
Journal of Functional Analysis 224 (2005) 471–496

www.elsevier.com/locate/jfa

An Orlicz-space approach to superlinear
elliptic systems�

Djairo G. de Figueiredoa,∗, João Marcos do Ób, Bernhard Rufc
aIMECC, Univ. Estadual di Campinas, 13081-970 Campinas, SP, Brazil

bDep. de Matemática, Univ. Federal Paraíba, 58059-900 João Pessoa, PB, Brazil
cDip. di Matematica, Università degli Studi, Via Saldini 50, 20133 Milano, Italy

Received 27 July 2004; accepted 30 September 2004
Communicated by H. Brezis

Available online 8 December 2004

Abstract
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1. Introduction

In this paper, we study nonlinear elliptic systems in Hamiltonian form



−�u = g(v) in �,
−�v = f (u) in �,
v > 0, u > 0 in �,
u = 0, v = 0 on ��,

(1.1)

where� is a bounded open subset ofRN(N�3), with smooth boundary�� and� is
the Laplace operator.

For the scalar equation−�u = f (u) critical growth is given byf (s) ∼ s
N+2
N−2 .

This is obtained by considering the related functional1
2

∫
� |∇u|2 −

∫
� F(u), where

F(s) = ∫ s

0 f (t) dt . The natural space for the first term isH 1
0 (�), and then the maximal

growth allowed forF(s) is given by the Sobolev embeddingH 1
0 (�) ⊂ L2∗(�). For

the system (1.1) the associated functional is

∫
�
∇u∇v dx −

∫
�
(F (u)+G(v)) dx. (1.2)

If we consider this functional onH 1
0 (�) × H 1

0 (�), then we find again the maximal
growthsF(s) ∼ |s|2∗ andG(s) ∼ |s|2∗ . However, in interesting papers by Hulshof–Van
der Vorst [5] and Felmer–de Figueiredo[2] the use of Sobolev spaces of fractional
order has been proposed. Roughly speaking, these spaces, denoted byHs(�), s > 0,
consist of the functions whose derivative of orders is in L2(�) (these spaces can
be defined via interpolation or via Fourier expansion). Introducing suitable self-adjoint
operatorsAs : Hs(�)→ L2(�), the first term in the functional (1.2) can be substituted
by

∫
�
AsuAtv with s + t = 2.

The maximal growth condition onF(s) ∼ |s|p+1 andG(s) ∼ |s|q+1 is then given by
the largest valuesp and q such thatHs ⊂ Lp+1 and Ht ⊂ Lq+1. This yields the
so-calledcritical hyperbola

1

p + 1
+ 1

q + 1
= 1− 2

N
. (1.3)

One notes that now one of the nonlinearities may have a larger growth than|s|2∗
provided the other nonlinearity has a suitably lower growth.
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We propose here another approach: in order to have the term
∫

� ∇u∇v well-defined,
we can use Hölder’s inequality to estimate

|
∫

�
∇u∇v|�‖u‖

W
1,�
0
‖v‖

W
1,�
0

with
1

�
+ 1

�
= 1 (1.4)

and hence the first term in (1.2) can be considered on the spaceW1,�
0 (�)×W

1,�
0 (�).

Again, the maximal growth forF andG is then given by the embeddings

W
1,�
0 (�) ⊂ Lp+1(�) and W

1,�
0 (�) ⊂ Lq+1(�)

with

1

p + 1
= 1

�
− 1

N
and

1

q + 1
= 1

�
− 1

N
; (1.5)

thus, this approach yields the same critical hyperbola.
Consequently, the same equations studied in[2,5] can be treated also by this ap-

proach. However, the second approach has the advantage that it can be generalized to
more general situations by using anOrlicz-spacesetting. Namely, we can replace the

spacesW1,�
0 and W

1,�
0 by Sobolev–Orlicz spacesW1

0LA and W1
0LÃ

; hereW1
0LA is

given by the functionsu such that
∫

� A(|∇u|) <∞, whereA is a so-calledN-function,
andu vanishes in a certain sense at the boundary. The functionÃ is the Young-conjugate
function toA (see below). Then we have again a Hölder-type inequality

|
∫

�
∇u∇v|�2‖u‖W1

0LA
‖v‖W1

0LÃ
.

The maximal growth forF andG are then determined by the Orlicz-space embeddings

W1
0LA(�) ⊂ L�(�) and W1

0LÃ
(�) ⊂ L�(�), (1.6)

whereL� andL� are Orlicz spaces with suitableN-functions� and �. In this way,
we can treat nonlinearitiesf and g in Eq. (1.1) that cannot be handled by the Hilbert
space approach of Hulshof and van der Vorst[5] and de Figueiredo and Felmer[2].

Let us call twoN-functions (�,�) a critical Orlicz pair, if they have the maximal
possible growth in the above embeddings (1.6), for suitableN-functionsA and Ã. For
example,�(s) = |s|p+1 and �(s) = |s|q+1 with p, q ∈ (1,+∞) satisfying (1.3)
constitute a critical Orlicz pair, withA(s) = |s|� and Ã(s) = |s|�, where� and � are
given by (1.5) (see Example2.1).

We will prove
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Theorem 1.1. Let � ⊂ RN be a bounded, smooth domain. Let� ∈ C1 be a given
N-function, and set�(t) = �′(t). Assume that

lim
s→∞

�(s) s
�(s)

= �� >
N

N − 2
. (1.7)

Then there exists an associate N-function� such that(�,�) form a critical Orlicz
pair. Furthermore, the limit

lim
s→∞

s�′(s)
�(s)

= ��

exists, and

1

��
+ 1

��
= 1− 2

N
. (1.8)

We give some examples of critical Orlicz pairs:

Example 1.1. Let

�(s) ∼ |s|p+1(log |s|)� and �(s) ∼ |s|q+1(log |s|)−� q+1
p+1

with � > 0 andp, q ∈ (1,+∞) satisfying (1.3). Then� and � satisfy the two above
limits, with �� = p + 1 and �� = q + 1, respectively, and(�,�) form a critical
Orlicz-pair (see the proof inSection6).

