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Abstract

This paper deals with the study of the quasilinear critical problem

—eP Apu + V(Z)Mp_l = f(u)+ uP" =1 in RV,

) .
SURNY NWEPRN), u>0 in RN, (Pe)

u € C
whereg is a small positive parametdiis a subcritical nonlinearityp*=pN/(N — p), 1< p <N, is
the critical Sobolev exponent; ant: RY — Ris a function which is bounded from below away from
zero such that inf, V > infg V for some open bounded subggbf RN . wWe study whether we can
find solutions of( P;) which concentrate around a local minimalofnot necessarily nondegenerate.
The proof of this result is variational based on the local mountain-pass theorem.
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1. Introduction

The main purpose of this paper is to study the existence and concentration behavior of
bound statdor the quasilinear critical problem of the form

—ePApu + VuP = fu)+u’1 inRY,

P
u € CggRY) N WP (RY), u >0 in RV, (P)

whereg > 0 is a small real parameted;,u : =div(]Vu|?~2Vu) is the p-Laplacianp* =
pN/(N — p), 1< p <N, is the critical Sobolev exponent, andl: RY — RisacC?
function satisfying
(Vo) there is a positive constamtsuch that

V(iz)=a VzeRY;

(V1) there is an open bounded sub€eof RY such that

inf V>inf V =: V.
2Q Q

We also assume that: R, — Ris aC? function satisfying the following conditions

(f1) f(s)=o(s""Y) ass — 0;
(f2) there arey1, g2 € (p — 1, p* — 1), 4> 0 such that

fs)> s forall >0 and lim <&

s—>o00 §92

0;

(f3) forsomel € (p, g2 + 1) we have
N
0<0OF(s) = 9/ fde< f(s)s foralls>0;
0

(f4) the functions=? f(s) is nondecreasing far> 0.

The main result of this paper is stated as follows:

Theorem 1.1. Suppose that the potential V satisfiég)—(V1) and f satisfieg f1)—(fa)-
Then there is;, > 0 such that probleniP;) possesses a positive bound state solutign
for all 0 < ¢ < ¢,, provided that one of the following conditions halds

(@ N=p?

(b) p<N < p? p*— pLH—1<q1<p*—1;

(c) p<N < p?, p*— i1 —1>q1 and large..
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Moreover whenl < p <2, u, possesses at most one lo¢aénce globgl maximumg, in
RY, which is insideQ, such that

lim V(zgp)=V,=infV
e—0t Q

and there are C ana positive constants such that

— 2

Up(x) <C exp(—oc al ) forall x e RV.

The study of such a class of problems in the semilinear case, which correspgnd2to
has been motivated in part by the search for standing waves for the nonlinear Schrédinger
equation

2
o == oA+ VW — gl Yy, in RY, (1.1)

namely, solutions of the formi(z, t) = exp(—i Et/¢)v(z), wheree, m, y, andp are positive
constantsp > 1, E € R andv is real. In fact, it is readily checked thétsatisfies (1.1) if,
and only if, the functiorv(z) solves the semilinear elliptic equation

2
— SﬂAu + (V@) — Ey=yp/ Y inRY. (1.2)

Floer and Weinsteif12], using Lyapunov—Schmidt methods have proved the existence

of standing wave solutions concentrating at each given nondegenerate critical point of

the potentialV, provided thatV is bounded,N = 1 andr = 3. Their method was ex-

tended by OH20,21] to higher dimensions, in the case<2 < (N + 2)/(N — 2). Ra-

binowitz [22] among others results obtained existence results under the assumption that

inf V <lim inf ;o V(z) and 1<r < (N + 2)/(N — 2). He used variational methods

based on variants of the mountain-pass theorem and considered the case of degenerated

critical point of the potentiaV/. For this class of problems, Waifig8] complemented the

work of Rabinowitz obtaining the concentration behavior of the solutions. Recenii®j, in

del Pino and Felmer have proved the existence and concentration behavior of bounded state

solutions under the potential conditiofig) — (V1) for subcritical nonlinearities. This result

was complemented if2] to elliptic problems involving critical growth. In this paper we

extend these results, since we are considering a more general class of operator. To prove

the existence of solutions, we adapt some ideas {481 and to prove the decay of the

solutions, we make use of the local estimates of S¢2&h. To obtain the concentration

behavior of solutions we use a recent result containdd4h about symmetry of ground

states solutions of quasilinear equations.

Several papers have appeared recently about the p-Laplacian problems involving critical
growth. For the case of bounded domains, we mention the works of Azorero and f3pnso
Egnell[11] and Guedda and Verdh5], and references therein. As to unbounded domains,
we recall the results of Alves et §l.], Ben-Naoum et a[4], Goncalves and Alvegd 4] and
Jianfu and Xi Pind16]. We referred to their references for other related results.

The underlying idea for proving Theorem 1.1 has two basic steps. First, in Section 2, we
modify the functionf («) outside the domaif such that the associated energy functional
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to the modified problem satisfies the Palais—Smale condition and to which we may apply
the mountain-pass theorem. In the last section, with the aid of some local estimates, we
prove that the solution of the modified problem is in fact a solution for the original problem
and we study the concentration behavior of the solution.

