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1. INTRODUCTION

In this paper, we study the existence of solutions for the following class
of quasilinear elliptic problems:
—div(a(|Vul")| Vul~ 2Vu) f(x,u) inQ,
=0 ondQ, (1)

where p > 1, Q is a bounded domain in RN with smooth boundary 7, f:
Q X R — R is a Carathéodory function with subcritical growth, that is,

|f(x,u)| <colul ™" +d,, VYueRae xeQ, (2)

for some constants c,,d, >0, 1 <r <p*, where p* =Np/(N —p) if
N>p;, p*=+xif 1 <N <p and a: R*—> R is a continuous function
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QUASILINEAR ELLIPTIC EQUATIONS 105

such that
|a(u1’)up’1|sno|u|p_l+§o, Yu € RT, (3)

where 7, {, > 0 are constants.
Here we search weak solutions of the problem (1), i.e., functions
u € W} P(Q) such that

fa(|Vu|p)|Vu|p72Vu-Vde = ff(x,u)vdx, Yo e Wir(Q). (4)
o a

Observe that with the above growth conditions the expression in (4) is well
defined.

In order to use variational methods, we suppose additional conditions on
the function a. We assume that the function 4: R — R, given by h(u) =
A(lul”), where A(u) is the primitive of a(u), is strictly convex and

h(u) = Blul’ —a, ueR, (5)

where «, B are constants with B8 > 0. Note that from (3), there exist
positive constants n, { such that

h(u) < nlul’ +¢, VYueR. (6)
Under these assumptions the functional J: W} 7(Q) — R, given by

1
J(u) = I—)[QA(WMF)dx, (7)

is well defined, weakly lower semicontinuous, Fréchet differentiable, and
J' (the derivative of J) is continuous and belongs to the class (S) . That is,
for any sequence (u,) in W3 7(Q) such that

u, —u and lim sup<{J'(u,),u, —uy <0, (8)

it follows that u, — u in W;?(Q) (here — denotes weak convergence
and — denotes strong convergence). This is a special case of a more
general class studied by Browder (cf. [6, 7]) in the theory of mappings of
class (8), of elliptic operators in the generalized divergence form.

Remark. An important example of problem (1) is given by a(u) = 1,
which corresponds to the so-called p-Laplacian. Explicitly, A,u =
div(|Vu|” ™2 Vu). In this case for the constants appearing in conditions (5)
and (6) we have 8 = n = 1.

With all the conditions given above, which we shall assume throughout
the paper, the functional I: W 7(Q) — R defined by

I(u) =J(u) — fQF(x,u) dx, (9)
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where F is the primitive of f, is weakly lower semicontinuous, and C* on
W4 P(Q) with

I'(u)v = an(|Vu|p)|Vu|”_2Vu -Vodx — fﬂf(x,u)udx,

Vo e WEhr(Q). (10)

Consequently the differential equation (1) is precisely the Euler equation
of the functional I and the weak solutions of (1) are critical points of I
and conversely (cf. [15, 21]). To find the critical points of I we need some
compactness condition of the Palais—Smale type (cf. [3, 4]). With this in
mind we consider the following basic assumption on the nonlinearities f:

(F') . PF(x,u) <uf(x,u) — bl|u|M + b,,
Yue R, ae xeQ,

or

(F1)u PF(x,u) > uf(x,u) + b1|u|’L + b,,

Yue R, ae xeQ,

for some constants w, b,, b, with b, > 0, and we assume that the function
a satisfies

(A7) A(u) —a(u)u >b, VYueR",
or
(A7) A(u) —a(u)u <b, VYueR*,

for some constant b.

Remark. Requirements of type (F;*), were introduced by Costa and
Magalhaes [11-13] to study semilinear elliptic equations and systems.

Now consider the following nonlinear eigenvalue problem
—div(|Vu|p_2Vu) = Mulu, uewlr(Q). (11)

It is well known (cf. [1, 2]) that there exists a smallest positive eigenvalue
A, which we denote by A,(p), and an associated function ¢, > 0 in Q that
solves (11), and that A(p) is a simple eigenvalue, i.e., any two solutions
u, v of (11) satisfy u = cv for some constant c. We recall that we have the
following variational characterization

M(p) = inf{/ﬂ|Vu|pdx: uewhr(Q), fﬂ|u|pdx = 1}. (12)
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Moreover, A,(p) is an isolated eigenvalue of problem (11). Thus, given
W c WP(Q) a closed complementary subspace to the one-dimensional
subspace span{y,}, we have

Ay = inf{fﬂlelpdx: wew, /ﬂ|w|’”dx= 1} > M(p).