Remark 1.2. The restriction�� > N/(N − 2) is necessary in order to obtain a�
which is �-regular, in the sense ofDefinition 2.10. Also in the polynomial case such a
restriction, which here isp + 1 > N/(N − 2), is necessary in order to obtainq > 1.

Based on this characterization, we will prove an existence theorem for superlinear
nonlinearities, which have subcritical growth with respect to the above specified Orlicz
criticality.

We make the following hypotheses

(H1) let f, g ∈ C(R) and letF, G denote their primitives;
(H2) there exist constants� > 2 and t0 > 0 such that, for allt� t0,

0 < �F(t)� tf (t) and 0< �G(t)� tg(t).

(H3) F andG are uniformly superquadratic near zero (for the definition, see
Definition 5.1 below).

Then we prove
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Theorem 1.3. Suppose that(�,�) is a critical Orlicz pair. Suppose that F and G
satisfy (H1)–(H3), and that F and G have an essentially slower growth than� and
�, respectively(see Section2 below). Suppose also that

lim
t→0

F(t)

�(t)
= CF <∞ and lim

t→0

G(t)

�(t)
= CG <∞.

Then system(1.1) has a nontrivial solution.

Example 1.2. Let (�,�) denote the critical Orlicz pair given in Example1.1. Suppose
that F(s) ∼ sp+1(log s)� and G(s) ∼ sq+1(log s)−	, for s positive and large with
� < � and 	 > � q+1

p+1. Then F and G have essentially slower growth than� and �,
respectively.

2. Orlicz spaces

Here we recall some basic facts about Orlicz spaces, for more details see for instance
[1,6,9]. Let M be aN-function, that is,M : R → [0,+∞) is continuous, convex, even,
M(t) = 0 if and only if t = 0,

M(t)/t → 0 as t → 0 andM(t)/t →+∞ as t →+∞.

We say that anN-function A dominatesan N-function B (near infinity) if, for some
positive constantk, B(x)�A(kx) (for x�x0), and writeB ≺ A. A andB areequivalent
if A dominatesB and B dominatesA; then we writeA ∼ B. Finally, we say thatB
increases essentially more slowlythan A if lim t→∞ B(kt)

A(t)
= 0, for all k > 0; in this

case we writeB ≺≺ A.
Associated to theN-function M we have the following class of functions.

Definition 2.1 (Orlicz class). The Orlicz class is defined by

KM(�) := {u : � → R : u measurable and
∫

�
M(u(x)) dx <∞}.

Orlicz classes are convex sets, but in general not linear spaces. One then defines

Definition 2.2 (Orlicz space). The vector spaceLM(�) generated byKM(�) is called
Orlicz space.

Fact 1. The Orlicz classKM(�) is a vector space, and hence equal toLM(�) if and
only if M satisfies the following
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Definition 2.3 (�2-condition). There exist numbersk > 1 and t0�0 such that

M(2t)�kM(t) for t� t0.

Furthermore, we define

Definition 2.4 (∇2-condition). There exist numbersh > 1 and t1�0 such that

M(t)� 1

2h
M(ht) for t� t1.

We call a function satisfying the�2- and the∇2-condition �-regular.
We remark that the Orlicz class depends only on the asymptotic growth of the

function M; therefore, also the�2-condition and the∇2-condition need to be satisfied
only near infinity.

We define the following norm onLM(�):

Definition 2.5 (Luxemburg norm).

‖u‖(M) = inf { 
 > 0 :
∫

�
M(

|u|


)�1}

Fact 2. (LM, ‖ · ‖(M)) is a Banach space.

Definition 2.6 (Conjugate function). Let

M̃(x) = sup
y>0

{xy −M(y)}.

M̃ is called the Young conjugate function of M.

It is clear that ˜̃M = M, andM and M̃ satisfy the Young inequality:

st�M(t)+ M̃(s) ∀s, t ∈ R,

with equality when s = M ′(t) or t = M̃ ′(s). In the spacesLM and LM̃ the Hölder
inequality holds

|
∫

�
u(x)v(x) dx|�2‖u‖(M)‖v‖(M̃).
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Hence, for everỹu ∈ LM̃ we can define a continuous linear functionallũv :=
∫

� ũv dx

and lũ ∈ (LM)
∗. Then we can define

‖ũ‖M̃ = ‖lũ‖ = sup
‖v‖(M)�1

∫
�
ũ(x)v(x) dx

Definition 2.7. ‖ũ‖M̃ is called theOrlicz normon the spaceLM̃ , and analogously one
defines the Orlicz norm‖u‖M on LM .

Thus, we have two different norms onLM , the Luxemburg (or gauge) norm‖ · ‖(M)

and the Orlicz norm‖ · ‖M ; they are equivalent, and satisfy

‖u‖(M)�‖u‖M �2‖u‖(M). (2.1)

In order to be precise about which norm is considered in the spaces, we are going to
use from now on the following notations:

(
LM, ‖ · ‖M

) := LM and
(
LM, ‖ · ‖(M)

) := L(M)

and similarly forM̃.

Fact 3. It follows from the definition of Orlicz norm that, ifu ∈ LM and w̃ ∈ LM̃ ,
then one has the following Hölder inequality:

|
∫
�
uw̃ dx| � ‖u‖M‖w̃‖(M̃). (2.2)

Fact 4. LM is reflexiveif and only if M and M̃ satisfy the�2-condition, and then

(L(M))
∗ = LM̃ and (L(M̃))

∗ = LM

(see[4,9, p. 111]).

Fact 5. If � is �-regular, then there exists a�1 ∼ � such thatL� = L�1 as sets, and
their Luxemburg norms (respectively, Orlicz norms) are equivalent, with the following
additional structure:

(a) L� andL�1 are isomorphic, and both are reflexive spaces,
(b) L�1 is uniformly convex and uniformly smooth (see[9, Theorem 2, p. 297]).