Notation In this paper we make use of the following notation:

Let U be a domain ifRY. ck*(U), with k being a nonnegative integer ane@ < 1,
denotes Holder spaces; the normih*(U) is denoted byiullk o 0;

LP(U), 1< p<oo, denotes Lebesgue spaces; the normhAris denoted by|u|,;

wlP(U), denotes Sobolev spaces; the nornitit? (U) is denoted byllullwir;

C, Cop, C1, C2, ... denote (possibly different) positive constants;

u4+ = max{u, 0} andu_ = min{u, 0};

1.4 denotes the characteristic function of subsef R";

We denote bySthe best Sobolev constant of the Sobolev embedding” (RY)
L™ (RV), that is,

=inf{|Vul},/lul? .. : u e DE™(RV)\(0}}. (1.3)

According to Lemma 2 if25], Sis attained by the functions, given by

2 _1TW=p)/p?
C(N, p)eN=p/p . N —p\*
= with = 1.4
we(2) 6+ 2P/ P—D]N—P)/7 th C(N, p) N b—1 (1.4)

foranyz € RY and anys > 0.

2. The modified functional

Since we seek positive solutions, it is convenient to defii® = 0, for s <0. Also,
we modify the nonlinearity into a more appropriate one to obtain a existence result as an
application of the mountain-pass theorem. Namely, we consider the following Carathéodory
function:

[ 20@f6) + 7Y +yp) f(s) if >0,
g(Z’S)_{O P if s <O,

where

N f(s)—i—s” -1 if s<a,
D=R"\Q, f()_{ Igp=1y if s>a,

k> 0(0 — p)~t>1 anda > 0 is such thatf(a) + a’ 1 =k 1ar—1y. We Setﬁ(s) =
[2 f(ndrandG(z, s) = 1o(F(s) + 2=52) + 1p F(s).

Notice that, usind f1)—(fa) it is easy to check that the nonlineargyx, u) satisfies the
following properties:

(g1) g(z,5) = f(s) +s7 "L =0(sP~1), near the origin, uniformly in € RY;
(g2) g(z. )< f(s)+sP Lforalls >0,z e RY;
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(g3) 0<0G(z,5)<g(z,s)sforallze Q, s>00rze D ands<aand 0K pG(z,s)<
g(z, s)sé% (z)s? for all z € D,s>0.
(g4) The functiong(z, s)/s?~Lis increasing inv > 0 for each fixed.

Now, we consider the functional
1
J(u)=— f (|Vul? + V()|u|?)dz — / G(z,u)dz,
P JrRY RN
defined on the reflexive Banach space
E = {u e WHP(RN) - fN V(2)|ul? dz<oo},
R

endowed with the norriu|| : ={ [y (1Vul? + V (2)[ul?) dz}¥/?.
It is well known thatl is in C1(E, R) (se€[7]) with Fréchet derivative given by

J (v :/ [Vul?~?VuVu + V(2)|u|? %uv] dz —/ g(z, u)vdz.
RN RN

Itis standard to prove thdwerifies the mountain-pass geometrical conditions. We include
a proof for completeness.

Lemma 2.1 (mountain-pass geomejryThe functional J satisfies the following conditions

(i) there existr, f > 0, such that/ (u) = f if ||lu| = o,
(i) foranyu e C3°(€2, [0, +-00)), we have/y(tu) — —oo ast — +oc.

Proof. As usual, from our assumptions we have
1 "
Fu)<—|s|” +Cl|s|" .
2p
Thus, using g2) and Sobolev inequality, we find
1 .
J(u)>2—||ull” = Cllull”.
p

Hence, there exist constantsf > 0, such that/ (u) > f if |u| = a.
Let u be a nontrivial function inC3° (€2, [0, +00)). Thus, usingg>), for all# > 0

P 7" .
J(tuw) < — ul|l? = — / uf.
P p* Jry
Of course,J (1) — —oo ast — oo. This completes the proof. [J
Proposition 2.2. There exists a bounded sequelieg) C E such that
1
J(uy,) — c, O<C<NSN/1’, and J'(u,) = 0, as n — oo, (2.1)

provided that one of conditior(d), (2) or (3) in Theoreml.1 holds
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Proof. Inview of Lemma 2.1, we may apply a version of mountain-pass theorem without
a Palais—Smale condition (¢#%,18]), to obtain a Palais—Smale sequence associated to the
functionalJ, more preciselyu,) C E such that

J@w,) — c>0 and J'(u,) — O, (2.2)
where

= inf J(Oy(t
c= Jnrtn?gx (y(@))

and
I'={yeC(0,1],E) : y(0) =0 andJ(y(1)) < 0}.

Next, as a consequence of assumptiongwe prove that the mountain-pass minimax level
¢ can be characterized in a simpler way, as has been establisf@&d0hand[22] to the
semilinear case.

Assertion 2.1.

c= |nf m2a3< J(tv). (2.3)

l+#

Proof. From our hypothesis and Lemma 2.1, it is easy to check that for eachufixefl,
such thatt # 0, the functionr — J(ru) has at most one critical point € (0, +00)
and it satisfies

1
llull? = T o g(z, tyu)u dz.
u

Furthermore,

max J (tu) = J (tyu).
ma (tu) = J(tyu)

Thus,

inf max J(tv) < |nf J(v),
veE >0
vy #0

whereM = {v =t,u : u € E — {0} ands, € (0, +00)}. It is obvious that <inf,cps J (v).
In order to prove the other inequality, givere I', it is enough to obtaim, € (0, 1) such
thatu, = y(t,) € M. Let us assume the contrary, that is, there is ga(0, 1) such that

o1 = [ | e

Thus, since(0) = 0, from (g1) we must have

II“/(t)II”>/RN 8z, y@)y(1)dz Vi € (0,1).
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This estimate together with conditigpsz) implies

783

1 1
J((@) = —IIV(t)Ilp—/ G(z,7(t))dz> — / gz, y(®))y()—pG(z,y())]dz
p RV p JrRY

0—
>—P / Gz (1) dz =0
P Q
forall r € (0, 1). But this is contrary tg € I'. Thus, Assertion 2.1 holds.OJ
Assertion 2.2. Every sequence,) C E satisfying(2.2)is bounded in&.