We denote by v(p) the supreme of the numbers A, for all such closed
complementary subspaces W c W, 7(Q).

Remark. 1t is not known if »(p) as defined above is the second
eigenvalue of the problem (11). This is in fact a very interesting question.

The class of problems considered here has applications in the study of
non-Newtonian fluids, nonlinear elasticity, and reaction—diffusion. It has
been studied recently by several authors, such as Anane [1, 2], Hirano [17],
Narukawa and Suzuki [20], and Ubilla [23] (see also references therein).
Here we obtain for this more general class of operators, analogous results
to those obtained in [14] for the p-Laplacian. In addition we achieve a
multiplicity result for these problems (as that in [17, 23]) using a version of
the three critical points theorem (see Theorem 5 in the next section). In
the last section we give some examples in order to illustrate the degree of
generality of the kind of operators studied here.

Now we present the main results of this paper. The first three theorem
treat the situation where resonance at the first eigenvalue may occur.

THEOREM 1. Assume (Fy"), and in addition suppose that

. PF(x,u)
(F,) limsup ——— < BA(p), a.e. uniformly onx € Q.
u

Ju] — o | |

Then, problem (1) has a weak solution.

In our next result we denote by Xi the ith eigenvalue of —A on Q with
zero boundary conditions [which corresponds to problem (11) with p = 2].

THEOREM 2. Assume (Fy"), and (A[). Furthermore suppose p > 2 and

(A,) a, + B ? <a(uP)uP ? < a, + Bu?"?,

Yu € R,
~ . pF(x,u)
(F2) im sup — 7 < (@18,(p) + Bi)Au(p),

a.e. uniformly onx € Q,
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~ ~

A; A;
(F;) dzgust(x,u) <d, 2+1u2,

Viu|<o,a.e xe<Q.

for some positive constants a,, a,, By, B,, o, where

< (al+Bl)(1_’Xlxi_+ll)' dy=a,+B,, and &,(p) =1, ifp=2,

d
' ay, d, > a,, and 8,(p) =0, ifp>2.

Then problem (1) possesses at least two nontrivial weak solution.

THEOREM 3. Assume (F;), and (A;) and in addition suppose that for
some real number A one has

~ F(x,u
(F,) Al(p)slimsupg(—,,)sA<Ev(p),
luj- M ul n

a.e. uniformly onx € (1.

Then problem (1) has a nontrivial weak solution.

Remarks. As we will see in the next section, a compactness condition of
the Palais—Smale type is a consequence of the following assumptions:
(F),, (A7) [or (F]),, (4], and

(F,) F(x,u) <cqlul’ +d,, Yu e R,ae. xeQ,

where ¢ satisfies the restrictions p <g and g —p<pu if lL<N<p or
(N(g — p))/p < w if p < N. From the growth hypothesis (2), we easily see
that (F,) is always satisfied with ¢ = r. However, here we are interested in
the case where (F,) is satisfied for smaller values of ¢g. Note that condi-
tions like (F,) appearing in the above theorems imply (F,) with ¢ <r. In
the next theorem, which treats the case of crossing of the first eigenvalue,
we replace condition (F,) by (F,) or (as in [22]) by the assumption

(F5) OF(x,u) <f(x,u)u+ colul? +d,, Yu e R,ae. xeQ,

where p < 6. In case that (F;) is assumed we require an additional
technical restriction on the operator, namely,

(A;) There exist constants ¢, d with ¢ > 0 such that for all u € R*,
0A(u) —pa(u)u > cu +d.

We see clearly that this kind of assumption is a natural generalization of
the usual Ambrosetti—Rabinowitz superlinearity condition (cf. [3]). Ob-
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serve that if F satisfies (F,) and f(x,wu > c lul’ +d, Yu € R, ae.
x € Q, then F also satisfies (F;). However (F,) and (F;) are distinct in
general. Note also that if (F}"), is satisfied with u > N/p(r — 1), then,
using the growth hypothesis (2), we obtain (Fy) as a consequence.

THEOREM 4. Suppose (Ff)u, (A [or (Fl_)w (A7), and (Fy) [or (F5)
and (A,)]. Furthermore assume that

(Ay) a+ Bu?" <a(uP)u?”’,  YueRT,

_ rF(x,u)
(F) ImsupT <K< (a+ B6(p))r(r),

lul-0 u

a.e. uniformly onx € Q,
F(x,u

(F;) IiminfM >L > 9A(p),

u— +w |Lt|p

a.e. uniformly onx € Q,

where «, B are positive constants, L <r <p and 5(p)=1ifp=r, 8(p)
= 0 if p # r. Then problem (1) has a nontrivial weak solution provided that
p<q q—-p<pif L<N<p, or(Nlg—p)/p<puifp<N.

