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Abstract

This paper deals with the study of the quasilinear critical problem

−�p�pu + V (z)up−1 = f (u) + up∗−1 in RN,

u ∈ C
1,�
loc(RN) ∩ W1,p(RN), u > 0 in RN,

(P�)

where� is a small positive parameter;f is a subcritical nonlinearity;p∗ =pN/(N −p), 1< p < N , is
the critical Sobolev exponent; andV : RN → R is a function which is bounded from below away from
zero such that inf�� V > inf � V for some open bounded subset� of RN . We study whether we can
find solutions of(P�) which concentrate around a local minima ofV , not necessarily nondegenerate.
The proof of this result is variational based on the local mountain-pass theorem.
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1. Introduction

The main purpose of this paper is to study the existence and concentration behavior of
bound statefor the quasilinear critical problem of the form

−�p�pu + V (z)up−1 = f (u) + up∗−1 in RN,

u ∈ C
1,�
loc (RN) ∩ W1,p(RN), u > 0 in RN,

(P�)

where� > 0 is a small real parameter;�pu : =div(|∇u|p−2∇u) is the p-Laplacian,p∗ =
pN/(N − p), 1< p < N , is the critical Sobolev exponent, andV : RN → R is a C1

function satisfying

(V0) there is a positive constant� such that

V (z)�� ∀z ∈ RN ;

(V1) there is an open bounded subset� of RN such that

inf
��

V > inf
�

V =: V0.

We also assume thatf : R+ → R is aC1 function satisfying the following conditions

(f1) f (s) = o(sp−1) ass → 0;
(f2) there areq1, q2 ∈ (p − 1, p∗ − 1), � > 0 such that

f (s)��sq1, for all s > 0 and lim
s→∞

f (s)

sq2
= 0;

(f3) for some� ∈ (p, q2 + 1) we have

0< �F(s) ≡ �
∫ s

0
f (t) dt �f (s)s for all s > 0;

(f4) the functions1−pf (s) is nondecreasing fors > 0.

The main result of this paper is stated as follows:

Theorem 1.1. Suppose that the potential V satisfies(V0)–(V1) and f satisfies(f1)–(f4).
Then there is�o > 0 such that problem(P�) possesses a positive bound state solutionu�,
for all 0< � < �o, provided that one of the following conditions holds:

(a) N �p2;
(b) p < N < p2, p∗ − p

p+1 − 1< q1 < p∗ − 1;

(c) p < N < p2, p∗ − p
p+1 − 1�q1 and large�.
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Moreover, when1< p�2, u� possesses at most one local(hence global) maximumz� in
RN , which is inside�, such that

lim
�→0+ V (z�) = Vo = inf

�
V

and there are C and� positive constants such that

u�(x)�C exp

(
−�

∣∣∣∣x − z�

�

∣∣∣∣) for all x ∈ RN .

The study of such a class of problems in the semilinear case, which corresponds top=2,
has been motivated in part by the search for standing waves for the nonlinear Schrödinger
equation

i�
��
�t

= − �2

2m
�� + V (z)� − �|�|r−1�, in RN , (1.1)

namely, solutions of the form�(z, t) = exp(−iEt/�)v(z), where�, m, �, andp are positive
constants,p > 1, E ∈ R andv is real. In fact, it is readily checked that� satisfies (1.1) if,
and only if, the functionv(z) solves the semilinear elliptic equation

− �2

2m
�u + (V (z) − E)v = �|v|r−1v in RN . (1.2)

Floer and Weinstein[12], using Lyapunov–Schmidt methods have proved the existence
of standing wave solutions concentrating at each given nondegenerate critical point of
the potentialV, provided thatV is bounded,N = 1 and r = 3. Their method was ex-
tended by Oh[20,21] to higher dimensions, in the case 2< r < (N + 2)/(N − 2). Ra-
binowitz [22] among others results obtained existence results under the assumption that
inf V < lim inf |z|→∞ V (z) and 1< r < (N + 2)/(N − 2). He used variational methods
based on variants of the mountain-pass theorem and considered the case of degenerated
critical point of the potentialV. For this class of problems, Wang[28] complemented the
work of Rabinowitz obtaining the concentration behavior of the solutions. Recently, in[9],
del Pino and Felmer have proved the existence and concentration behavior of bounded state
solutions under the potential conditions(V0)−(V1) for subcritical nonlinearities. This result
was complemented in[2] to elliptic problems involving critical growth. In this paper we
extend these results, since we are considering a more general class of operator. To prove
the existence of solutions, we adapt some ideas from[2,9] and to prove the decay of the
solutions, we make use of the local estimates of Serrin[23]. To obtain the concentration
behavior of solutions we use a recent result contained in[24], about symmetry of ground
states solutions of quasilinear equations.