Proof. Using assumptioiigz) we find

1 1
JWp) — = J (up)u, = <_ -
p

llun ll” 9/ (ung(z, un) — 0G(z, un)]dz

)
0 0
1 1
<E 5) lunl? + / (8 (2. 1) — 0G (2. )1 2
1 1
> (5= )+ C52 [ G
p 0

-0
||un||P+M/ V(2)|un? dz
Pkl JrV_o

_(0=»r P _ 1 P
= (58 [ v+ (1= 1) v

which together with (2.2) implies thai,,) is bounded irE. [

Now we closely follow the approach frof8], to prove the next result.

Assertion 2.3. There exist® € E — {0} such that

SsN/p
max J(tv) <

/

Proof. For eachl > 0, consider the functions
Br(2)
X 1/p*’
<f|z|<2 ﬁf dZ)

B:(2) = p(2)we(z) andvy(z) =

(2.4)

(2.5)

where¢ e CSO(RY,[0,1]), ¢(z) = 1 if |zI<1 and$(z) = 0 if |z|>2. By a similar
argument to that used [8], we show that the functions;, ; andv; satisfy the following
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estimates:

(A) Jio151 VB @7 dz = 0N =PIP),

(B) k1< /. <z ﬁf* (z) dz < ko for { sufficiently small,

(©) Jiyeqlzlw! @) de = 0N P/),

(D) [y [Vue(2)P dz<S + O (NP7,

In view of Lemma 2.1, for eachi> 0 small, there existg > 0 such that
J(teve) = max{J (tvy) : t =0}.

Notice that, at = #;, we have ddtJ (tv;) = 0. Thus, usindg1) and(f2),

_1 *—1
té" /RN Vel P+V (2)|ve|P1dz= /RN g(z,tgvg)vgdzéﬂv/w (trvp) ™t dz—i—té7 .

From this, condition( f2) and estimates (A)—(D), it follows that theredg> 0 such that
t¢ > ap>0forall0< { < (o, wherex is a positive constant independentoFurthermore,
by straightforward calculations we find

SN/p 3
J(tv) < ——+ 0N =PI7) + / [C1V (! — Coavf 1 dz
N el <2 :

SsN/p
< + é’(N—P)/P Co+ C(P—N)/[’ / [C]_V(Z)Up _ C2)LU€1+1] dz |,
N <2 ‘ :

whereCyp, C1 andC2 are positive constants independent of

Assertion 2.4. There is{ > 0 sufficiently small such that

Co 4 (P~NIP f [C1V @} — Colw Ydz <o.
21<2

From the above estimate we easily see that

SN/p
rt’r;aS(J(tvg):J(tgvg)< N

and taking: = ;v we obtain (2.5) and the proof of Assertion 2.3 is completel

Proof of Assertion 2.4. Now we proceed to prove Assertion 2.4. Using estimates (A)—(D),
and the expression of we have

(P=N)/p /|<2 [Clv(z)vé’ — Czivgﬁl] dz< @) + P,
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where

e = / [CaV (@)vf — Catvf* 1z
el <1 :
<Csl P NIP K Cop @t DIN=p)/p*=(N=p)/p1+(p=DN/p+(p=N)/p

((lfp)/p N—1
Ky = / il ds
¢ 0 (14 sp/(p=D)N=p

p() = (P-N/p /

1<zI<2

[CaV (! — Calv?*1dz

< ClP=M/p / w! <Cs / 2| PP=NP=D 4, < ¢
1< /<2 1<l <2

for some positive constantsz—C7 independent of. Finally, using these estimates and
studying separately the conditions (a), (b) or (c) in Theorem 1.1, we prove that there exists
{ >0 such that

D) <C7 - Co.

Thus, Assertion 2.4 holds.d

Finally, to complete the proof of Proposition 2.2 it is enough to use Assertions 2.1 and
22 O

Lemma 2.3. Let(u,,) C E be a sequence satisfyif@1). Then there is a sequence,) C
RY, andp, i > 0 such that

lim sup lun|P dz >1n.
n—-+00 Bp(Yn)

Furthermore the sequenceéy,) is bounded iRN.

Proof. Suppose that the first part of the Lemma is not satisfied. Singeis bounded in
E, using Lemma 1.1 i1 7], it follows that

/ lun)9t1dz — 0 asn — +oo
RN
forall p <q + 1< p*. Thus, from our assumption dnwe find
0/ F(”n)dZ:/ uy f(uy) dz = 0, (1).
RY RY
Now, the expression ¢f(z, u) and(gs) yield

1 * o
Gz, up) dz<— (un)? dz+— lual” dz +0,(1)  (2.6)
*
RY P* Jouu, <a) Pk J®Y —Q)n{uy >a}
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and

* o
f Ung(z, tn) dZ=/ () dz+ — / lun|? dz + 0n (). (2.7)
RY QU{up <a) k JRY —Q)n{un>a)

From (2.7) and/’ (u,,).u;, = 0,(1), we conclude that

o *
lunll? — — / lun|? dz + 0,(1) = / (un){: dz. (2.8)
k RN —Q)N{u,>a) QU{u, <a)

Let ¢ >0 be such that

o
uww——f P dz > £,
k RN —Q)N{u,>a}

Notice that? > 0, otherwise we have

o
|mmp<c(qu—~—/ WMP&>—>Q
k (RN —Q)N{u,>a)

that is,u, — 0 in E, which implies that = 0 and we get a contradiction with> f > 0.
Thus, from (2.8) we have

/ (u)? dz — .
QU{uy < a}

FromJ (u,) = ¢ + 0,(1) and (2.6) it follows that

1
c+on(D) = —llu,|”? —/ G(z,up)dz
p RN

1 o 1 *
= — (”un”p -7 / |un|? dZ) - / (un)i dz
14 k (RN —)Nf{u,>a) P QUfu, <a}

and lettingn — oo we get
L<NC. (2.9)

Now, using (1.3) we have

o . r/p*
IWNP—-—/ WM”&>S(/ uﬁda .
k (RN —Q)Nfu, >a} QU{u, <a}

Thus, passing to the limit and using (2.9) we achieve
c> i sN/p.
N

which is a contradiction with (2.1).