Remark. We note that the same arguments allow us to show analogous
results with less restricted conditions, where the potential F(x, u) interacts
with the first eigenvalue of some eigenvalue problem to the p-Laplacian
with weights (cf. [16]).

2. THE ABSTRACT FRAMEWORK

We shall use a version of the Palais—Smale condition known as Cerami’s
condition [denoted by (Ce)] (cf. [8]). Let (E,||-|) be a real Banach space
and I: E — R be a C* functional. We say that I satisfies condition (Ce) if
any sequence (u,) C E for which

(i) I(u,) — c; (i) 1" (e, )L + e, ll) — 0, asn — », (13)

possesses a convergent subsequence.

LEMMA 1. LetJ: W P(Q) —> R be a C* functional such that J' belongs
to the class (S), and in addition suppose that the function f satisfies the
growth conditions (2). Then the functional I(u) = J(u) — [ F(x, u) dx satis-
fies condition (Ce), provided that every sequence (u,) in Wy ?(Q) satisfying
(13), is bounded.
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Proof. Let (u,) in Wi P(Q) satisfy (13). Since (u,,) is bounded, we can
take a subsequence denoted again by (u,), such that for some u in
W4 P(Q) we have u, — u in W 7(Q). Now using (ii) in (13) we obtain

<ellvllwgr VYo e Wdr(Q), (14)

e = [ fenu)ed

where €, = 0, as n — . Note that by growth condition (2), taking a
subsequence if necessary, we have lim, _, .. [, f(x, u,Xu, — u) dx = 0. Then
considering v = u,, — u in (14) and using that J' belongs to the class (S),
the result follows. |

LEMMA 2.  Suppose (Ff)w (A [or (Fl’)u, (AD], and (F) [or (Fy)
and (A, withp <q,q—p < pnif L<N<p,or (N(gq—p)/p <pif
p < N. Then the functional I satisfies (Ce).

Proof. We assume (F;"), and (A;); the proof with (F;), and (A4;) is
similar. Let (u,) in W ?(Q) satisfy (13). By Lemma 1 it is sufficient to
verify that (u,,) is bounded. From (F;"),, (4;), and (13), we have that

1
c+1>1I(u,) — ;I/(un)un
= —f (IVu, ") = a(|Vu, ") | Vu, '] x

ik

< b1f0|u|“dx + ¢y,

f(x uu, — F(x,u,)|dx

for sufficiently large n. Consequently there exists a positive constant c,
such that

lu,lLe <c,. (15)

Considering p < N and taking ¢ € [0,1] such that 1/g =1 —¢)/u +
t/p*, where p* = NP/(N — p), from the Sobolev imbedding and (15), we
obtain

|M |Lq < C3|M |Lﬂ ||Lt ”W =< C4||un||W (16)

Let us suppose that F satisfies (F,). Thus using (5) and (i) in (13),
Bliu,lfgr — a <T(u,) = I(u,) + [ F(x,u,) dx
Q

<cg + c0|un|3 +d,.
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So, from (16),

Mg r < cq(L + llue, Iz.0).
Then (u,) is a bounded sequence, since (N(g — p))/p < w is equivalent to
q <p.

On the other hand, if f satisfies (F;) and the function A satisfies (A,),
we have

1
€1 ZI(un) - Elr(un)un

- fﬂ[%A(WunF) - %a(|Vun|p)|Vun|p} dx

g
Q

< collu,llfyar — coluan —C3

%f(x’un)un - F(x'un)} dx

< collu, g r = cyllu,llifer — c5.

Since tq < p we obtain that (i,) is a bounded sequence. |

Now, we give a result on the multiplicity of critical points for functionals
that satisfy condition (Ce). Let E be an infinite dimensional Banach space
with a decomposition

E=E, ®FE, (17)
with 0 < dim E, < co. We writeany u € Eas u = u; + u, = (Id — P)u +
Pu, where P is the projection onto E, along E,.
THEOREM 5. Let F: E — R be a C* functional satisfying (Ce). Further-
more assume that F is bounded below and that for some R > 0,
F(u) =0, foru € E,

<0, foru € E,, llull < R.

Then F has at least two nonzero critical points.

This theorem is related to the so-called three critical points theorem of
Chang [9, 10] and to later results of Liu and Li [18], Liu [19], and Brezis
and Nirenberg [5]. The proof of Theorem 5 follows the same kind of ideas
used in the proof of an analogous result with condition (PS) instead of
Cerami conditions (cf. [5]). Nevertheless for completeness we shall give
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here a proof of Theorem 5. For that matter we start with the following
lemmas, which are the steps where the proof is slightly different from the
one in [5].