Several papers have appeared recently about the p-Laplacian problems involving critical
growth. For the case of bounded domains, we mention the works ofAzorero andAlonso[3],
Egnell[11] and Guedda and Veron[15], and references therein. As to unbounded domains,
we recall the results of Alves et al.[1], Ben-Naoum et al.[4], Gonçalves and Alves[14] and
Jianfu and Xi Ping[16]. We referred to their references for other related results.

The underlying idea for proving Theorem 1.1 has two basic steps. First, in Section 2, we
modify the functionf (u) outside the domain� such that the associated energy functional
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to the modified problem satisfies the Palais–Smale condition and to which we may apply
the mountain-pass theorem. In the last section, with the aid of some local estimates, we
prove that the solution of the modified problem is in fact a solution for the original problem
and we study the concentration behavior of the solution.
Notation. In this paper we make use of the following notation:
Let U be a domain inRN . Ck,�(U), with k being a nonnegative integer and 0�� < 1,

denotes Hölder spaces; the norm inCk,�(U) is denoted by‖u‖k,�,�;
Lp(U), 1�p�∞, denotes Lebesgue spaces; the norm inLp is denoted by|u|p;
W1,p(U), denotes Sobolev spaces; the norm inW1,p(U) is denoted by‖u‖W1,p ;
C, C0, C1, C2, . . . denote (possibly different) positive constants;
u+ = max{u, 0} andu− = min{u, 0};
�A denotes the characteristic function of subsetA of RN ;
We denote byS the best Sobolev constant of the Sobolev embedding,D1,m(RN) ↪→

Lm∗
(RN), that is,

S = inf {|∇u|pLp/|u|pLp∗ : u ∈ D1,m(RN)\{0}}. (1.3)

According to Lemma 2 in[25], S is attained by the functionsw� given by

w�(z) = C(N, p)�(N−p)/p2

[� + |z|p/(p−1)](N−p)/p
with C(N, p) =

[
N

(
N − p

p − 1

)p−1
](N−p)/p2

(1.4)

for anyz ∈ RN and any� > 0.

2. The modified functional

Since we seek positive solutions, it is convenient to definef (s) = 0, for s�0. Also,
we modify the nonlinearityf into a more appropriate one to obtain a existence result as an
application of the mountain-pass theorem. Namely, we consider the following Carathéodory
function:

g(z, s) =
{

��(z)(f (s) + sp∗−1) + �D(z)f̃ (s) if s�0,

0 if s < 0,

where

D = RN\�, f̃ (s) =
{

f (s) + sp∗−1 if s�a,

k−1sp−1� if s > a,

k > �(� − p)−1 > 1 anda > 0 is such thatf (a) + ap∗−1 = k−1ap−1�. We setF̃ (s) =∫ s

o
f̃ (t) dt andG(z, s) = ��(F (s) + 1

2∗ s2∗
) + �DF̃ (s).

Notice that, using(f1)–(f4) it is easy to check that the nonlinearityg(x, u) satisfies the
following properties:

(g1) g(z, s) = f (s) + sp∗−1 = o(sp−1), near the origin, uniformly inz ∈ RN ;
(g2) g(z, s)�f (s) + sp∗−1 for all s > 0, z ∈ RN ;
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(g3) 0< �G(z, s)�g(z, s)s for all z ∈ �, s > 0 or z ∈ D ands�a and 0�pG(z, s)�
g(z, s)s� 1

k
(z)sp for all z ∈ D, s> 0.

(g4) The functiong(z, s)/sp−1 is increasing ins > 0 for eachzfixed.

Now, we consider the functional

J (u) = 1

p

∫
RN

(|∇u|p + V (z)|u|p) dz −
∫

RN
G(z, u) dz,

defined on the reflexive Banach space

E =
{
u ∈ W1,p(RN) :

∫
RN

V (z)|u|p dz < ∞
}

,

endowed with the norm‖u‖ : ={∫RN (|∇u|p + V (z)|u|p) dz}1/p.
It is well known thatJ is in C1(E, R) (see[7]) with Fréchet derivative given by

J ′(u)v =
∫

RN
[|∇u|p−2∇u∇v + V (z)|u|p−2uv] dz −

∫
RN

g(z, u)v dz.

It is standard to prove thatJverifies the mountain-pass geometrical conditions.We include
a proof for completeness.