It remains to prove thaty,) is bounded inR" . For this end we consider as test func-
tion u,,l//p, Wherev,bp € CSO(RN, [0, 1)), lpp(z) =0if |z]<p, l//p(Z) =1if |z|>2p and
VY, ()| <Cp~tforallz e RV,
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Since,J’(un)(lppun) =0,(1), we obtain

1 o
oc(l— %) /RN |un |, dz < A;N [IVunler (V(Z)— %) |“n|p] Y, dz

S /RN | Vitn [P~V u, Vi, dz

o
+/[RN I:g(Z, Up)ity — z |Mn|p] lﬁp dz + 0,(1).

If p is large enough C B,(0), and from(gz) we have

oc(l— %) [ 170y €< S il + 00 (2.10)
From (2.10), we conclude thét,) is bounded ilRY. O

Now we are ready to state the following existence result:
Theorem 2.4. For all ¢ > 0, the functional

Jo(u) = 5/ [sf’|w|P+V(z>|u|"]dz—/ Gz u)d:
P JRY RN

possesses a positive critical point € E at the level
= inf  maxJ(tv). 211
T eEm(0) 120 Ja(tv) (2.11)
Proof. We know that there exists a bounded sequdnge C E such that

1
Je(uy) — cg, O<Cg<NSN/p, and J/(u,) — 0, as n— oo.

Then, up to a subsequenag, — u, weakly in E. Now, using the same kind of ideas
contained irf1,3,16]we can prove that, for alp € E, we have

/ Vit |P"2Vu, Ve dz — / |Vug|P~2Vu, Ve dz,
RY RY
/ V(Z)|un|p_2un¢ dz — f V(Z)|Ms|p_2us¢ dz,
RY RY
/ g(z, un)pdz — / g(z, uz) ¢ dz.
RY RY
From these facts, together witti(x,) — 0 and passing to the limit, we easily obtain
/ VUl P2V VotV (@) usl P~ Pupp] dz= / L8 u)pdz Yo e B, (212)
R R
that is,u, is a critical point of/,.

Assertion 2.5. u, > 0on RV,
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Proof. First, using Lemma 2.3, we are going to prove thats nontrivial. We know that
B, (yn) C Bg(0) for all n, with suitabler > 0. Thus, up to a subsequence,

O < Yn<lunlLr B,y <lunlrrr) <|uelLrBr©) + lun — el LrBR(0)>

which together with the Sobolev’'s compact embedding theorem impliesttsatontrivial.
Letu, = (ug) . + (us)_ and takep = (u)_ as test the function in (2.12); then

/RN {IV@ue) -7 + V@)l (ue) 1P} dz = /RN 8(z, (ug)-)(ug)—dz =0.

Hence(u;)_ = 0 almost everywhere ifR™ . Thereforeu, >0 almost everywhere iRy .
Now, we claim thats, > 0. Indeed, by contradiction, suppose that there exists R"
such thats;(xg) = 0. Notice thats, is a weak supersolution of the problem

—Apu+ Vul~t=g(x,u)), x € B (xo),
u(x)=0 x € 0B, (xq).

Now, using a standard bootstrap argument we may show that. > (R"); see Proposition
3.6. Hence, by Harnack’s inequality, see Theorem 1[2M, we haveu, = 0 in B, (xg),
which is a contradiction. [

Finally, it only remains to prove that the critical poig is in the level given in (2.11).
For that matter, we use assumpti@n) and Fatou’s lemma, to obtain

1
ce< max J(tug) = Jo(ug) = Jo(ug) — — Jé(us)us
t>0 P
1
=— / [eg(z, ue) — pG(z, ug)]dz
p JrY
L 1
< lim inf {— / [ung(z, un) —pG(Z,un)]} dz
n— 00 p RN
L 1,
= liminf {Je(u,) — — Jo(upup ¢ = ce.
n—00 p

Thus,u, is a solution with minimal energy,(u;) = ¢, and the proof of Theorem 2.4 is
complete. [

3. Proof of Theorem 1.1
3.1. Existence of solution

Let I, denote the energy functional

Ig(u):E/ (|Vu|p+V(£x)|u|P)dx—/ G(ex,u)dx
p JRrY RY
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defined in
E,={ueWiP(RN): /N V (ex)|u|? dx < oo},
R

associated with the problem

—Apu + V(ex)uP~t=g(ex,u) in RV,
u>0 in RV,

From Theorem 2.4, the family of positive functions
Ve(X) = ug(z) =ug(ex), z=éx
is such that each is a critical point ofl; at the level

b, =1;(vy,) = Inf maxI.(tv).
& F( 8) UEEH\{O} 120 8( )

Itis easy to check that, = ¢V c,. Furthermore, using Assertion 2.3 we also conclude that
b. < L S§N/p
& N .
In order to derive a useful estimate of the mountain-pass minimaxdgweé consider
a test function related to the solution of the autonomous problem

(3.1)

—Apu+ VouP = fu)y+u? "t in RV,
u>0 in RY.