LEMMA 3.  Assume that F € CY(E, R) is a lower semicontinuous function
bounded from below and satisfies (Ce). Then every minimizing sequence for F
has a convergent subsequence.

The proof of Lemma 3 follows from Ekeland’s principle (cf. [15]), which
we shall use in the following form:

EKELAND's PRINCIPLE. Let (M, d) be a complete metric space and let
0: M —>(—o0, +%], 0% +o,

be a lower semicontinuous function which is bounded from below. Let
€ > 0 be given and &z € M be such that

() < info + €.
() < info + e
Then, for any A > 0, there exists u, € M such that
0(u,) < 6()
€
< 6(u) + Xd(u,u)\) Yu # u,,
d(u,, ) <A
Proof of Lemma 3. Let (u,) € E be a minimizing sequence for F, i.e.,
F inf F.
(u,) = in
For a subsequence, still denoted by (u,), we may suppose that
F inf F !
<infF+ —.
() < infF+
We claim that |lu, |l < C. Assume by contradiction that for a subsequence

we have |lu,ll - . By Ekeland’s principle with e=1/n®> and A =
(1/mllu,|l, there exists v, in E such that

F(v,) < F(u,)

< F(u) + lu — v,ll, Yu #v,,

1
nllu,|l

ety = vl <l I
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Then, [[F'(w ) lu,ll < 1/n and [|[F' (o)l v, |l < (1/n)1/n + 1), which im-
plies that

IF' (o) (llo,ll + 1) — 0.

Thus, from (Ce) we have a convergent subsequence (v, ). However, since

llv,ll = oo, this is impossible. So, it follows that (u,,) is a bounded sequence.
Now using again Ekeland’s principle with € = 1/n* and A = 1/n, there
exists v, in E such that

F(v,) < F(u,)

1
< F(u) + —llu —v,l, Yu #v,,
n

lu, —v,ll < —.
n

n n

Thus, F'(v,) — 0. Consequently [[F'(v)I(llv,ll + 1) — 0, since (v,) is a
bounded sequence. Therefore, from (Ce) we have a convergent subse-
quence (v, ) and consequently (u,, ) also converges. |l

Let V' be a pseudogradient for F (cf. [21)]), i.e.,
ViE={u€E:F(u)#0} >E
is a locally Lipschitz continuous map, such that for all u € E we have
() ()l < 21lF (u)ll; (i) F'(u)V(u) = IF'(u)l

and consider W: E — E, W(u) = V(u)(lull + 1)._ Note that W is also a
locally Lipschitz continuous map and for all u € E we have

(D) ()l < 21 F (w)lI(llull + 1);
(i) F'(u)W(u) = IF' ()l (llull + 1).

LEMMA 4. Let F: E - R be a C* functional and ¢ € R. Then for any
given & < 1/8 there exists a continuous deformation n: [0,1] X E — E such
that

1°. 10,u) =u forallu € E.
2°.  n(t,u) is a homeomorphism of E onto E for each t € [0, 1].

3°. n(t,u) =u for all t €[0,1] if |F(u) — c| = 28 or if ||F' ()|l(|lull
+1) < V5.

4°, 0 < F(u) — F(n(t,u)) <48 forallt €[0,1] andu € E.
5° (¢, u) — ull < 16V forallt € [0,1] and u € E.
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6°. If F(u) < ¢ + § then either
(i) F(n(l,w) <c—-©8or

(i)  for some t, € [0,1], we have ||F'(n(ty, w) lIn(t, Il + D <
2Vs.

7°. More generally, let T € [0, 1], be such that for all t € [0, 7], n(t, u)
belongs to the set N = {v € E: |F(v) — ¢| < 8 and ||F'(W)II(lv]l + 1) = 2V§).
Then F(n(t,u)) < F(u) — 7/4.

Proof. Since N and the complement of the set
N={ueE:|F(u) —c|<28and |F'(u)ll(llull + 1) > V5)

are disjoint closed sets, there is a locally Lipschitz function g: E — [0, 1]
such that g =1 on N and g = 0 outside of N. Now consider the vector
field

ON
o) = | S aE
0, outside of N,

on N,

and let n(z, u) be the flow defined by

dn
o =d(u), 1n(0,u) = u.

From elementary properties of flow we obtain 1°-3° and from the proper-
ties of W it follows that

d
EF(TI(EM)) < —%g(n(t,u)) forall (z,u) €[0,1] X E.

Consequently

fotg(”fl(s,u)) ds < 4(F(u) — F(n(t,u))).