Lemma 2.1(mountain-pass geometry). The functional J satisfies the following conditions:

(i) there exist�, 	 > 0, such thatJ (u)�	 if ‖u‖ = �,
(ii) for anyu ∈ C∞

0 (�, [0, +∞)), we haveJ∞(tu) → −∞ ast → +∞.

Proof. As usual, from our assumptions we have

F(u)� 1

2p
|s|p + C|s|p∗

.

Thus, using(g2) and Sobolev inequality, we find

J (u)� 1

2p
‖u‖p − C‖u‖p∗

.

Hence, there exist constants�, 	 > 0, such thatJ (u)�	 if |u| = �.
Let u be a nontrivial function inC∞

0 (�, [0, +∞)). Thus, using(g2), for all t > 0

J (tu)� tp

p
‖u‖p − tp

∗

p∗

∫
RN

up∗
.

Of course,J (t
) → −∞ ast → ∞. This completes the proof. �

Proposition 2.2. There exists a bounded sequence(un) ⊂ E such that

J (un) → c, 0< c <
1

N
SN/p, and J ′(un) → 0, as n → ∞, (2.1)

provided that one of conditions(1), (2)or (3) in Theorem1.1holds.
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Proof. In view of Lemma 2.1, we may apply a version of mountain-pass theorem without
a Palais–Smale condition (cf.[7,18]), to obtain a Palais–Smale sequence associated to the
functionalJ, more precisely,(un) ⊂ E such that

J (un) → c > 0 and J ′(un) → 0, (2.2)

where

c = inf
�∈�

max
t∈[0,1] J (�(t))

and

� = {� ∈ C([0, 1], E) : �(0) = 0 andJ (�(1)) < 0}.
Next, as a consequence of assumptions ongwe prove that the mountain-pass minimax level
c can be characterized in a simpler way, as has been established in[9,10] and[22] to the
semilinear case.

Assertion 2.1.

c = inf
v∈E

v+�=0

max
t �0

J (tv). (2.3)

Proof. From our hypothesis and Lemma 2.1, it is easy to check that for each fixedu ∈ E,
such thatu+ �= 0, the functiont �−→ J (tu) has at most one critical pointtu ∈ (0, +∞)

and it satisfies

‖u‖p = 1

t
p−1
u

∫
RN

g(z, tuu)u dz.

Furthermore,

max
t �0

J (tu) = J (tuu).

Thus,

inf
v∈E

v+�=0

max
t �0

J (tv)� inf
v∈M

J(v),

whereM = {v = tuu : u ∈ E − {0} andtu ∈ (0, +∞)}. It is obvious thatc� inf v∈M J(v).
In order to prove the other inequality, given� ∈ �, it is enough to obtaint� ∈ (0, 1) such
thatu� = �(t�) ∈ M. Let us assume the contrary, that is, there is not ∈ (0, 1) such that

‖�(t)‖p =
∫

RN
g(z, �(t))�(t) dz.

Thus, since�(0) = 0, from(g1) we must have

‖�(t)‖p >

∫
RN

g(z, �(t))�(t) dz ∀t ∈ (0, 1).
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This estimate together with condition(g3) implies

J (�(t)) = 1

p
‖�(t)‖p−

∫
RN

G(z, �(t)) dz >
1

p

∫
RN

[g(z, �(t))�(t)−pG(z, �(t))] dz

� � − p

p

∫
�

G(z, �(t)) dz�0

for all t ∈ (0, 1). But this is contrary to� ∈ �. Thus, Assertion 2.1 holds.�

Assertion 2.2. Every sequence(un) ⊂ E satisfying(2.2) is bounded inE.

Proof. Using assumption(g3) we find

J (un) − 1

�
J ′(un)un =

(
1

p
− 1

�

)
‖un‖p + 1

�

∫
RN

[ung(z, un) − �G(z, un)] dz

�
(

1

p
− 1

�

)
‖un‖p + 1

�

∫
RN−�

[ung(z, un) − �G(z, un)] dz

�
(

1

p
− 1

�

)
‖un‖p + (p − �)

�

∫
RN−�

G(z, un) dz

�
(

1

p
− 1

�

)
‖un‖p + (p − �)

pk�

∫
RN−�

V (z)|un|p dz

=
(

� − p

p�

) ∫
RN

[|∇un|p +
(

1 − 1

k

)
V (z)|un|p] dz, (2.4)

which together with (2.2) implies that(un) is bounded inE. �

Now we closely follow the approach from[3], to prove the next result.