It is known that under assumptiotg;)—( fa), problem (3.1) possesses a ground state solu-
tion w at the level

1
N

N=

cozlo(w)zveg]f rtn>a8<10(tv)< Sz, 3.2

—{0}

wherely is defined as

p*
IO(M)=£ / (IVul? + Volu|?) dx—/ Fu) + 2 | dx
)4 RN RN p*

(cf. [8]). Furthermore, in the case<dp <2, we have thato must be radially symmetric
about some origi® in RY and the corresponding functian(r) obeysw’'(r) < 0 for all
r > 0 (see details ifb,6,24).

Lemma 3.1. lim sup,_, g b: <co

Proof. Letw be a ground state solution of problem (3.1), which without loss of generality
we may assume maximizes at zero. Now consider the test funetion = ¢(ex)w(x),
where¢ € CP(RY,[0,1]), ¢p(x) = 1 if |x|<1 and¢(x) = 0 if |x|>2. It is easy to
check thatw, — w in W2 (RN), Io(w,) — Io(w), ase — 0, and the support af; is
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contained inQ, = {x € RY : ex € Q}. For eache > 0 consider, € (0, +00) such that
max > ol (t@e) = I:(t;@;), thus

b= inf maxI,(rv)< max I (tw,) = I, (t,w;)
veE {0} 10 1>0

*

14 i p*
_ Tl / [[V@,|” + V(ex)|we|P1dx — f F(t;w;) + (t:@:) dx.
P JRN RN p

Assertion 3.1. 7, — 1ase — 0.

Proof. Sincel/(t.;w;)(t;w:) = 0, using assumptiofifz) we have
tf /RN (IVa@g|? + V(ex)|m|P)dx = ./[R{N [f(twe)tyme + (tgwg)”*]dx
> /R | Dltem) ™+ (tw)” 1 dx. (3.3)
Since(w,) is bounded, from this estimate we derive easily {hagtis bounded from above

and below. Thus, up to a subsequence, we have 71 > 0. Passing to the limit in the first
expression of (3.3), we have

/N (IVwl? + Volo|P) dx = tl_p /N [f(t1)t100 + (t]_a))p*] dx. (3.4)
R R
Now, subtracting (3.4) from
/ (Vol? + Volw|?) dx = f [f(w)o+ »P Tdx,
RN RN

we achieve

o= [, [ L@ o [ o e
RY RN

()Pt wrl

Thus, from( f4), we haver; =1. 0O
Finally, we notice that we also have
tf
1) = ot + = [ (Ve = Vool
P JrRN
Thus, taking the limit ag — 0, using the fact tha¥ (ex) in bounded on the sup-
port ofw, and the Lebesgue dominated convergence theorem, we conclude the proof of

Lemma 3.1. O

Now we havel,(v;) <co + 0.(1), whereo,(1) goes to zero as — 0. Since foru €
wir(RN), from (Vo) and(g2),

L) > 1 () = lf (|Vu|p+0€|u|p)dx—[ [F(u)+i(u+)p*i| dx,
P JrY RN p*
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then eachp, is bounded from below by > 0, the mountain-pass minimax level of the
functional!.

Notice that

|v8|lg = g(ex, vy)v, dx
&
RN

and fore suitable small,
0
—|vglf < / 0G (ex, vg) dx 4 Oco + 1,
4 ¢ RY
which together with assumptiaigs) implies that
0
<— — 1) gl < / [0G (ex, v) — g(ex, vg)ve] dx + Oco + 1
p & RN
< / [0G (ex, v;) — g(ex, vo)vg]ldx 4+ Oco + 1
RN -Q,

< / (0 — p)G(ex,vy)dx + Oco + 1
RN -0,
(0—p)

g/N O=p) V (ex)v! dx + Oco + 1<
R_ £

14
Vel +0co+1.
kp | ‘°'|E;; 0

Thus|v,|g, <C, whereC is a positive constant independentsoOf course, we have that
(V) (0= < &) 1S bounded itW 17 (RY).

Lemma 3.2. There areeo > 0, a family (ye) o<z <) C RY and positive constant®,
such that

/ v? dx > p forall 0<e<eo.
Bg(y:)

Proof. Assume, for the sake of contradiction, that there is a sequgnsg0 such that for
all R >0,

lim sup vl dx =0.
n—o0 ceRN JBr(x)

Using Lemma 1.1 if17], it follows that

/[RN F(vs,,)dX=/RN Vg, f(vg,) dx = 0, (D).

This implies the estimates

o

1 *
/ G(z,vg,) dx < — / vl dx + vl dx + 0, (1) (3.5)
RV P* Ja, U, <a) rk Jp,, v, >a)
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and

* o
/ g, 8(2, vg,) dx Z/ Ug, dx + —/ véjl dx + 0,(1), (3.6)
RN .Q(;’LU{U,;,, <a} k Dy, v, >a}

whereD, = [RN\QS. From equality (3.6) andgn (vg,)-vs, = 0 we have

oL *
lvg, II” — — / vl dx + 0,(1) :/ vl dx. 3.7)
k Jp,, 0y, >a) Q,, vy, <a)

Sincec > 0, we have

uwmp—f/‘ o di > £50. (3.8)
k D, N{v,, >a}

Thus, from (3.7) and (3.8),

p*
vg, dx — £.
an U{Ul:n <a}

Using estimate (3.5) and the fact thgt(v,,) <co + 0, (1), we conclude that
L< Nco. (3.9)