Therefore, if n(¢, u) belongs to set N for all ¢ € [0, 7], then g(n(¢,u)) = 1
and 7° holds.

To verify 4°, note first that if |F(u) — ¢| > 286, then n(¢,u) = u and 4°
follows. So we may assume that |F(u) — ¢| < 2. In this case we conclude
that F(n(1,u)) = ¢ — 25 and consequently F(u) — F(n(t,u)) < F(u) —
Fn(L,u) <c+ 28— (c —28) = 46.
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Finally we will verify 5°: Consider I, = {s: 0 < s <t and 7n(s,u) € N},

ds

Im(t,u) — ull < fotH%(s,u)
g(n(s.u))
= f,,nW(n(s,u))n ’

g(n(s,u))
TP GG G T+ D) “

1 .
ﬁfog(n(&u)) ds

4
E(F(u) — F(n(t,u)))
16V/5 .

IA

IA

Thus we have finished the proof. |

Let K be a compact metric space and let K* be a nonempty closed
subset # K Let

& ={peC(K;E): p=p*on K*},
where p* is a fixed continuous map on K* and

¢ = inf max F(p(§)).

LEMMA 5. Let F: E — R be a C* functional satisfying (Ce). Suppose that
for every p € 5/ there is some point ¢ € K \ K* such that F(p(¢)) > ¢ and
in addition assume that there exists a closed set %, C E, disjoint from p*(K*),
on which F > ¢ and such that Vp €/, p(K) N3 # . Then F has a
critical point uy € 3., with F(u,) = c.

Proof. Given 0 < 8 < 1/8 such that 32Vs < dist(S, p*(K*)) let us
consider m a continuous deformation given by Lemma 4 and p €.« such
that

rgnea}((F(p(g)) <c+ 6.
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Let /: E — [0, 1] be a continuous function such that

1 if dist (u3) < 16V5,

G =10 ifdist(u,3) > 325,

Consider g: K — E given by g(&) = n(£)p(£)), p(£)). Note that ¢ €.
Since Vp e, p(K) N 3 # J, thus there exists &, € K such that u; =
n(ZL(p(&)), p(€)) € 3. From properties 5° of  we have

In(t, p(&)) —p(&)ll < 16V8  forall ¢ € [0,1].

Thus {(p(&)) =1, uy = (L, p(&), and ¢ < F(n(z, p(£,))) < ¢ + 5 for
all ¢ €[0,1]. So, from properties (ii) in 6°, we have ¢, € [0, 1] such that
u, = n(t;, p(&,)) satisfies

IF (up)lI(llull + 1) < 2V8,

and from properties 5° we obtain [lu; — u,| < 32V/5.
Now, taking & = 1/n for sufficiently large n, we obtain a sequence {u,}
in E satisfying

F(u,) = ¢, IF (u)l(llu,l+1) -0 and dist(u,,=) = 0.

Finally using the condition (Ce) we complete the proof. |

LEMMA 6. Let F: E > R be a C' functional satisfying (Ce) and in
addition suppose that for some u, € E,

F(u) > F(u,), Vu # u,.

Let y # uy, be such that F'(y) #0 and F has no critical value in
(F(ug), F(y)). Then the “negative flow” starting at y, defined by

ﬂ _Lx) 0) = 18
i AR Ul (18)

exists for a maximal finite time 0 < t < T(y) and x(T(y)) = u,.

Proof. We may suppose u, =0 and F(u,) = 0. By the theorem of
existence and uniqueness for ordinary differential equations, it follows that
there exists a maximum time T(y) > 0 such that the solution of (18) is
defined on the interval [0, T(y)). From the properties of W and (18), we
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obtain
d 1
EF(X(I)) < -7 Vie [0,T(y)).

Consequently

T(y) <4F(y) and 0<F(x(t)) <F(y), VTe(0,T(y)).
We claim that

x(¢) >0 ast—>T(y).
Case 1. There exists 6 > 0 such that
IF (x()N(lx(H)II +1) =6, Vee (0,T(y)).
Therefore,
W (x()I = IF (x()I(Nx(e)Il +1) =8, Vee (0,T(y))

and
d
,/;T(Y)Ex(t) dt  exists.

Thus, there exists w € E such that x(¢) - w as ¢+ — T(y). Then necessar-
ily w = 0; otherwise the solution x(¢) could be defined on an interval [0, s)
with T(y) < s. However, this contradicts the definition of T'(y).