Assertion 2.3. There existsv ∈ E − {0} such that

max
t �0

J (tv) <
SN/p

N
. (2.5)

Proof. For each� > 0, consider the functions

	�(z) = (z)w�(z) andv�(z) = 	�(z)(∫
|z|�2 	p∗

� dz
)1/p∗ ,

where ∈ C∞
0 (RN, [0, 1]), (z) = 1 if |z|�1 and(z) = 0 if |z|�2. By a similar

argument to that used in[3], we show that the functionsw�, 	� andv� satisfy the following
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estimates:

(A)
∫
|z|�1 |∇	�(z)|p dz = O(�(N−p)/p),

(B) k1 <
∫
|z|�2 	p∗

� (z) dz < k2 for � sufficiently small,

(C)
∫
|z|�1 |z|wp∗

� (z) dz = O(�(N−p)/p),

(D)
∫

RN |∇v�(z)|p dz�S + O(�(N−p)/p).

In view of Lemma 2.1, for each� > 0 small, there existst� > 0 such that

J (t�v�) = max{J (tv�) : t �0}.
Notice that, att = t�, we have d/dtJ (tv�) = 0. Thus, using(g1) and(f2),

t
p−1
�

∫
RN

[|∇v�|p+V (z)|v�|p] dz=
∫

RN
g(z, t�v�)v� dz��

∫
RN

(t�v�)
q1 dz+t

p∗−1
� .

From this, condition(f2) and estimates (A)–(D), it follows that there is�0 > 0 such that
t� > �0 > 0 for all 0< � < �0, where�0 is a positive constant independent of�. Furthermore,
by straightforward calculations we find

J (t�v�)�
SN/p

N
+ O(�(N−p)/p) +

∫
|z|�2

[C1V (z)v
p

� − C2�v
q1+1
� ] dz

� SN/p

N
+ �(N−p)/p

[
C0 + �(p−N)/p

∫
|z|�2

[C1V (z)v
p

� − C2�v
q1+1
� ] dz

]
,

whereC0, C1 andC2 are positive constants independent of�.

Assertion 2.4. There is� > 0 sufficiently small such that

C0 + �(p−N)/p

∫
|z|�2

[C1V (z)v
p

� − C2�v
q1+1
� ] dz < 0.

From the above estimate we easily see that

max
t �0

J (tv�) = J (t�v�) <
SN/p

N
,

and takingu = t�v� we obtain (2.5) and the proof of Assertion 2.3 is complete.�

Proof of Assertion 2.4. Now we proceed to proveAssertion 2.4. Using estimates (A)–(D),
and the expression ofv� we have

�(p−N)/p

∫
|z|�2

[C1V (z)v
p

� − C2�v
q1+1
� ] dz��(�) + �(�),
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where

�(�) = �(p−N)/p

∫
|z|�1

[C3V (z)v
p

� − C4�v
q1+1
� ] dz

�C5�
(p2−N)/pK� − C6��(q1+1)[(N−p)/p2−(N−p)/p]+(p−1)N/p+(p−N)/p

K� =
∫ �(1−p)/p

0

sN−1

(1 + sp/(p−1))N−p
ds

�(�) = �(p−N)/p

∫
1� |z|�2

[C3V (z)v
p

� − C4�v
q1+1
� ] dz

�C5�
(p−N)/p

∫
1� |z|�2

w
p

� �C6

∫
1� |z|�2

|z|p(p−N)/(p−1) dz�C7

for some positive constantsC3–C7 independent of�. Finally, using these estimates and
studying separately the conditions (a), (b) or (c) in Theorem 1.1, we prove that there exists
� > 0 such that

�(�)�C7 − C0.

Thus, Assertion 2.4 holds.�

Finally, to complete the proof of Proposition 2.2 it is enough to use Assertions 2.1 and
2.2 �

Lemma 2.3. Let (un) ⊂ E be a sequence satisfying(2.1).Then there is a sequence(yn) ⊂
RN , and�, 
 > 0 such that

lim sup
n→+∞

∫
B�(yn)

|un|p dz�
.

Furthermore, the sequence(yn) is bounded inRN .

Proof. Suppose that the first part of the Lemma is not satisfied. Since(un) is bounded in
E, using Lemma 1.1 in[17], it follows that∫

RN
|un|q+1 dz → 0 asn → +∞

for all p < q + 1< p∗. Thus, from our assumption onf we find

�
∫

RN
F (un) dz =

∫
RN

unf (un) dz = on(1).

