), we can take a0, b0, R > 0 sufficiently small such that

||Tu||∞ < ||u||∞ if ||u||∞ = R. (3.2)

Next, using assumption (H1), given M > 0 there exist r1 ∈ (0, R) such that,

g(t, u, a0, b0) ≥ Mu, for all (τ, u) ∈ [δ1, ε1] × [0, r1]. (3.3)

From Lemma 2.2, for all u ∈ C we have

u(t) ≥ (1 − ε1)δ1 ||u||∞, for all t ∈ [δ1, ε1]. (3.4)

This estimate in combination with (3.3), and taking M sufficiently large we have

||Tu||∞ > ||u||∞ if ||u||∞ = r1. (3.5)

Therefore, in view of estimates (3.2) and (3.5), we can apply Lemma 2.1 to get a
fixed point u ∈ C with r1 < ||u|| < R. Finally, using the maximum principle we
obtain that u is positive. �

The following lemma corresponds to a nonexistence result.

Lemma 3.2. If g(t, u, a, b) satisfies (H3) and (H4), then there exists c0 > 0 such
that for all (a, b) ∈ [0, +∞)2 with |(a, b)| > c0, (Pa,b,1) has no positive solutions.

Proof. Assume by contradiction that there exists a sequence (an, bn) with
|(an, bn)| → +∞ such that for each n (Pan,bn,1) possesses a positive solution
(un) ∈ C. By assumption (H4), given M > 0, there exists c0 > 0 such that for all
(a, b) ∈ [0, +∞)2 with |(a, b)| ≥ c0, we have

g(t, u, a, b) ≥ M, for all t ∈ [δ3, ε3] and u ≥ 0. (3.6)

Thus,

un(t) =
∫ 1

0

K(t, τ)g(τ, un(τ), an, bn) dτ

≥
∫ ε3

δ3

K(t, τ)g(τ, un(τ), an, bn) dτ,

which implies that, for n sufficiently large,

un(t) ≥ M

∫ ε3

δ3

K(t, τ) dτ.

Hence

||un||∞ ≥ M max
t∈[0,1]

∫ ε3

δ3

K(t, τ) dτ.

Since in (3.6) we may choose an arbitrary constant M , we have that (un) is an
unbounded sequence in X .
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On the other hand, by using assumption (H3), we have that given M > 0
there exits R > 0 such that for all t ∈ [δ2, ε2] and a, b ≥ 0,

g(t, u, a, b) ≥ Mu, for all u ≥ R. (3.7)

Using Lemma 2.2, for n sufficiently large, we get

un(t) ≥ M(1 − ε2)δ2||un||∞
∫ ε2

δ2

K(t, τ) dτ.

Hence

1 ≥ M(1 − ε2)δ2 max
t∈[0,1]

∫ ε2

δ2

K(t, τ) dτ,

which is a contradiction with the fact that M can be chosen arbitrarily large. The
proof of Lemma 3.2 is now complete. �

Remark 3.3. As an immediate consequence of Lemma 3.2, we have a priori estimate
for positive solutions of (Pa,b,1), more precisely, there exists k0 > 0 independent
of (a, b) such that ‖u‖∞ ≤ k0, for all u ∈ X positive solutions of (Pa,b,1).

Next, using the lower and upper solution method we may establish the fol-
lowing result.

Lemma 3.4. If g(t, u, a, b) satisfies (H0) and (Pa,b,1) has a positive solution, then
for all (0, 0) ≤ (c, d) ≤ (a, b), (Pc,d,1) has a positive solution provided that c+d > 0.

Proof. Since the function g(t, u, a, b) is nondecreasing in the last two variables we
have that the solution u of (Pa,b,1) is a upper-solution of (Pc,d,1), while the null
function is a lower solution for this problem. Therefore, using the classical lower
and upper solution method we have that (Pc,d) has a positive solution. �

Let us define

a := sup{a > 0 : (Pa,b,1) has a positive solution for some b > 0}.
From Lemma 3.2 it follows immediately that 0 < a < +∞. It is easy to see,
using the lower and upper solution method that for all a ∈ (0, a) there exists
b > 0 such that (Pa,b,1) has a positive solution. Thus we may define the function
Γ : [0, a] → [0, +∞) given by