Next, we define theOrlicz–Sobolevspaces: LetA be aN-function. Then set
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Definition 2.8.

W1LA =
{
u : � → R; max|�|∈{0,1}

∫
�
A(|D�u|) < +∞

}

with Luxemburg norm

‖u‖W1LA
:= max

{‖D�u‖(M) : |�| ∈ {0,1}}.
On the spaceW1

0L(A), i.e. the space of functions inW1LA which vanish on the
boundary, an equivalent Luxemburg norm is given by

‖u‖1,(A) = ‖∇u‖(A) = inf
{

 > 0 :

∫
�
A(
|∇u|



)�1

}
.

The equivalence of these two norms is a consequence of the Poincaré inequality,

‖u‖(M)�C

n∑
i=1

‖Diu‖(M) ∀u ∈ W1
0LM(�),

(see[4]). In analogy with the above definition of the Orlicz norm inLM we can define
an Orlicz norm inW1

0L(A) by

‖u‖1,A := sup
{ ∫

�
∇u∇w̃ dx : w̃ ∈ W1

0L(Ã), ‖w̃‖1,(Ã)�1
}
.

The spaceW1
0L(A) endowed with this new norm is denoted byW1

0LA.

Definition 2.9 (Sobolev conjugate (Adams[1] , p. 248)). Suppose that
∫∞

1
A−1(t)

t1+1/n dt =
+∞. Then the Sobolev conjugate function�(t) is given by

�−1(t) =
∫ t

0

A−1(�)
�1+1/n

d�, t�0.

Fact 6. Let � be bounded, and satisfying the cone property. Then

W1LA(�) ↪→ L�(�) continuously

and compactly intoLG(�), where G is any N-function increasingessentially more
slowly than �, i.e. limt→∞ G(kt)

�(t) = 0, for all k > 0.
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Example 2.1.One easily checks that for�(s) = sp+1 the above formula yieldsA(s) =
cs�, with � satisfying 1

� = 1
p+1 + 1

N
, i.e. we have the classical Sobolev imbedding

theorem forW1,�(�) ↪→ Lp+1(�).

Next, we make the following:

Definition 2.10. Let g ∈ C(R) be an N-function, andG its primitive. Then we say
that G is �-regular, if there exists a constant�G > 1 such that

lim
s→∞

sg(s)

G(s)
= �G. (2.3)

Let F(t) = G−1(t), andf (t) = F ′(t). Then the above condition is equivalent to

lim
t→∞

tf (t)

F (t)
= 1

�G
. (2.4)

Indeed, we haveG(s) = t ⇔ F(t) = s, andf (t) = d
dt
[G−1(t)] = 1

g(s)
.

Note that by Rao-Ren[9, p. 26] we have

Fact 7. If G is �-regular, thenG is �-regular, i.e.G ∈ �2 ∩ ∇2 .

3. Orlicz-space criticality

Definition 3.1 (Critical Orlicz pair). Let � and � be �-regular N-functions. Then
(�,�) are a critical Orlicz pair if there exist �-regular and conjugateN-functions
A and Ã such thatL� andL� are the smallest Orlicz spaces with

W1LA ↪→ L�, W1LÃ ↪→ L�.

Consider the following example:

Example 3.1. In Example 2.1 we saw that to�(s) = sp+1 corresponds the inverse
Sobolev conjugateA(s) = cs�, with

1

p + 1
+ 1

N
= 1

�
.

The conjugate functioñA to A is given byÃ(s) = cs�, with 1
� + 1

� = 1, which in turn

has as Sobolev conjugate�(s) = sq+1, with

1

q + 1
+ 1

N
= 1

�
.
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Adding the two equation yields

1

p + 1
+ 1

q + 1
= 1− 2

N
.

This is the critical hyperbola, see[2,5]. Thus,(|s|p+1, |s|q+1) are a critical Orlicz pair,
and so the above theorem contains the critical hyperbola as a special case. We remark
that the proof given here is also new in the polynomial case; in[2,5] fractional Sobolev
spacesHs were used in order to conserve the Hilbert space structure.

3.1. Proof of Theorem 1.1

(1) Hypothesis (1.7) expresses the fact that the function� is �-regular with �� >

N/(N − 2). Let A be the inverse Sobolev conjugate of�, see Definition2.9. Note
that W1LA is the largest Orlicz–Sobolev space that embeds intoL�.

Claim 1. A is �-regular, with �A = N��
N+��

> 1.

Indeed, letF(s) = �−1(s) andB(t) = A−1(t). ThenF(s) = ∫ s

0
B(t)

t1+1/N dt , and hence

f (s) = B(s)

s1+1/N
.

Then we have by (2.4)

1

��
= lim

s→∞
f (s)s

F (s)
= lim

s→∞
B(s) s−1/N

F (s)
.

Then, by l’Hospital’s rule

lim
s→∞

B(s) s−1/N

F (s)
= lim

s→∞
b(s) s−1/N − 1

N
s− 1

N
−1 B(s)

B(s)

s1+1/N

= lim
s→∞

b(s)s

B(s)
− 1

N
.

We conclude that

1

��
= lim

s→∞
b(s)s

B(s)
− 1

N

and thus

lim
s→∞

b(s)s

B(s)
= 1

��
+ 1

N
< 1.

This implies thatA is �-regular, with�A = N��
N+��

> 1.
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(2) Next, let Ã be the conjugate function ofA, given by Definition 2.6. Ã is a
N-function, and�-regular, see[9, Corollary 4, p. 26].

In the following, suppose thats = A′(t) (iff t = Ã′(s)); note thatt →∞ iff s →∞.
Then

1

�A
= lim

t→∞
A(t)

tA′(t)
= lim

t→∞
A(t)

ts
= lim

s→∞
st − Ã(s)

st
= 1− lim

s→∞
Ã(s)

sÃ′(s)
= 1− 1

�Ã
.