Now, the expression ofg(z, u) and(g3) yield∫
RN

G(z, un) dz� 1

p∗

∫
�∪{un �a}

(un)
p∗
+ dz+ �

pk

∫
(RN−�)∩{un>a}

|un|p dz + on(1) (2.6)
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and∫
RN

ung(z, un) dz =
∫
�∪{un �a}

(un)
p∗
+ dz + �

k

∫
(RN−�)∩{un>a}

|un|p dz + on(1). (2.7)

From (2.7) andJ ′(un).un = on(1), we conclude that

‖un‖p − �
k

∫
(RN−�)∩{un>a}

|un|p dz + on(1) =
∫
�∪{un �a}

(un)
p∗
+ dz. (2.8)

Let .�0 be such that

‖un‖p − �
k

∫
(RN−�)∩{un>a}

|un|p dz → ..

Notice that. > 0, otherwise we have

‖un‖p �C

(
‖un‖p − �

k

∫
(RN−�)∩{un>a}

|un|p dz

)
→ 0,

that is,un → 0 in E, which implies thatc = 0 and we get a contradiction withc�	 > 0.
Thus, from (2.8) we have∫

�∪{un �a}
(un)

p∗
+ dz → ..

FromJ (un) = c + on(1) and (2.6) it follows that

c + on(1) = 1

p
‖un‖p −

∫
RN

G(z, un) dz

� 1

p

(
‖un‖p − �

k

∫
(RN−�)∩{un>a}

|un|p dz

)
− 1

p∗

∫
�∪{un �a}

(un)
p∗
+ dz

and lettingn → ∞ we get

.�Nc. (2.9)

Now, using (1.3) we have

‖un‖p − �
k

∫
(RN−�)∩{un>a}

|un|p dz�S

(∫
�∪{un �a}

u
p∗
n dz

)p/p∗

.

Thus, passing to the limit and using (2.9) we achieve

c� 1

N
SN/p,

which is a contradiction with (2.1).
It remains to prove that(yn) is bounded inRN . For this end we consider as test func-

tion un��, where�� ∈ C∞
0 (RN, [0, 1]), ��(z) = 0 if |z|��, ��(z) = 1 if |z|�2� and

|∇��(z)|�C�−1 for all z ∈ RN .
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Since,J ′(un)(��un) = on(1), we obtain

�
(

1 − 1

k

) ∫
RN

|un|p�� dz�
∫

RN

[
|∇un|p +

(
V (z) − �

k

)
|un|p

]
�� dz

= −
∫

RN
un|∇un|p−2∇un∇�� dz

+
∫

RN

[
g(z, un)un − �

k
|un|p

]
�� dz + on(1).

If � is large enough,� ⊂ B�(0), and from(g3) we have

�
(

1 − 1

k

) ∫
RN

|un|p�� dz� C

�
‖un‖p

W1,p + on(1). (2.10)

From (2.10), we conclude that(yn) is bounded inRN . �

Now we are ready to state the following existence result:

Theorem 2.4. For all � > 0, the functional

J�(u)
.= 1

p

∫
RN

[�p|∇u|p + V (z)|u|p] dz −
∫

RN
G(z, u) dz

possesses a positive critical pointu� ∈ E at the level

c� = inf
v∈E−{0} max

t �0
J�(tv). (2.11)

Proof. We know that there exists a bounded sequence(un) ⊂ E such that

J�(un) → c�, 0< c� <
1

N
SN/p, and J ′

�(un) → 0, as n → ∞.

Then, up to a subsequence,un ⇀ u� weakly in E. Now, using the same kind of ideas
contained in[1,3,16]we can prove that, for all ∈ E, we have∫

RN
|∇un|p−2∇un∇ dz →

∫
RN

|∇u�|p−2∇u�∇ dz,∫
RN

V (z)|un|p−2un dz →
∫

RN
V (z)|u�|p−2u� dz,∫

RN
g(z, un) dz →

∫
RN

g(z, u�) dz.

From these facts, together withJ ′
�(un) → 0 and passing to the limit, we easily obtain∫

RN
[|∇u�|p−2∇u�∇+V (z)|u�|p−2u�] dz=

∫
RN

g(z, u�) dz ∀ ∈ E, (2.12)

that is,u� is a critical point ofJ�.

Assertion 2.5. u� > 0 onRN .
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Proof. First, using Lemma 2.3, we are going to prove thatu� is nontrivial. We know that
B�(yn) ⊂ BR(0) for all n, with suitableR > 0. Thus, up to a subsequence,

0< p
√


� |un|Lp(B�(yn)) � |un|Lp(BR(0)) � |u�|Lp(BR(0)) + |un − u�|Lp(BR(0)),

which together with the Sobolev’s compact embedding theorem implies thatu� is nontrivial.
Let u� = (u�)+ + (u�)− and take = (u�)− as test the function in (2.12); then∫

RN
{|∇(u�)−|p + V (z)‖(u�)−|p} dz =

∫
RN

g(z, (u�)−)(u�)− dz = 0.