Γ(a) := sup{b > 0 : (Pa,b,1) has a positive solution}.
As a consequence of Lemma 3.4, we obtain that Γ is a continuous and nonincreasing
function. Therefore, it is easy to see by the definition of the function Γ that (Pa,b,1)
has at least one positive solution if 0 ≤ b ≤ Γ(a) and it has no positive solutions
when b > Γ(a).
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3.2. The second positive solution for Problem (Pa,b,1)
Now, we are working to prove the existence of a second positive solution of (Pa,b,1)
when 0 < b < Γ(a). In this case, according to conclusions above we have positive
solutions u1 and u of (Pa,b,1) and (Pa,Γ(a),1) respectively. Using a combination of
maximum principle and the monotonicity of the function g(t, u, a, b) in the second
variable we may suppose that

0 < u1 < u, 0 < u′
1(0) < u′(0) and u′

1(1) < u′(1) < 0.

Now we consider the Banach space X1 given by

X1 := {u ∈ C1[0, 1] : u(0) = u(1) = 0},
endowed with the norm ||u||1 := ||u||∞ + ||u′||∞. Moreover, we consider the fol-
lowing open subset of X1 given by

A := {u∈X1 : 0 < u < u, 0 < u′(0) < u′(0), u′(1) < u′(1) < 0 and ||u||1 < R1},
where R1 is chosen such that ||u1||1 < R1.

Let us consider the operator S(a,b) : X1 → X1 given by

S(a,b)u(t) =
∫ 1

0

K(t, τ)g(τ, u(τ), a, b) dτ.

We notice that if there exists a fixed point of S(a,b) on ∂A, then we have a second
positive solution of (Pa,b,1), otherwise we will obtain the existence of our second
positive solution as a consequence of the following result.

Lemma 3.5. Suppose that S(a,b) has no fixed point on ∂A and assume that 0 < b <
Γ(a). By using the notation above, we have:

(i) deg(Id − S(a,b),A, 0) = 1
(ii) There exists R > R1 such that deg(Id − S(a,b), BX1(0, R), 0) = 0 .

Proof. Let us define

g(t, v, a, b) :=




g(t, u(t), a, b) if u(t) < v,
g(t, v, a, b) if 0 ≤ v ≤ u(t),
0 if v < 0,

and S(a,b) : X1 → X1 given by

(S(a,b)u)(t) =
∫ 1

0

K(t, τ)g(τ, u(τ), a, b) dτ.

It is easy to see that this operator S(a,b) satisfies the following properties:

(a) S(a,b) is a completely continuous operator;
(b) if u is a fixed point of S(a,b), then u is a fixed point of S(a,b) with 0 ≤ u ≤ u;
(c) If u = λS(a,b)u with 0 ≤ λ ≤ 1 then ||u||1 ≤ C3, where C3 does not depend

on λ and u ∈ X1.
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Using the a priori estimate property established in assertion (c), we have that
there exists R2 > R1 such that

deg(Id − S(a,b), BX1(0, R2), 0) = 1. (3.8)

Now by the Maximum Principle, the operator S(a,b) has no fixed point in B(0, R2)\
A. By hypothesis S(a,b) has no a fixed point on ∂A, thus we have that the topologi-
cal degree of Leray-Schauder is defined for the equation (Id−S(a,b))(x) = 0, x ∈ A.
Then by using (3.8) and the excision property of mapping degree we have

deg(Id − S(a,b),A, 0) = 1.

Since S(a,b)(u) = S(a,b)(u), u ∈ ∂A the part (i) of Lemma 3.5 is proved.
Next, using (3.4) and assumption (H3) (see also (3.7)) we obtain an a priori

estimate R which can be taken bigger than R1 for solutions of the equation

u = S(a,b)u, u ∈ X1, (3.9)

which does not depend on the parameters a and b. Let (a, b) such that |(a, b)| is
sufficiently large such that (Pa,b,1) has no positive solutions (see Lemma 3.2). Thus

deg(Id − S(a,b), B(0, R), 0) = 0.

Hence, by the homotopy invariance property of the mapping degree we have

deg(Id − S(a,b), B(0, R), 0) = 0.