Thus, Ã is �-regular, with�Ã > 1.
We can now define the corresponding Orlicz–Sobolev spaceW1LÃ.

(3) Next, use Definition2.9 again to define the function�; by Adams[1, p. 248], �
is anN-function.

Claim 2. � is �-regular, with �� = N�Ã
N−�Ã

.

This follows similarly as in Claim 1, reversing the direction in the arguments.
Finally, L� is the smallest Orlicz space into whichW1LÃ imbeds continuously.
Thus, we have shown that(�,�) is a critical Orlicz pair.
Finally, we have

1

��
+ 1

��
= N − �A

N�A
+ N − �Ã

NÃ
= 1

�A
− 1

N
+ 1

�Ã
− 1

N
= 1− 2

N
. �

4. The tilde-map

In this section we define a map fromW1
0LA to the spaceW1

0L(Ã), whereÃ is the
Young conjugate ofA.

Theorem 4.1. For eachu ∈ W1
0LA consider

S := sup
{ ∫

�
∇u(x)∇w̃(x) dx : w̃ ∈ W1

0L(Ã), ‖w̃‖1,(Ã) = ‖u‖1,A

}
. (4.1)

Then there exists a uniquẽu ∈ W1
0L(Ã) such that

‖ũ‖1,(Ã) = ‖u‖1,A and S =
∫

�
∇u(x)∇ũ(x) dx = ‖u‖1,A‖ũ‖1,(Ã)

Furthermore, ũ depends continuously(but nonlinearly) on u.

Proof. We first remark that by Fact 5 we may assume that all the spacesW1LA,

W1L(A),W
1LÃ andW1L(Ã) are reflexive and uniformly convex. Observe also that by

(2.2)

S� sup‖w̃‖1,(Ã)‖u‖1,A = ‖u‖2
1,A.
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• Existence: Let {̃vn} be a maximizing sequence for (4.1). Since the sequence is
bounded, we have by reflexivity that (for a subsequence)ũ ⇀ ṽ weakly inW1

0L(Ã). So∫
� ∇u∇ṽn → S, and consequently

∫
� ∇u∇ũ = S, that is, the supremum is attained.

It remains to prove that‖ũ‖1,(Ã) = ‖u‖1,A. Suppose by contradiction that‖ũ‖1,(Ã) =
k < ‖u‖1,A. Take w̃ = (̃u/k)‖u‖1,A. Then for thisw̃ we have

S�
∫

�
∇u∇w̃ =

∫
�
∇u∇ũ ‖u‖1,A

k
> S,

which is impossible.
• Uniqueness: by the uniform convexity ofW1

0LA, ũ is unique.
• Continuity: Let un → u �= 0 in W1

0LA. By the above we have‖ũn‖1,(Ã) = ‖un‖1,A
and ‖ũ‖1,(Ã) = ‖u‖1,A. Consequently‖ũn‖1,(Ã) → ‖ũ‖1,A. So we have that, for some

subsequence,̃un ⇀ ṽ in W1
0L(Ã). If we prove that̃v = ũ, then in fact we are concluding

that the whole sequencẽun converges strongly tõu in W1
0L(Ã). To this end observe

that ∫
�
∇un∇ũn = ‖ũn‖1,(Ã)‖un‖1,A

implies

∫
�
∇u∇ṽ = ‖ũ‖1,(Ã)‖u‖1,A.

We claim that ‖̃v‖1,(Ã) = ‖u‖1,A, and then by the uniqueness of̃u it follows that
ṽ = ũ and the proof is complete. The claim is proved by contradiction as we did in
the existence above assuming that‖̃v‖1,(Ã) = k < ‖u‖1,A. �

Using the previous theorem we now define the “tilde-map”

˜: W1
0LA −→ W1

0L(Ã),

u �−→ ũ,

which is continuous.

Remark 4.2. It follows from the construction that the tilde-map is positively homoge-
neous, i.e.

�̃u = �ũ ∀u ∈ W1LA ∀��0

With the help of the tilde-map, we define two continuous sub-manifolds of

E := W1
0LA ×W1

0L(Ã)
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by

E+ = {(u, ũ); u ∈ W1
0LA} and E− = {(u,−ũ); u ∈ W1

0LA}.

We remark thatE+ and E− are nonlinear submanifolds ofE when regarded with
respect to the standard vector space structure ofE. Surprisingly,E+ andE− turn out
to be linear with respect to the following notion oftilde-sum:

Definition 4.3 (Tilde sum). Given elements(u, ṽ) ∈ E and (y, z̃) ∈ E, we set

(u, ṽ) +̃ (y, z̃) := (u+ y, ṽ + z).

Indeed, with this notion we can prove

Lemma 4.4. (1) Let (u, ũ) ∈ E+ and (v, ṽ) ∈ E+; then, for all �,� ∈ R

�(u, ũ) +̃ �(v, ṽ) ∈ E+ and �(u, ũ) +̃ �(v, ṽ) = (�u+ �v, ˜�u+ �v).

(2) For every(y, z̃) ∈ E there exist unique elements(u, ũ) ∈ E+ and (v,−ṽ) ∈ E−
such that

(y, z̃) = (u, ũ) +̃ (v,−ṽ),

i.e. we can write

E = E+ ⊕̃ E−.

Proof. (1) We have

�(u, ṽ) +̃ �(y, z̃) = (�u, �ṽ) +̃ (�y,�z̃)

= (�u, �̃v) +̃ (�y, �̃z) = (�u+ �y, ˜�v + �z).

(2) • Uniqueness: Suppose that(u + v, ũ− v) = (u1 + v1, ũ1 − v1); then u + v =
u1 + v1 and ũ− v = ũ1 − v1, which impliesu = u1 and v = v1.
• Existence: We look for elementsu and v in W1

0LA such that

(y, z̃) = (u, ũ) +̃ (v,−ṽ) = (u+ v, ũ− v).