Hence(u�)− = 0 almost everywhere inRN . Thereforeu��0 almost everywhere inRN .
Now, we claim thatu� > 0. Indeed, by contradiction, suppose that there existsx0 ∈ RN

such thatu�(x0) = 0. Notice thatu� is a weak supersolution of the problem{−�pu + V (x)up−1 = g(x, u)), x ∈ Br(x0),

u(x) = 0 x ∈ �Br(x0).

Now, using a standard bootstrap argument we may show thatu� ∈ L∞(RN); see Proposition
3.6. Hence, by Harnack’s inequality, see Theorem 1.2 in[27], we haveu� ≡ 0 in Br(x0),
which is a contradiction. �

Finally, it only remains to prove that the critical pointu� is in the level given in (2.11).
For that matter, we use assumption(g3) and Fatou’s lemma, to obtain

c�� max
t �0

J�(tu�) = J�(u�) = J�(u�) − 1

p
J ′
�(u�)u�

= 1

p

∫
RN

[u�g(z, u�) − pG(z, u�)] dz

� lim inf
n→∞

{
1

p

∫
RN

[ung(z, un) − pG(z, un)]
}

dz

= lim inf
n→∞

{
J�(un) − 1

p
J ′
�(un)un

}
= c�.

Thus,u� is a solution with minimal energyJ�(u�) = c� and the proof of Theorem 2.4 is
complete. �

3. Proof of Theorem 1.1

3.1. Existence of solution

Let I� denote the energy functional

I�(u) = 1

p

∫
RN

(|∇u|p + V (�x)|u|p) dx −
∫

RN
G(�x, u) dx
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defined in

E� = {u ∈ W1,p(RN) :
∫

RN
V (�x)|u|p dx < ∞},

associated with the problem{−�pu + V (�x)up−1 = g(�x, u) in RN,

u > 0 in RN.

From Theorem 2.4, the family of positive functions

v�(x) = u�(z) = u�(�x), z = �x

is such that eachv� is a critical point ofI� at the level

b� = I�(v�) = inf
v∈E�\{0} max

t �0
I�(tv).

It is easy to check thatb� = �−Nc�. Furthermore, using Assertion 2.3 we also conclude that
b� < 1

N
SN/p.

In order to derive a useful estimate of the mountain-pass minimax levelb� we consider
a test function related to the solution of the autonomous problem{−�pu + V0u

p−1 = f (u) + up∗−1 in RN,

u > 0 in RN.
(3.1)

It is known that under assumptions(f1)–(f4), problem (3.1) possesses a ground state solu-
tion � at the level

c0 = I0(�) = inf
v∈E−{0} max

t �0
I0(tv) <

1

N
S

N
2 , (3.2)

whereI0 is defined as

I0(u) = 1

p

∫
RN

(|∇u|p + V0|u|p) dx −
∫

RN

[
F(u) + u

p∗
+

p∗

]
dx

(cf. [8]). Furthermore, in the case 1< p�2, we have that� must be radially symmetric
about some originO in RN and the corresponding function�(r) obeys�′(r) < 0 for all
r > 0 (see details in[5,6,24]).

Lemma 3.1. lim sup�→0 b��c0.

Proof. Let � be a ground state solution of problem (3.1), which without loss of generality
we may assume maximizes at zero. Now consider the test function��(x) = (�x)�(x),
where ∈ C∞

0 (RN, [0, 1]), (x) = 1 if |x|�1 and(x) = 0 if |x|�2. It is easy to
check that�� → � in W1,p(RN), I0(��) → I0(�), as� → 0, and the support of�� is
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contained in�� = {x ∈ RN : �x ∈ �}. For each� > 0 considert� ∈ (0, +∞) such that
maxt �0I�(t��) = I�(t���), thus

b� = inf
v∈E�\{0} max

t �0
I�(tv)� max

t �0
I�(t��) = I�(t���)

= t
p
�

p

∫
RN

[|∇��|p + V (�x)|��|p] dx −
∫

RN

[
F(t���) + (t���)

p∗

p∗

]
dx.

Assertion 3.1. t� → 1 as� → 0.