The proof of Lemma 3.5 is now complete. �

Finally, the Lemma 3.5 and the excision property of the topological degree
imply

deg(Id − S(a,b), B(0, R) \ A, 0) = −1,

hence we have a second solution of (Pa,b,1). The proof of Theorem 1.1 is complete.

4. Proof of Theorem 1.2

In this section we apply Lemma 2.1 to get three solutions of (Pa,b,λ) when g(t, u, a, b)
is sublinear at infinity.

Lemma 4.1. Assume that hypothesis (H1) holds, then given (a, b) ∈ [0, +∞)2 \
{(0, 0)} there exists R1 > 0 small enough such that for all u ∈ ∂CR1 ,

‖Tu‖∞ > ‖u‖∞.

Proof. By using hypothesis (H1) we have that for each M > 0, there exists R1 > 0
such that for all t ∈ [δ1, ε1]

g(t, u, a, b) ≥ Mu, for each u ∈ [0, R1].
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Therefore, for all u ∈ CR1 ,

‖Tu‖∞ ≥
∫ 1

0

K(1/2, τ)g(τ, u(τ), a, b) dτ

≥ M

∫ ε1

δ1

K(1/2, τ)u(τ) dτ

≥ δ1(1 − ε1)M‖u‖∞
∫ β1

α1

K(1/2, τ) dτ.

Finally, taking M > 0 sufficiently large we conclude the proof of Lemma 4.1. �

Lemma 4.2. Assume condition (H5), then given (a, b) ∈ [0, +∞)2 and R1 > 0
there exists R2 > R1 such that for all u ∈ ∂CR2 ,

‖Tu‖∞ < ‖u‖∞.

Proof. Let (a, b) ∈ [0, +∞)2. From assumption (H5), given ε > 0, there exists
R2 > R1 such that for all u ≥ R2,

g(t, u, a, b) ≤ εu.

Thus

(Tu)(t) =
∫ 1

0

K(t, τ)g(τ, u(τ), a, b) dτ

≤
∫ 1

0

K(t, τ)g(τ, ‖u‖∞, a, b) dτ

≤ ε‖u‖∞
∫ 1

0

K(t, τ) dτ,

which, taking ε > 0 sufficiently small, proves the Lemma 4.2. �

In view of Lemmas 4.1 and 4.2, as a direct consequence of Lemma 2.1 we
have the proof of the first part of Theorem 1.2.

On the other hand, by using (H2) we have that there exist positive constants
small enough ρ, R3 such that for all 0 < |(a, b)| < ρ,

‖Tu‖∞ < ‖u‖∞, u ∈ ∂CR3 .

Now, according to hypotheses (H0) and (H6) we have that for all u ∈ ∂CR,

(Tu)(t) = λ

∫ 1

0

K(t, τ)g(τ, u(τ), a, b)dτ

≥ λ

∫ ε4

δ4

K(t, τ)g(τ, ‖u‖∞(1 − ε4)δ4, a, b)dτ

≥ λ

∫ ε4

δ4

K(t, τ)g(τ, R(1 − ε4)δ4, 0, 0)dτ.

≥ λCR.
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where CR depends only on R. Thus, there exists λ1 > 0 sufficiently large such that
for all λ > λ1, we have

‖Tu‖∞ > ‖u‖∞, for all u ∈ ∂CR, and a, b ≥ 0 .

We may choose the constants R1, R2 and R3 such that R1 < R3 < R < R2.
Therefore, we may apply the Lemma 2.1, to obtain three fixed points of F in C
satisfying

R1 < ‖u1‖∞ < R3 < ‖u2‖∞ < R < ‖u3‖∞ < R2,

and the proof of Theorem 1.2 is now complete.

5. Applications

In this section we will state some applications of Theorems 1.1 and 1.2 . Indeed,
let us consider the following examples in annular domains. Through this section,
we assume that N ≥ 3.