Now, using (1.3) we have

p/p
o .
st = % s, a5 | o)
k JRN —@)niv,, >a) QU{vs, <a)

Thus, passing to the limit and using (3.9) we achieve
co> i sh/p,
N
which is a contradiction for (3.2), and the proof of Lemma 3.2 is compleié.
Lemma 3.3. The family(eys) (0. <« is bounded irR"Y and moreoverdist(cy;, Q) <¢R.
Proof. For eachy > 0, we setks = {x € RY : dist(x, Q) <5} andy,(x) = y(ex), where

Y € C®(RV, [0, 1]) is such thaty(x) = 1if x ¢ K5, y(x) =0if x € Qand|Vy|<Co L.
Notice that| Vi, | < CcéLe. Using assumptioiiVy), we see that

ot(l— %) /IRN [vel P, dx < A;{N [|va|p+ (V(sx) — %) vf] W, dx.
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On the other hand, usingj(v,)v., = 0, condition(gz) and the fact that the support ¥f
does not intercep®,, we obtain

[ 0vul+ (Vo = ) ol i
< - /[RQN V| Vg | P2V, Vi, dx +/RN [g(z, Vg)Vg — %vf] W, dx
:-fRN V| Vv [P 2V, Vi, dx+/RN [f(vg)vg — %vf] v, dx
- A;{N V| VU | P2V, Vi, dx

(p=b/p 1/p
<c51</N &|Vvg|? dx) (/N lvs|? dx) <Co elg|?.
R R

Thus, from these estimates, we have

1
o (1 - -) / ve| P, dx <COLelvg|P.
k RN
Notice that, if there is a sequenge™ 0 such that

N

Br(ys,) N{x € RN : gyx € K5} =9,

then

1
a(l_ _> / |v8n|plp6n dx<C5_18n|U8n|p'
k BR(ye,)

But this is contrary to Lemma 3.2. Thus, for al 0 there is arx such thatex € K
and |x — y.|< R, which implies thatdist(ey,, 2) <eR + J. From this we conclude the
proof. [

Remark 1. From Lemma 3.3, we can see that the fantily:) o, <, given in Lemma

3.2, can be taken such that, € Q for all 0 < ¢ < ¢. Indeed, sincalist(cy,, 2) <&¢R, if
necessary, we can replageby e 1x, wherex, € Q and|y, — ¢ 1x;| < R. Thus,

0<p< [ uiravs | 0,17 dx
Br(y:) Bog (3_1)5::)
and if we replac&R by 2R in the Lemma 3.2, we have our claim.

Next, we are going to prove that theresgs> 0 such that the set
&:=1{x € R : v,(x)>a andex ¢ Q)
is empty, for all O< ¢ < . For that matter we have the following basic result:

Lemma 3.4. The following limits hold

(i) lim ¢ o0b; = co;
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(i) lim .oV (eys) = Vo,
(i) lim . 0|&¢| = 0, where|&| denotes the Lebesgue measuré of

Proof. (i) Let_e,, \ 0 andy, =y, . Sinceg,y,, € Q, up to a subsequence, we have
&nyn — xo € Q. Set

Vp(x) = vg, (x), 0, (x) = v, (x + ), En =6, andF,, =F, ,
where

Fs={x € RN 1 vy(x + y;) >a andex + ¢y, ¢ Q). (3.10)
Itis clear that|&;| = |.# |, sinceZ . is a translation o .. From the definition ofv,, we
have for allp € C*(RY),
/RN (VOu P2V, VY + V(enx + eayn) ol "} dx = /RN g(&nx + &ny, ) dx

(3.11)

and||w, |lwir = llvallws is bounded. Thus, we may assume that thetgyis wir(RN)
such thatw, — wg in WL?(RY) andw, (x) — wo(x) a.e. inR". Using Lemma 3.2, and
taking Ro > 0 such thaBr (y,) C Bg,(0) for all n, we have

Up< |0 |Lr (B (y) S1OnlLr(BR(0) S |0n — @0lLr(Bgy(y) + 00ILP (Bry(1))-

From this estimate, using the Sobolev’'s compact embedding theorem, we conclude that
is nontrivial and so nonnegative.

Now, taking the limitin (3.11) and proceeding as in the proof of Theorem 2.4, we achieve
thatwyg is a critical point of the energy functional

f(w)=1f (IVwI”+V(xo)|w|”)dx—/ G(x, w)dx,
p JRrN RN
that is,

f Vool VoV + V(xo)wf  ¢ldr = / , Eoopdr Vo e CERY),
R R
(3.12)
whereG is the primitive of
Z(x, w0) = 2(OLf (@) + 0f 1+ (1= 7(x) F(@p)
and
2(x) = lim yolenx +&,y,) a.e. inRY,
n—oQ
Notice that, ifxg € 2, we havey(x) =1 forallx € RY, and sawy is a critical point of the
energy functional

~ 1 wl”
Liy(0) = — / (IVo|? + V(xg)|w|?) dx — / |:F(co) +— :| dx.
P JRN RN p
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On the other hand, ifp € 02, without loss of generality we suppose that the outer normal
vectorvinxgis (1,0, ...,0). Let P={x € R" : x1 < 0}. Notice thaty = 1 onP, since for
eachx € P,we havethat,x+¢,y, € Q,fornlarge, becauss, y, € Q. Thus, in both cases
Z(x,5) = f(s) + 521 forallx e P. This implies that the mountain-pass minimax level
¢ associated to the functionalis equal to the mountain-pass minimax legg| associated
to the functionall,,. Indeed, from(gz), we havel,,(u) <1 (u), for allu € WH?(RY) and
thené < é,,. On the other hand,, («) = I («) for all u with support contained iR.