Proof. SinceI ′
�(t���)(t���) = 0, using assumption(f2) we have

t
p
�

∫
RN

(|∇��|p + V (�x)|��|p) dx =
∫

RN
[f (t���)t��� + (t���)

p∗ ] dx

�
∫

RN
[�(t���)

q1+1 + (t���)
p∗ ] dx. (3.3)

Since(��) is bounded, from this estimate we derive easily that(t�) is bounded from above
and below. Thus, up to a subsequence, we havet� → t1 > 0. Passing to the limit in the first
expression of (3.3), we have∫

RN
(|∇�|p + V0|�|p) dx = t

−p
1

∫
RN

[f (t1�)t1� + (t1�)p
∗ ] dx. (3.4)

Now, subtracting (3.4) from∫
RN

(|∇�|p + V0|�|p) dx =
∫

RN
[f (�)� + �p∗ ] dx,

we achieve

0 =
∫

RN

[
f (t1�)

(t1�)p−1 − f (�)

�p−1

]
�p dx + (t

p∗−p
1 − 1)

∫
RN

�p∗
dx.

Thus, from(f4), we havet1 = 1. �

Finally, we notice that we also have

I�(t���) = I0(t���) + t
p
�

p

∫
RN

(V (�x) − V0)|��|p) dx.

Thus, taking the limit as� → 0, using the fact thatV (�x) in bounded on the sup-
port of�� and the Lebesgue dominated convergence theorem, we conclude the proof of
Lemma 3.1. �

Now we haveI�(v�)�c0 + o�(1), whereo�(1) goes to zero as� → 0. Since foru ∈
W1,p(RN), from (V0) and(g2),

I�(u)� Ī (u)
.= 1

p

∫
RN

(|∇u|p + �|u|p) dx −
∫

RN

[
F(u) + 1

p∗ (u+)p
∗
]

dx,
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then eachb� is bounded from below bȳc > 0, the mountain-pass minimax level of the
functionalĪ .

Notice that

|v�|pE�
=
∫

RN

g(�x, v�)v� dx

and for� suitable small,

�
p

|v�|pE�
�
∫

RN
�G(�x, v�) dx + �c0 + 1,

which together with assumption(g3) implies that(
�
p

− 1

)
|v�|pE�

�
∫

RN
[�G(�x, v�) − g(�x, v�)v�] dx + �c0 + 1

�
∫

RN−��

[�G(�x, v�) − g(�x, v�)v�] dx + �c0 + 1

�
∫

RN−��

(� − p)G(�x, v�) dx + �c0 + 1

�
∫

RN−��

(� − p)

kp
V (�x)v

p
� dx + �c0 + 1� (�−p)

kp
|v�|pE�

+�c0+1.

Thus|v�|E� �C, whereC is a positive constant independent of�. Of course, we have that
(v�){0<�� �0} is bounded inW1,p(RN).

Lemma 3.2. There are�0 > 0, a family (y�){0<�� �0} ⊂ RN and positive constantsR, 	
such that∫

BR(y�)

v
p
� dx�	 for all 0< ���0.

Proof. Assume, for the sake of contradiction, that there is a sequence�n ↘ 0 such that for
all R > 0,

lim
n→∞ sup

x∈RN

∫
BR(x)

v
p
�n

dx = 0.

Using Lemma 1.1 in[17], it follows that∫
RN

F (v�n) dx =
∫

RN
v�nf (v�n) dx = on(1).

This implies the estimates∫
RN

G(z, v�n) dx� 1

p∗

∫
��n∪{v�n �a}

v
p∗
�n

dx + �
pk

∫
D�n∩{v�n>a}

v
p
�n

dx + on(1) (3.5)
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and ∫
RN

v�ng(z, v�n) dx =
∫
��n∪{v�n �a}

v
p∗
�n

dx + �
k

∫
D�n∩{v�n>a}

v
p
�n

dx + on(1), (3.6)

whereD� = RN\��. From equality (3.6) andI ′
�n

(v�n).v�n = 0 we have

‖v�n‖p − �
k

∫
D�n∩{v�n>a}

v
p
�n

dx + on(1) =
∫
��n∪{v�n �a}

v
p∗
�n

dx. (3.7)

Sincec̄ > 0, we have

‖v�n‖p − �
k

∫
D�n∩{v�n>a}

v
p
�n

dx → . > 0. (3.8)

Thus, from (3.7) and (3.8),∫
��n∪{v�n �a}

v
p∗
�n

dx → ..

Using estimate (3.5) and the fact thatI�n(v�n)�c0 + on(1), we conclude that

.�Nc0. (3.9)

Now, using (1.3) we have

‖v�n‖p − �
k

∫
(RN−�)∩{v�n>a}

|v�n |p dx�S

(∫
�∪{v�n �a}

v
p∗
�n

dx

)p/p∗

.

Thus, passing to the limit and using (3.9) we achieve

c0� 1

N
SN/p,

which is a contradiction for (3.2), and the proof of Lemma 3.2 is complete.�

Lemma 3.3. The family(�y�){0<�� �0} is bounded inRN and moreover, dist(�y�, �)��R.