Example 5.1. We consider the problem

−∆u = αc1(|x|) + c2(|x|)(β + up) exp(ζuq) in r1 < |x| < r2,
u(x) = 0 on |x| = r1,
u(x) = 0 on |x| = r2,

(5.10)

where c1, c2 are nonnegative continuous functions, 0 < r1 < r2, α, β ≥ 0; p >
1; q ≥ 0 and ζ > 0. Moreover, we suppose that there exists t0 ∈ (r1, r2) such
that c1(t0) and c2(t0) are positive real numbers. Performing the change of variable
t = a(r) with

a(r) = − A

rN−2
+ B,

where

A =
(r1r2)N−2

rN−2
2 − rN−2

1

and B =
r2

N−2

rN−2
2 − rN−2

1

,

we obtain the equivalent problem

−u′′ = g(t, u(t), a, b) in (0, 1)
u(0) = u(1) = 0 (5.11)

where g(t, u, a, b) = apd1(t) + d2(t)(bp + up) exp(ζuq), α = ap, β = bp and

di(t) = (1 − N)2
A2/(N−2)

(B − t)2(N−1)/(N−2)
ci

(( A

B − t

)1/(N−2))
, for i = 1, 2.

It is not difficult to verify that (5.11) satisfies the hypotheses of Theorem 1.1.
Hence, we may conclude that there exists α > 0 and a function Γ : [0, α] → [0, +∞)
satisfying

(i) If β = 0 or β = Γ(α), (5.11) has at least one positive solution.
(ii) If 0 < β < Γ(α), (5.11) has at least two positive solutions.
(iii) If β > Γ(α), (5.11) has no positive solutions.
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Example 5.2. We consider the problem

−∆u = λ c(|x|)f(u) in r1 < |x| < r2,
u(x) = a on |x| = r1,
u(x) = b on |x| = r2,

(5.12)

where a, b are nonnegative parameters, 0 < r1 < r2, c : [0, +∞) → [0, +∞) is
continuous function and the nonlinearity f is a nondecreasing continuous function
satisfying

(i) limu→0
f(u)

u = 0.
(ii) limu→+∞

f(u)
u = +∞.

Then the conclusions of Theorem 1.1 are true. Indeed, coming from a similar way
to the previous example, it is possible to verify that equation (5.12) is equivalent
to

−u′′ = d(t) f(u + (1 − t)a + tb) in (0, 1)
u(0) = u(1) = 0 (5.13)

where g(t, u, a, b) = d(t) f(u + (1− t)a + tb) verifies the hypothesis of Theorem 1.1
with

d(t) = (1 − N)2
A2/(N−2)

(B − t)2(N−1)/(N−2)
c
(( A

B − t

)1/(N−2))
.

We observe that Theorem 1.2 may be applied in Equation (5.12) assuming the
hypothesis (i) above and moreover assuming the following sub-linear hypothesis
at infinity
(iii) limu→+∞

f(u)
u = 0 .

Finally, we notice that Theorem 1.2 may be applied to establish the existence
and multiplicity (three) of solutions for the following two equations below.

Example 5.3. We consider the problem

−∆u = λ (c1(|x|)up1 + 1)Φ(c2(|x|)up2) in r1 < |x| < r2,
u(x) = a on |x| = r1,
u(x) = b on |x| = r2,

(5.14)

where p1 < 1 < p2, ci : [r1, r2] −→ [0, +∞) for i = 1, 2 are nontrivial and nonnega-
tive continuous functions. Furthermore, it is assumed that Φ : [0, +∞) −→ [0, +∞)
is a nondecreasing continuous function satisfying

lim
u→0

Φ(u)
u

= ĉ1 ≥ 0 and lim
u→+∞ Φ(u) = ĉ2 > 0.

Example 5.4. We consider the problem

−∆u = λ c1(|x|)up3

1+c2(|x|)up4 in r1 < |x| < r2,

u(x) = a on |x| = r1,
u(x) = b on |x| = r2,

(5.15)

where 1 < p3 < 1 + p4 and the function ci(|x|) are like in the example above,
verifying in addition that the intersection of its supports is not empty.
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Remark 5.1. We note that 5.12 belongs to the frame of autonomous elliptic equa-
tions perturbed by a weight c(|x|). When the weight is nonnegative and nontrivial
on any compact subinterval in (0, 1), this type of problems has been considered
in the literature by several authors (see for example [6] and [9]). We note that
here the weight may vanish in parts of the annulus. In addition, Equations (5.10),
(5.14) and (5.15) correspond to elliptic equations strongly non-autonomous. Fi-
nally, we notice that another novelty here is the multiplicity result of three positive
solutions for the semi-linear elliptic equations in bounded annular domains with
nonhomogeneous boundary conditions.
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