Case 2. There exists a sequence ¢, — T(y) such that
IF (x(t))(lx ()N + 1) — 0. (19)

Then, by (Ce) there exists a subsequence still denoted by x(¢,) and w € E
such that x(¢,) — w. From (19) we have that F'(w) = 0. Thus necessarily
w = 0. Therefore, F(x(¢)) - 0as t —» T(y). Finally using Lemma 3 we get
x(t) > 0ast—>T(y). 1

LEMMA 7. Let v be a fixed unit vector in E, and set
K={u=sv+uyu, €E, llul <1ands > 0}.
Consider any continuous map p: K — E satisfying

p(uz) =uy,  ifu, € Ey and lu,|l < 1,
Ilp(u)ll =7 >0, ifucKandllul = 1.
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Then, for any r > 0, the image p(dK) “links” the set of points in E, with
norm p <r. That is, for any 0 < p <, there exists u € K such that

Pp(u) =0 and lp(u)ll = p.

For the proof of Lemma 7 we refer to Brezis and Nirenberg [5].

Proof of Theorem 5. From Lemma 3, F achieves its minimum at some
point u,. Supposing 0 and u, are the only critical points of F, we will get a
contradiction. Note that in this case we have necessarily F(u,) < 0 and
without loss of generality we may assume R = 1 < [[ull.

Now taking € > 0 sufficiently small such that F(u) < 0if |lu — u,ll < e,
and using again Lemma 3, we obtain 6 > 0 such that

{u € E: F(u) < F(uy) + 8} c{u€E:llu—uyll <€}

By choosing & sufficiently small, there is a continuous real valued function
7 defined on the set {y € E,: |lyll = 1} such that F(x(7(y))) = F(u,) + &
[where x(¢) is the flow starting at y given by the Lemma 6 and defined on
the maximal interval [0, T(y)) with x(¢) — u, as t = T(y)].

Let K be defined as in Lemma 7 and let u € 9K with u # v and
lull = 1. Thus we have the unique representation u = sv + oy with0 < s
<1l ye€ekE,Iyl=10<0o<1,ie,s, o,y are unique. Now, using this
representation, we consider the map p*: K — E, given by

Ug, ifu=nuo,
. u, if u e E, and |lull < 1,
i) = x(2s7(y)), ifu=sv+oyand0<s<1/2,

(2s—1)uy+(2—-2s)x(7(y)), ifu=sv+oyandl/2<s<l.

Note that p*(u) is a continuous map and F(p*(u)) <0, Vu € dK. More-
over we see that

Ip* ()l =7 >0  if flull = 1.

From Lemma 7, for any p € T' = {p: K — E continuous and p = p* on
dK} and p < r, the image p(9K) “links” the set 3 = {u € E;: |lull = p}.
Thus, using Lemma 5, we conclude that the nonnegative number

= inf maxF
¢ = Inf max (p(u))

is a critical value of F. If ¢ > 0 we have a second nontrivial critical point
and the proof is finished. If ¢ = 0 we apply Lemma 5 to get a critical point
on 3 where f =0, and therefore is different from the origin and u,. |
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3. PROOFS OF EXISTENCE RESULTS

Proof of Theorem 1. We shall prove that the functional I is coercive. By
(F"),, there exists R > 0 such that

i(F(x,u) _ f(x,u)u — pF(x,u)
du |u|[7 |p+1

> bylul" 7P,

lu
V|u| > R, a.e. x € ().

Without loss of generality we may assume w < p. Thus, integrating and
using the hypotheses (F,), we have

B » pb, u
F(x,u) < —M(p)lul” - lul” + ¢4, Vue R, ae. xeQ.
p p—u

(20)

Note that from the estimate above and (5) we get easily that I is bounded
below. Now let us suppose that I is not coercive. Then there exists a
sequence {u,} in Wy ?(Q) such that [/(u,)l < C and ||lu,llys» — . Let
v, = u,/llu,llwr» and let us assume (taking a subsequence) that v, con-

verges weakly in Wi 7(Q), strongly in L”, and a.e. to a certain function v,
in WgP(Q). Thus using (5) and (20) we obtain

B B pb,
c, > — | |Vu, P de — —A u " de + u | dx + c,.
2 p</9| nl p l(p)£)| nl P_IJ«j;zl nl 3

(21)
Dividing (21) by |lu,|l{7z », we have

Cy
T lher = f|V |de——)\1(P)f|U " dx
b lv,|* c
P / dx + ——=—.
p — wlaollu, iy’ llue, [lg-»

Since |lv,|lwz» = 1, passing to the limit we obtain that

0>1- /\1(P)fﬂ|vo|pdx

which implies that v, # 0. Once more from (21), using the variational
characterization of the first eigenvalue and dividing this expression by

lu, iz », we have
€2 C3

e, iz

b
— [ |o,|" d +
M0

>
lu,llwzr — p—
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which, by passing to the limit gives

b
0> I J 190l ax
)2 V4]

thus v, = 0, which is a contradiction.