That is,y = u+ v and z = u− v, and henceu = y+z
2 and v = y−z

2 . �
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5. An existence theorem

In this section we prove the existence of a nontrivial solution for system (1.1), in
the case of superlinear nonlinearities which have subcritical growth with respect to a
given critical Orlicz pair.

5.1. The functional

In this section, we define the framework for the functionalI associated to problem
(1.1) and given in (1.2).

We first give the precise definition ofuniformly superquadratic near zero.

Definition 5.1. A continuous functionH : R → R is uniformly superquadratic near
zero, if there exist numbers > 2 andc�1 such that

H(st)�cs H(t) ∀t > 0 ∀s ∈ [0,1]

Note that ifH(t) = tp with p > 2, thenH satisfies the definition with = p.
In Section 3 we have proved the existence of critical Orlicz pairs(�,�). As specified

in Theorem1.3, we assume that the functionsF andG grow essentially more slowly
than � and �, respectively. Since we are interested in positive solutions we redefine
F andG to be zero on(−∞,0].

Consider the functionalI : W1
0LA(�)×W1

0L(Ã)(�)→ R given by

I (u, ṽ) =
∫

�
∇u∇ṽ dx −

∫
�
[F(u)+G(̃v)] dx (5.1)

Here ṽ ∈ W1
0L(Ã)(�) is an independent variable; we writẽv to emphasize that̃v

belongs to the spaceW1
0L(Ã)(�).

The functionalI is well defined and belongs to the classC1 with

I ′(u, ṽ)(�, �̃) =
∫

�
[∇u∇�̃+ ∇ṽ∇�] dx −

∫
�
[f (u)�+ g(̃v)̃� ] dx, (5.2)

for all (�, �̃) ∈ W1
0LA(�)×W1

0L(Ã)(�). Consequently, critical points of the functional
I correspond to the weak solutions of (1.1).

5.2. The geometry of the linking theorem

We first prove that the functionalI given in (5.1) has the geometry of the linking
theorem.

Let E+ andE− be as in Section 4.
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Lemma 5.2. There exist�0, 0 > 0 such thatI (z)�0, for all z ∈ �B�0
∩ E+.

Proof.

I (u, ũ) =
∫

�
∇u∇ũ dx −

∫
�
F(u) dx −

∫
�
G(̃u) dx.

Now, using that

∫
�
∇u∇ũ dx = ‖u‖1,A ‖ũ‖1,(Ã) = ‖u‖2

1,A = ‖ũ‖2
1,(Ã)

and by (2.1)

‖u‖1,A�‖u‖1,(A)

we obtain that

I (u, ũ)� 1

2
‖u‖2

1,(A) −
∫

�
F(u) dx + 1

2
‖ũ‖2

1,(Ã)
−

∫
�
G(̃u) dx.

Assume that� ∈ (0,1), u ∈ W1
0LA(�) and ‖u‖1,(A) = c−1

1 , wherec1 > 0 is such that

‖u‖(�)�c1‖u‖1,(A).

Since

‖u‖(�) = inf { 
 > 0 :
∫

�
�(
|u|


)�1}�1,

it follows that
∫

� �(|u|)�1, and thus
∫

� F(|u|)�c. By hypothesis (H3) we get for
0���1

∫
�
F(�u) dx�c�

∫
�
F(u) dx�c�.

Hence we obtain that

1

2
‖�u‖2

1,(A) −
∫

�
F(�u) dx� 1

2
�2 ‖u‖2

1,(A) − c�.
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Arguing similarly for G and ũ we get

1

2
‖�ũ‖2

1,(Ã)
−

∫
�
G(�ũ) dx � 1

2
�2 ‖ũ‖2

1,(Ã)
− c�1.

By joining the two estimates we can find a�0 > 0 such that

I (u, ũ)�0 > 0 for ‖(u, ũ)‖ = �0 > 0

This concludes the proof.�

Let e1 denote the first eigenfunction of the Laplacian, with‖(e1, ẽ1)‖ = 1 and set

Q = {r(e1, ẽ1) +̃ w : w ∈ E−, ‖w‖�R0 and 0�r�R1}.

Lemma 5.3. There exist positive constantsR0, R1 such thatI (z)�0 for all z ∈ �Q.

Proof. Notice that the boundary�Q of the setQ is taken in the setR(e1, ẽ1) +̃ E−,
and consists of three parts.

(i) If z ∈ �Q ∩ E− we haveI (z)�0 because, for allz = (�,−�̃) ∈ E−,

I (z) = −‖�‖2
1,(A) −

∫
�
[F(�)+G(−�̃)] dx�0.

(ii) If z = r(e1, ẽ1) +̃ (�,−�̃) = (re1+�, ˜re1 − �) ∈ �Q with ‖(�,−�̃)‖ = R0 and
0�r�R1, we proceed as follows:

First step: Assume thatR1 = 1:

I (z) �
∫

�
∇(re1 + �)∇( ˜re1 − �) dx

= −
∫

�
∇(�− re1)∇(�̃− re1) dx − 2r

∫
�
∇e1∇(�̃− re1)

� −‖�− re1‖2
1,A + 2‖re1‖1,A‖�̃− re1‖1,(Ã)

� −‖�− re1‖2
1,A + 2‖re1‖1,A‖�− re1‖1,A

� −‖�‖2
1,A − ‖re1‖2

1,A + 2‖re1‖1,A‖�‖1,A

+2‖re1‖1,A
(‖�‖1,A + ‖re1‖1,A

)
� −‖�‖2

1,A + 4r‖�‖1,A + r2.
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Since 2‖�‖2
1,A�‖�‖2

1,A + ‖�̃‖2
1,(Ã)

= R2
0, we conclude that the last expression is

�0, for R0 sufficiently large.
Second step: Observe that using homogeneity this now holds for all��1 with

0�r�� and ‖(�,−�̃)‖ = �R0.
(iii) Finally, let z = �(e1, ẽ1) +̃ �(�,−�̃) = (�e1 + ��, ˜�e1 − ��) ∈ �Q with

‖e1‖1,(A) = 1
2 and ‖(�,−�̃)‖�R0.