From (3.2), using Fatou’s Lemma and Lemma 3.1, we get

peo< pl(wo) = fR , [00g(x, o) = pG(x, wo)] d

xliminf | {wng(enx + enyn, @n) = pG(enx + &nyn, 0n)] dx
R

n—oo
< lim inf [ g(enX + enYn, Wn) — PG (EnX + &1 Yn, Wy)] dx
n—oo RN\LQ/?"
< lim inf [vng(enx, vn) — pG(enx, vy)] dx
n—oo RN\g’l
= liminf [pI, (v,) — 1} (vg,)vs,1< peo. (3.13)
n— 00 n

Thus (i) holds.
Notice that if (i) does not hold (that i%/ (xg) > Vp) we have

co << (wo) = co,

which is a contradiction; thel (xg) = Vo.
To show (iii), we observe that from (3.13), we have

. 1
lim — / [veg(enx, vn) — pG(enx, vy)l dx = co (314)
n— o0 p RN\éan
and
lim — / [vhg(enx, vy) — pG(epx, vy)] dx = co.
n—0o0o RN
Thus
. 1
lim — / [vhg(enx, vy) — pG(epx, vy)]dx = 0. (3.15)
n—>0oo p éd"l

Now, using the definition o (z, s) and assumptionf3) we can prove that

/, [Vng(€nx, va)—pG (&nx, vp)] dx= [(1—%) a”*+af(a)—pF(a)} |&l>0,

n

which together with (3.15) implies that lim, | &5, | = 0, and the proof is complete.[]

Lemma 3.5. v;(x + o) 7 g 7, (*) converges tao in LP"(RM).
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Proof. Following the notation of Lemma 3.4, we sef(x) = v.(x + y;). We have proved

in last lemma thab, — cg and thatw,, converges in the weak sensectg, a ground state
solution of the autonomous problem (3.1). From the proof of Lemma 3.4 and the regularity
result below, we also have thgtex + eye, w;) converges uniformly over compacts to

Sf(wo) + wg*. Moreover, it follows from the definition of and (3.10), using the Holder’s
inequality, that

*

o o r—pr
/p g(ex + &y,, wg)w, dx = e /0- wfé% Iwglip*le“/’sl =01,
T T
which together with assumptiaigs) implies that
/ G(ex + &y, wg) dx = 0,(1).
F,
Now from (3.14) and definition af, we have

pCo + on Q= /I;{N [@ng(enx + €1 Yn, Wn) — pG(EnX + €4Yn, W) ] dx
\T n

* %
=f [n f(@p) — pF(wy)]dx + (1— p-)/ o dx.
RV\Z, D J JRN\Z,

Thus

* *
/ o? dx — / wf dx
RV\7, RN

and the proof is complete.[]

We use the classical interactions method due to Moser to prove the regularity of the weak
solutions, more precisely, we shall prove the following result:

Proposition 3.6. v, belongs toL* (R") for all s € [p*, +00]. Moreover |vs|s < C, for
all 0 < ¢ < gg and the solutions, decay uniformly to zero ds| — +o0.

Proof. Inorder to use the same kind of argumer[@8], we are going to prove by induction
thatv, € L (R")forall 6,=py", wherey=N /(N — p). By Gagliardo—Nirenberg—Sobolev
inequality we have that, € L°.. Assume thab, € L (R"); then, we shall prove that
ve € Lo+1(RN). For this end we consider the test function= W’ vs[ Ty (v)]*", where
Ti(ve) = min{k, v:}, s, = p(y" — 1) andy € CP (RN, [0, 1]).

Using the fact that, is a critical point ofl, and assumption&>), (f1) and( f2) we find

f [|Vv8|P*2Vv£Vq')+V(sx)vf_lqﬁ]dxg/ [fvg"1+C(a)vg’*‘1]¢dx,
RN rV L2

which implies that

/RN V| P2V, Ve dx < C (o) /[R{N vf*flqﬁdx. (3.16)



J. Marcos do O / Nonlinear Analysis 62 (2005) 777 -801 797

From (3.16), it is easy to see that

/N Yl [T (ve) 1 [ Vvg|? dx + s, /N ‘ppvs[Tk(Us)]sn_HVU£|p_2VU£V[Tk(US)] dx
R R

<-p / WP o T () 17 |V 0e | P2V 0, Vi + / V! YP[Ti (vs)] dx.
RN RN
(3.17)

By Young’s inequality it follows that

‘/I;{N 'ﬁp_lve[Tk(vs)]S"|VUe|p_2VUng/I dx

p_
—1)or-1 ) 1 )
<u/ P [T (o)1 [Vg|? dx + —p[ V[T (ve) ¥ V| P dx.
P RN po” Jpy
(3.18)

Using Gagliardo—Nirenberg—Sobolev inequality, we obtain

Wl el 717, <C { /R VUL [T (o) ™ dx + /R UPIT@)]" Vgl d

p
+(%> / l//pvg[Tk(vﬁ)]sn_p|V[Tk(v5)]|pdx},
RN

whereC = C(N, p, ). This estimate together with (3.17) and (3.18) implies

ol Te )1 7 1], <P { / V1P 0! [T (ve) 1" d
IRN

+/ ol Y[ Te(v)]” dx} -
RN

Now, in order to prove that € L°+1(|]x|>p) for some largep >0, we consider the
functiony e CS(RY, [0, 1]) such thaty = 1if [x|>p >4, = 0if [x|<p — 2 and
V| <1. Hence, by Holder’s inequality,

Sp
P p Sn P p*=p
/RN ve YTk (0e) 1 dx < |Yve[Ti (ve)] P |Lp*|U8|Lp*(|x|2p/2)-

Thus
Wl Ti ()] 7 |7 <CYP V{1V v [ Te )] 7 17,

173
oop p-p
+ [T (ve)] P |Lp* |U8|Lp*(|x‘>p/2)}-



798 J. Marcos do O / Nonlinear Analysis 62 (2005) 777 -801

Since|v,|, » <C, for all ¢ € (0, &g), we can takep suitably large such thg2Cy?—1]

|v8|’L’*7 <1, foralle € (0, ¢g). Thus, we get the estimate

p
P (1x1 = p/2)

Sn.