Finally taking R > 0 such that I(u) > 0 if [lullyz» > R and using that /
is weakly lower semicontinuous we obtain u, € W ?(Q) such that
llugllwgr < R and I(uy) = inf{I(w): llullwg» < R} = infy,., I. Therefore u,
is a critical point of 1. ||

Proof of Theorem 2. Here we apply the three critical points theorem
with condition (Ce) (see Theorem 5). As in the proof of Theorem 1, we
obtain that the functional I is bounded from below and Lemma 2 gives
that I satisfies (Ce). So it only remains to prove the local linking condition.
We shall do it in the sequel.

We recall that in this theorem we are supposing that p > 2. We denote
by H, the finite dimensional subspace of W; 7(() generated by the
eigenfunctions of (—A, H;(Q)) corresponding to the eigenvalues Ay, ..., A,
and W, = Wy-?(Q) N H*, where H,* denotes the orthogonal subspace
of H, in H(}(Q) Thus we have

Wi P (Q) = H, & W,

2
lullf = Xy ollullie,  Yu e w,,
< Xllul?2,  VYueH,.

LeEMMA 8 (local linking). There exists a positive constant p such that

I(u) <0, VueH,llulw»<p,

>0, Yu € W, lullwgr < p.

Proof. Using (A,), (F;) and the fact that in H; the norms || [l and
Il ll. are equivalent, we obtain p, > 0 such that

I(u) < —[|Vu| dx + Bszur’dx dzzfu dx,

for every u € H; with |lullyg» < p,. Therefore, from the above estimate
we get p < p, such that

I(u) <0 if u € H, and [lullyg.r» < p,
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since 2 < p and

dy = a; + By, ifp=2
> a,, if p> 2.

To prove the second assertion we use (F;"),, (F,), and (F,), to obtain
constants ¢ > 0 and 2 < ry, < p* such that

(“182(17) + Bl)/\l(p)| L

F(u) <d )\,H 5 + clul”™,
Yu € R.
Consequently from (A4,) we obtain
I(u) > 2/|V ul’ dx+—f|Vu| dx
Hlfl _ (@d,(p) + B)M(P)

p
4 To
X[ |lul"de—c| |ul®dx
[ luf @ =c[|u
Case 1: p=2. Forall u e W,

I(u) > L’Bl/wufdx_ (al+ﬁl)/\1f|u|2dx
Q

2
”‘/||w—chP

1 T Y-1 2 r
e+ B (1 = XA — [l = el

%

where in the last inequality we have used that llull?; > A, ,llull?2, Yu € W,
and the Sobolev imbedding H3(2) < L(Q). Now using that d; < (a; +
B — N, A-Y) and 2 < r,, we an choose p > 0 such that

I(u) > 0, YueWw; 0 <lullwz» < p.
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Case 2. p > 2. Forall u e W,
I(u) > ﬂ/ |Vu|2dx—dl)"“[|u|2dx
2 Jo 2 Jo

by
+&f|Vu|pdx— Purip) l(p)/|u|”dx—c]|u|’°dx
JZR40) p Q Q
a, —d
> lull}y — cyllulli:.

Finally, using that d, < «;, 2 <r,, and the continuous imbedding
Wi P(Q) = Hy(Q), we complete the proof of the lemma. [

Proof of Theorem 3.

LeEMMA 9. Suppose (Fy), and (F,). Then I(typ)) - — as t - +,
where s, is the A(p) eigenfunction with ||i,|lwz» = 1. Moreover there exists
W c W} P(Q) a closed complementary subspace to one dimensional subspace
V = span(ys,), such that I is bounded below in W.

Proof.  Using (F; ), and the first inequality of (F,) we obtain

n(p)
p

F(x,u) > lul” + clul” + 4,

where ¢ and d are constants with ¢ > 0. Thus from (6) we have the
estimate

n n\(p)
I(td) <|tf— [ |V, P dx — |t ———= P dx
(t) <[l [ 1V e =0 === [ s
el e[ I dr — dy
Q

= —c|t|“/ [, [ dx — d;.
Q

Consequently we have I(ti,) > —©as T — +o.

Now taking € > 0 such that n(A + €) < Br(p), then there exists W c
W4 P(Q) a closed complementary subspace to one dimensional subspace
span{y}, such that

n(A + ¢€) ) Jo|Vw|? dx
——— < inf ———.
B oxweWw [olwl| dx
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Thus, using (5) and (F,) we obtain for all w € W,
B 14 n(A + E) 14
I(w)yz—||VWwdt— ——| |w[ d&x —c= —c.
(w) = = [ 1wl —— /Il

Therefore I is bounded below in W. |

Finally to get a nontrivial solution to problem (1), we use Lemmas 2 and
9 and apply the mountain-pass theorem with condition (Ce) instead of
condition (PS). To prove this mountain-pass theorem version with condi-
tion (Ce) we use a deformation theorem like Lemma 4 and proceed as in
[21], where the standard version is proved.