We show: there existsR1 > 0 sufficiently large such that for all��R1, we have
I (z)�0. We use thatW1

0LA(�) ↪→ L�(�), W1
0LÃ(�) ↪→ L�(�), and that by as-

sumption (H2):F(s)�c|s|� − c1 andG(s)�c|s|� − c1, for some� > 2; then

I (z) =
∫

�
∇(�e1 + ��)∇( ˜�e1 − ��) dx −

∫
�
[F(�e1 + ��)+G( ˜�e1 − ��)] dx

� �2‖e1 + �‖1,A‖ẽ1 − �‖1,(Ã) − c

∫
�
|�e1 + ��|� dx + c1

−c
∫

�
| ˜�e1 − ��|� dx + c1

� �2[‖e1‖1,A + ‖�‖1,A]2 − c��
{ ∫

�
|e1 + �|� dx +

∫
�
|ẽ1 − �|� dx

}
+ 2c1.

Thus

I (z)��2(1+ R0)
2 − c���0 + 2c1, (5.3)

where

�0 := inf
‖(�,−�̃)‖�R0

{ ∫
�
|e1 + �|� dx +

∫
�
|ẽ1 − �|� dx

}
> 0.

Indeed, suppose by contradiction that there exists a sequence(�n) ⊂ W1
0LA(�) such

that ‖(�n,−�̃n)‖�R0 and

lim
n→∞

{ ∫
�
|e1 + �n|� dx +

∫
�
| ˜e1 − �n|� dx

}
= 0.

Taking a subsequence, we may assume that�n → � ∈ L� (sinceW1LA ⊂⊂ LF ⊂ L�)
which implies thate1 + �n → e1 + � and ˜e1 − �n → ẽ1 − � in L�, where we have
used the continuity of the tilde mapping. Thus, taking the limit we see that

∫
�
|e1 + �|� dx +

∫
�
|ẽ1 − �|� dx = 0

which implies thate1 + � = ẽ1 − � = 0. So,e1 = � = 0, which is a contradiction.
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Finally, using (5.3) we can findR1 > 0 such thatI (z)�0 for all ��R1, and hence,
the geometry of the linking theorem holds.�

5.3. On Palais–Smale sequences

Proposition 5.4. Let (um, ṽm) ∈ E such that

(I1) I (um, ṽm) = c + �m, where�m → 0 asm→+∞;
(I2) |I ′(um, ṽm)(�, �̃)| � εm‖(�, �̃)‖, for �, � ∈ {um, vm}, where εm → 0 as m →

+∞,
then

‖um‖1,A�C, ‖̃vm‖1,(Ã)�C,∫
� f (um)um dx�C,

∫
� g(̃vm)̃vm dx�C,∫

� F(um) dx�C,
∫

� G(̃vm) dx�C.

Proof. From (I1) we have

∫
�
∇um∇ṽm dx −

∫
�
F(um) dx −

∫
�
G(̃vm) dx = c + �m. (5.4)

Taking (�, �̃) = (um, ṽm) in (I2) we have

| 2
∫

�
∇um∇ṽm dx −

∫
�
f (um)um dx −

∫
�
g(̃vm)̃vm dx | �εm‖(um, ṽm)‖, (5.5)

which together with (I1) and (H3) implies that

(�− 2)
∫

�
[F(um)+G(̃vm)] dx�2c + 2�m + εm‖(um, ṽm)‖.

Thus ∫
�
F(um) dx�c(1+ �m + εm‖(um, vm)‖),

∫
�
G(̃vm) dx�c(1+ �m + εm‖(um, vm)‖)

and then by (5.4)

|
∫

�
∇um∇ṽm dx|�c(1+ �m + εm‖(um, vm)‖)
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and finally by (5.5) also

∫
�
f (um)um dx�c(1+ �m + εm‖(um, vm)‖),

∫
�
g(̃vm)̃vm dx�c(1+ �m + εm‖(um, vm)‖).

Taking (�, �̃) = (0, ũm) in (I2) we have

|
∫

�
∇um∇ũm dx −

∫
�
g(̃vm)̃um dx| � εm‖(0, ũm)‖ = εm‖ũm‖1,(Ã),

thus,

‖um‖2
1,A −

∫
�
g(̃vm)̃um dx�εm‖ũm‖1,(Ã). (5.6)

Setting Ũm = ũm/C0‖ũm‖1,(Ã) and Vm = vm/C1‖vm‖1,A we have‖Ũm‖1,(Ã) = 1/C0

and ‖Ũm‖(�)�C0‖Ũm‖1,(Ã)�1 and thus by (5.6)

‖um‖1,A�C0

∫
�
g(̃vm)Ũm + �m. (5.7)

Note also that

1

C

∫
�
G(Ũm)�

∫
�

�(Ũm) dx�1

since‖Ũm‖(�) = inf {
 :
∫

� �( Ũm


 )�1}.
We now rely on the following elementary inequalities

xy�F(x)+ f−1(y)y and xy�G(x)+ g−1(y)y. (5.8)

Applying (5.8) to the first term on the right-hand side in (5.7), with y = g(̃vm) and
x = Ũm yields

∫
�
g(̃vm)Ũm dx �

∫
�
G(Ũm)+

∫
�
g(̃vm)̃vm dx

� C(1+ �m + εm‖(um, ṽm)‖).
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Now using (5.7), we get

‖um‖1,A�εm + C(1+ �m + εm‖(um, ṽm)‖).

Arguing similarly, choosing(�, �̃) = (vm,0), yields

‖̃vm‖1,(Ã)�εm + C(1+ �m + εm‖(um, ṽm)‖).