Wval T (v 7 | <Wul Tl 7 17

<cypred / V1Pl T ()1 e
R

p
LP*(|x|=p)

gcf)}p(n_l) / Ug” dx
x| = p/2

foralle € (0, &9), whereC =C(N, p, a, p). Therefore, letting — +o0, by the dominated
convergence theorem,

1 a1
[Vel Lonriqx)= p) SC oy o [vglLon (x> pj2) Ve € (O, €0). (3.19)

We can use the same argument takjng Cgo([R{N, [0, 1]) with = 1 if |xo — x| <p/,
Y =0if |xo — x| >2p" and| V| < 2/p/, to prove that

1 a1
[Vel ponst(x < pry SC oy on [vglpon vy <2y Ve € (0, &0), (3.20)

wherep’ is a suitable small positive constant independentgodndC = C(N, p, o, p').
Therefore, from (3.19) and (3.20), by a standard covering argument we can show that
1 a1
[Vel ontr SConyon |vg|pon Ve € (0, £o).
Interaction yields

1 n—1
el ponss SC= 309> 0 Juglpm Ve € (0, 20),

whereC is independent af, since both series are convergent. Finally, letiing- co, and
observing thatu|so <1iM,_ oo|u|zn We deduce easily that € L>°(RY) and, besides,

[veloo <C  for all 0 < ¢ < gp.

Sincev, € Lo(RY) n L>(RY), using the interpolation inequality, we prove thate
L%(RY) forall ¢ € [o1, o0].

By a similar argument used to prove Theorem 128] (see alsd13, Theorem 8.17]
for any open balB, (x) of radiusr centered at any € R" and some constait(N, o),
the nonnegative functiom € wir(RN) such that

—Apu<h(x)
in the weak sense, satisfies the estimate

sup u(y) < C{lulLr sy, () + 1hlLo2(By () -
B, (x)

Thus, for the family{v,} we have

*_1
SUP v < C{lvelLr By (x)) + 108 o2y} Ve € (0, €0).
B (x)
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By the preceding results we knowthét*_l e L°2(RV)and, moreovetpé’*_lanz(RN) <C
where C is independent of. Therefore, the uniform vanishing property of the family
{Ve}o<g<s, IS iMplied. [

The next regularity result is a direct consequence of the previous proposition and a result
due to Tolksdorf (cf[26]).

Corollary 3.7. The functions, belongs tole;c“(B,), wherex = a(r) € (0, 1).

Finally, since the solutions, decay uniformly to zero ag| — +o00, we can take > 0
such thaiwg(x) = ve(x + y,) <a for all |x| > p and for alle € (0, ¢g). On the other hand,
takingeg to be suitably small we see thA}(0) C £,. Therefore, in both cases we see that

gex + ey, wg) = f(wg) + wé’*_l in RN for all ¢ € (0, eg). Therefore the existence of a
positive bounded state solution of problé) for all ¢ € (0, &) is proved.

When 1< p <2, elliptic regularity theory implies thab, belongs to clas€? and
converges irC? to wg. Using Lemma 3.6, we have thai, possesses a global maximum
pointx, and after translation we may assume that0) = max.| < gw; = MaXyy w,, for
someR > 0. Now, using thatog is radially symmetric and a similar result to the Lemma
4.2 in[19], we can prove that far sufficiently small,w, possesses no critical points other
than the origin.

Finally, we are going to prove the exponential decay.

Lemma 3.8. The family{w,}o..,, Satisfies
wy(x) <Cexp(—plx]) Vx e RN,

where C ands are positive constants independents.of

Proof. Using assumptiorif;) and the fact that the solutions, decay uniformly to zero
as|x| — +o0o, we can takey > 0 such that

20 (@) " + wpx)” ") <Vo=inf Vix) for all x| > po.

Consequently,

\% _ . \% _
5 Of S F @) + 0u(0)" T = 20l 7<0 for all x| > po.
Let« andM be positive constants such thi@gt— L)a? < Vo/2 andw,(x) <M exp(—oupg)

for all |x| = pg. Hence, the functioy(x) = M exp(—u|x|) satisfies

Ay, +

Vo

—ApY + ?W’—lg (7 —(p— 1)ocp> YyP~1>0 forallx #0.

Sincep > 1, we have that the functiah: RY — R, {(x) = |x|? is convex, thus

(x]P72x — |y|P2y)(x — y) =0 forallx,y e RV,
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We now take as a test function= maxw, — , 0} € Wol"’(|x| > pg). Hence, combining
these estimates,

0> / , [(ngw—zws — VY172V + %(wffl - W"l)n} dx
R

LYo

> @ =y Y (w, — Yy dx =0 for all x> po.
2 (xeRN:w, >}

Therefore, the sdtr € RY : |x| > po and w,(x) >(x)} is empty. From this we can easily
conclude the proof. [J
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