Proof of Theorem 4. Here we apply again the mountain-pass theorem
[21] with condition (Ce). In order to get the geometrical conditions we
need the following

LEMMA 10. Suppose (A,) with 1 <r < p, (Fy), and (F,). Then there
exist 8, p > 0 such that I(u) > & if llullwg» = p. Moreover, I(si) —» —»
as s — +o, where s, > 0 is the A(p) eigenfunction with || |lws» = 1.

Proof.  Using growth condition (2) and (Fj), there exists r, € (p, p*)
such that

K

fQF(x,u)dxs +€/Q|u|rdx—|—c1f0|u|r°dx

’
K+ €

= rAy(r)

where in the last inequality we have used the variational characterization
of the first eigenvalue and the Sobolev imbedding. From (A4,) we get

lullwe.r + collullper,

+ €

——lullwzr = c,llullipa».
rA(r) 0 0

a
r P
I(u) = 7||u||W()1" + ;HHHWOW -

Since r < p <ry, Wi P(Q) = Wy'(Q), taking e > 0 such that

K+ e<(a+Bs(p))Ar(r),

we can fix p > 0 and & > 0 such that I(x) > & if |lullyr, = p.
Now we will prove the second assertion. Choose o > 0 such that
L — o> mA(p). From condition (F,) we obtain

1
F(x,u) > —(L — o)u? — c,, Vu > 0.
p
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Finally, using (6) we have the estimate

IA

s? sP
I(sn) < [ 1V [ de = —(L = o) [ uf de +c

§P [1 L—a’}”d[”p
<n— - wir + C.
p nA\(p) H

Clearly we obtain I(s¢;) > —o as s —» +c. Thus we obtain that the
assertions hold. |

4. SOME EXAMPLES
ExAMPLE 1. Let a: R*— R satisfy the following conditions:

(a;) there exist constants b, b, > 0 such that b, < a(u) < b,;

(a,) the function k: R — R, k(u) = a(ul”)ul”~?, u is strictly in-
creasing.

Note that the function q satisfies the conditions (3), (5), and A(u) = A(|lul”)
is strictly convex. Suppose that f(x,u) = g(u) + h(x), where h € L*(Q)
and g satisfies lim, _, ((pG(w)/lul”) = A(p)b, and (G{), with u =1
and ||All;= < b(p — 1) or w > 1. As a consequence of Theorem 1, prob-
lem (1) has a weak solution.

ExamMPLE 2. Let a(u) = B8+ n/((1 + w)?), where «, B are positive
constants. Consider f(x,u) = g(u) + h(x) with h € L*(Q)), such that g
satisfies both lim, _, .((pG(w)/lul”) = BA,(p) and (Gy),, where either
uw=1and ||All. <b(p—1) or w> 1 As a consequence of Theorem 3,
we have a weak solution for the problem

. B _ .
—dIV{(T}+ W)WM" ZVM} =f(x,u), in Q,
u =0, on Q).

ExAmpLE 3. Consider the function a(u) = g8 + nu®~?/? where 2 < p,
0 < B, n are constants. By Theorem 2, the problem

—BA,u — nAu = f(u) in Q,
u=20 on 4Q),

possesses_at least two nontrivial weak solutions provided that f satisfies
(F),, (F,), and (F,).
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ExAMPLE 4. Let a(t) =t/ V1 + t?, which corresponds to the so-called
modified capillary surface equation (cf. [20]). Explicitly,

|Vul?? " 1Vu

——— | =f(x,u)
V1 + [Vul??
u=20 on 4Q)

Suppose that f(x,u) = A,(plul” *u + g(u) + h(x), where h € L*(Q) and
that g satisfies lim,_, .((G(w)/|u|”) < 0 and (G,), with u =1 and [|4ll.
<b,/(p—1 or uw>1 As a consequence of Theorem 3, we have a
nontrivial weak solution for this problem.

—div in Q,

ExampLE 5. From Theorem 4 we have a nontrivial weak solution for
the problem

—Apu—A,Lt:F’(u) in Q; u=0 on 4Q,

where 1 <r <p and F € CY(R,R) is such that F(u) = |u|”In|u| if |u| >
2R > 0and F(u) = AMul" if |ul < R, with A < A(r).
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