Joining the two estimates yields the claim.�

5.4. Approximation by finite-dimensional problem

The functionalI given by (1.2) is strongly indefinite near zero, since the first term is
positive on the submanifoldE+, and negative on the submanifoldE−. Since bothE+
andE− are infinite dimensional, the standard linking theorems do not apply. We over-
come this difficulty by using a finite-dimensional approximation. Denoting bye1, e2, . . .

an orthonormal basis of eigenfunctions associated to the eigenvalues
1, 
2, . . . of the
Laplacian (with Dirichlet boundary conditions), we setEn = span{e1, e2, . . . , en}. Let

E+n := {(z, z̃); z ∈ En} , E−n := {(z,−z̃); z ∈ En} .

Setting Ẽn = {̃v | v ∈ En}, one shows exactly as in Lemma4.4 that

En × Ẽn = E+n ⊕̃ E−n .

We recall once more thatE+ andE− are linear with respect to the “tilde-sum”. Thus,
we can define the following “projections”:

P−
n : E+n ⊕̃ E−n → E−n , P−

n ((u, ṽ)) = ( u−v2 ,− ũ−v
2 ),

P+
n : E+n ⊕̃ E−n → E+n , P+

n ((u, ṽ)) = ( u+v2 , ũ+v2 ),

which are clearly continuous mappings.
We now restrict the functionalI to En × Ẽn = E+n ⊕̃ E−n . Consider the set

Qn := {w +̃ r(e1, ẽ1); w ∈ E−n , ‖w‖�R0 and 0�r�R1} ⊂ E+n ⊕̃ E−n ,

whereR0 andR1 are as in Lemma5.3. Furthermore, define the class of mappings

Hn = {h ∈ C(Qn,E
+
n ⊕̃E−n ); h(z) = z on �Qn},
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where�Qn is the boundary ofQn relative toE+n ⊕̃ E−n . Finally, set

cn = inf
h∈Hn

max
z∈Qn

I (h(z)).

We show

Lemma 5.5. The setsQn and �B�0
∩ E+n link, i.e.

h(Qn) ∩ (�B�0
∩ E+n ) �= 0 ∀h ∈ Hn. (5.9)

Proof. The statement (5.9) is equivalent to saying that

∃(u, ṽ) ∈ Qn such that‖h(u, ṽ)‖ = �0 and P−
n h(u, ṽ) = 0. (5.10)

Let (u, ṽ) = w+̃s(e1, ẽ1) ∈ Qn. Define the continuous maps (here we use Remark4.2)

�t : Qn → E−n +̃ [(e1, ẽ1)],
�t (w +̃ s(e1, ẽ1))

= tP−
n h((u, ṽ)) +̃ (1− t)w +̃ [t‖P+

n h((u, ṽ))‖ + (1− t)s − �0](e1, ẽ1).

Note that for(u, ṽ) = w +̃ t (e1, ẽ1) ∈ �Qn, we have

�t (w +̃ s(e1, ẽ1)) = w +̃ (s − �0)(e1, ẽ1) �= (0,0) ∀t ∈ [0,1]

and hence

�0(w +̃ s(e1, ẽ1)) = w +̃ (s − �)(e1, ẽ1)

is homotopic to

�1(w +̃ s(e1, ẽ1)) = P−
n h((u, ṽ)) +̃ (‖P+

n h((u, ṽ))‖ − �0)(e1, ẽ1).

By the properties of the topological degree on oriented manifolds (see[7]) we have
that the degree of the maps�t with respect toQn and (0,0) is well defined, and that

deg(�1,Qn, (0,0)) = deg(�0,Qn, (0,0)) = 1.
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Hence, there exists an element(u, ṽ) ∈ Qn such that�1(u, ṽ) = (0,0), and hence
satisfying (5.10). �

Choosing�0 as in Lemma5.2, we now conclude that

cn�0 > 0 for all n ∈ N.

Furthermore, sinceidE+n ⊕̃E−n ∈ �n, we have forz = r(e1, ẽ1) +̃ (u,−ũ) ∈ Qn

cn� max
z∈Qn

I (z)�R2
1 ‖e1‖2�c R2

1.

Thus, by the linking theorem (see[8]), we obtain a PS-sequence, which is bounded in
view of Proposition5.4. SinceE+n ⊕̃ E−n is finite dimensional, we therefore get that
cn is a critical level ofI |E+n ⊕̃E−n , for eachn ∈ N, with a corresponding sequence of
critical pointszn ∈ E+n ⊕̃ E−n with ‖zn‖�c, wherec does not depend onn.

5.5. Limit for n→∞

By the last subsection we have a sequencezn = (un, ṽn) ∈ En × En with

I (zn) = cn ∈ [0, cR
2
1] and I ′(zn) = 0. (5.11)

By Proposition5.4 we have‖zn‖�c and hence, for a subsequence,zn = (un, ṽn) ⇀

z = (u, ṽ) in E = W1
0LA×W1

0L(Ã). Again by Proposition5.4 we have
∫

� F(un) dx�c,∫
� G(̃vn) dx�c and

∫
� f (un)un dx�c,

∫
� g(un)un�c. Using Lemma 2.1 in[3] we

conclude that

f (un)→ f (u) and g(̃vn)→ g(̃v) in L1(�)

Taking arbitrary test functions(0, �̃) and (�,0) in En × Ẽn we get

∫
�
∇un∇�̃ dx =

∫
�
g(̃vn)̃� dx,

∫
�
∇ṽn∇� dx =

∫
�
f (un)� dx ∀�, � ∈ En.

(5.12)

Using the fact that∪n∈N(En×Ẽn) is dense inE, we obtain by taking the limitn→∞,

∫
�
∇u∇�̃ dx =

∫
�
g(̃v)̃� dx ∀̃� ∈ W1LÃ,∫

�
∇ṽ∇� dx =

∫
�
f (u)� dx ∀� ∈ W1

0LA .

Thus, (u, ṽ) ∈ W1
0LA ×W1

0L(Ã) is a weak solution of problem (1.1).
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It remains to show that(u, ṽ) is nontrivial; assume by contradiction thatu = 0, then
by the Eq. (1.1) also ṽ = 0. Note that we can find a suitable�-regularN-function F1
with F1 ≺≺ � and the propertiesF(x)�F1(x), f (x)�f1(x) ∀x ∈ R+. Thus

‖un‖(F1) → 0, i.e. inf{
 > 0 ;
∫

�
F1(

un



)�1} =: 
n → 0.

Since, for
n < 1 holds 1

n

∫
� F1(un)�

∫
� F1(

un

n
)�1, we conclude that

∫
�
F(un)�

∫
�
F1(un)�
n → 0.

SinceF1 is �-regular, we havexf1(x)�cF1(x), for somec > 1, and hence

0�
∫

�
f (un)un�

∫
�
f1(un)un�c

∫
�
F1(un) dx → 0 . (5.13)

This implies now by (5.12), choosing� = un, that
∫

� ∇un∇ṽn dx → 0, and thus also
I (un, ṽn)→ 0. But this contradicts thatI (un, ṽn)�0 > 0, for all n ∈ N.

This concludes the proof of Theorem1.3. �

6. Critical Orlicz pairs near the critical hyperbola

In this section, we considerN-functions of the (asymptotic) type

�(s) ∼ sp+1(log(1+ s))� (6.1)

with p > 1 and� > 0.
It is natural to expect that the critical Orlicz associate� (i.e. such that(�,�) form

a critical Orlicz pair) will be given by aN-function � of the asymptotic form

�(s) ∼ sq+1(log(1+ s))−�, (6.2)

where q satisfies 1
p+1 + 1

q+1 = 1− 2
N

, and some relation between� and �. This is
indeed so, and the relation between� and � will be given in Proposition6.3 below.

We begin by showing that functions of type (6.1) and (6.2) satisfy the hypotheses
of Theorem1.3.

Lemma 6.1. Suppose that�(t) is of the form

�(t) = tp+1 g(t),
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wherep > 1, and g ∈ C(R+,R+) satisfying one of the following conditions:

(1) g(t) increasing,
(2) g(t) ↘ 0 and g(t) t� increasing for large t, for any � > 0.

Then� is uniformly superquadratic near zero(see Definition5.1).

Proof. Let 0< s�1 and t > 0.

(1) We have, using thatg is increasing,

�(st) = (st)p+1g(st) = sp+1tp+1g(t)
g(st)

g(t)
= sp+1g(st)

g(t)
�(t)�sp+1�(t).

(2) We have, for some 0< � < p − 1

�(st) = (st)p+1g(st) = sp+1g(st)

g(t)
�(t) = s2+��(t) sp−1−� g(st)

g(t)
�s2+��(t),

indeed, let� = p−1− �, and suppose thatt�g(t) is increasing fort� t0. Then we
have, since 0�s�1

s�
g(st)

g(t)
� max

0� t� t0

g(st)

g(t)
+max

t� t0

(st)�g(st)

t�g(t)
�c . �

Lemma 6.2. Suppose that� is of classC1, and (asymptotically) of the form

�(s) ∼ csp+1g(s) with p + 1 >
N

N − 2

and

lim
s→∞

g′(s)
g(s)

= 0.

Then� is �-regular, with � = p + 1 (see Definition2.11).

Proof. Indeed, we have

lim
s→∞

s�(s)
�(s)

= lim
s→∞

(p + 1)sp+1g(s)+ sp+1g′(s)
sp+1g(s)

= p + 1. �
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Proposition 6.3. Suppose that� is (asymptotically) of the form

�(s) = csp+1(log s)� with p + 1 >
N

N − 2
.

Then the associate critical Orlicz function� is (asymptotically) given by

�(s) = dsq+1(log s)
−� q+1

p+1

with

1

p + 1
+ 1

q + 1
= 1− 2

N
. (6.3)

Proof. It is easy to check that (asymptotically)

(1) �−1(t) ∼ c1t
1

p+1 (log t)
− �

p+1 .

(2) (�−1)′(t) ∼ c2t
1

p+1−1
(log t)

− �
p+1 .

(3) Using Definition2.9:

A−1(t) ∼ c3t
N+(p+1)
N(p+1) (log t)

− �
p+1 .

(4) A(s) ∼ c4s
N(p+1)
N+(p+1) (log s)

� N
N+(p+1) .

(5) Ã(s) ∼ c5s
N(p+1)

Np−(p+1) (log s)
−� N

Np−(p+1) .

(6) Ã−1(t) ∼ c6t
Np−(p+1)
N(p+1) (log t)

�
p+1 .

(7) Ã−1(t)

t1+ 1
N

∼ c6t
−2p−1
Np (log t)

�
p+1 .

(8) Using again Definition2.9:

�−1(t) ∼ c7t
(N−2)(p+1)−N

N(p+1) (log s)
�

p+1 .

(9) �(s) ∼ c8s
N(p+1)

(N−2)(p+1)−N (log s)
− �

p+1
N(p+1)

(N−2)(p+1)−N . Setting q + 1 := N(p+1)
(N−2)(p+1)−N ,

once checks that (6.3) holds, and thus finally

(10) �(s) ∼ dsq+1 (log s)
−� q+1

p+1 . �

We remark that M.A. Krasnoselskı̆ and J.B. Rutickĭı, in their book on Orlicz spaces
[6, Chapter I, Section 7], consider the class ofN-functions

�(s) = csp+1(log s)�1(log log s)�2 . . . (log log. . . log s)�k , �i ∈ R.
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Repeating the above calculations one shows that the critical Orlicz associates to these
functions are given by

�(s) = dsq+1(log s)−�1(log log s)−�2 . . . (log log. . . log s)−�k

with

1

p + 1
+ 1

q + 1
= 1− 2

N
and �i = �i

q + 1

p + 1
, i = 1, . . . , k.
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