Proof. For each� > 0, we setK� = {x ∈ RN : dist(x, �)��} and��(x) = �(�x), where
� ∈ C∞(RN, [0, 1]) is such that�(x) = 1 if x /∈ K�, �(x) = 0 if x ∈ � and|∇�|�C�−1.
Notice that|∇��|�C�−1�. Using assumption(V0), we see that

�
(

1 − 1

k

)∫
RN

|v�|p�� dx�
∫

RN

[
|∇v�|p +

(
V (�x) − �

k

)
v

p
�

]
�� dx.
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On the other hand, usingI ′
�(v�)v��� = 0, condition(g3) and the fact that the support of��

does not intercept��, we obtain∫
RN

[|∇v�|p +
(
V (�x) − �

k

)
v

p
� ]�� dx

� −
∫

RN
v�|∇v�|p−2∇v�∇�� dx +

∫
RN

[
g(z, v�)v� − �

k
v

p
�

]
�� dx

= −
∫

RN
v�|∇v�|p−2∇v�∇�� dx +

∫
RN

[
f̃ (v�)v� − �

k
v

p
�

]
�� dx

� −
∫

RN
v�|∇v�|p−2∇v�∇�� dx

�C�−1
(∫

RN
�|∇v�|p dx

)(p−1)/p(∫
RN

|v�|p dx

)1/p

�C�−1�|v�|p.

Thus, from these estimates, we have

�
(

1 − 1

k

) ∫
RN

|v�|p�� dx�C�−1�|v�|p.

Notice that, if there is a sequence�n ↘ 0 such that

BR(y�n) ∩ {x ∈ RN : �nx ∈ K�} = ∅,

then

�
(

1 − 1

k

) ∫
BR(y�n )

|v�n |p��n
dx�C�−1�n|v�n |p.

But this is contrary to Lemma 3.2. Thus, for all� > 0 there is anx such that�x ∈ K�
and |x − y�|�R, which implies thatdist(�y�, �)��R + �. From this we conclude the
proof. �

Remark 1. From Lemma 3.3, we can see that the family(�y�){0<�� �0} given in Lemma
3.2, can be taken such that�y� ∈ � for all 0< � < �0. Indeed, sincedist(�y�, �)��R, if
necessary, we can replacey� by �−1x� wherex� ∈ � and|y� − �−1x�| < R. Thus,

0< 	�
∫

BR(y�)

|v�|p dx�
∫

B2R(�−1x�)

|v�|p dx

and if we replaceRby 2R in the Lemma 3.2, we have our claim.

Next, we are going to prove that there is�0 > 0 such that the set

E� = {x ∈ RN : v�(x)�a and�x /∈�}
is empty, for all 0< � < �0. For that matter we have the following basic result:

Lemma 3.4. The following limits hold:

(i) lim �→0b� = c0;
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(ii) lim �→0V (�y�) = V0;
(iii) lim �→0|E�| = 0,where|E�| denotes the Lebesgue measure ofE�.

Proof. (i) Let �n ↘ 0 andyn = y�n . Since�ny�n ∈ �, up to a subsequence, we have
�nyn → x0 ∈ �. Set

vn(x) = v�n(x), �n(x) = v�n(x + yn), En = E�n andFn = F�n ,

where

F� = {x ∈ RN : v�(x + y�)�a and�x + �y� /∈�}. (3.10)

It is clear that|E�| = |F�|, sinceF� is a translation ofE�. From the definition of�n, we
have for all ∈ C∞

0 (RN),∫
RN

{|∇�n|p−2∇�n∇ + V (�nx + �nyn)�p−1
n } dx =

∫
RN

g(�nx + �ny, �n) dx

(3.11)

and‖�n‖W1,p = ‖vn‖W1,p is bounded. Thus, we may assume that there is�0 ∈ W1,p(RN)

such that�n ⇀ �0 in W1,p(RN) and�n(x) → �0(x) a.e. inRN . Using Lemma 3.2, and
takingR0 > 0 such thatBR(yn) ⊂ BR0(0) for all n, we have

p
√

	� |�n|Lp(BR(yn)) � |�n|Lp(BR(0)) � |�n − �0|Lp(BR0(y)) + |�0|Lp(BR0(y)).

From this estimate, using the Sobolev’s compact embedding theorem, we conclude that�0
is nontrivial and so nonnegative.

Now, taking the limit in (3.11) and proceeding as in the proof of Theorem 2.4, we achieve
that�0 is a critical point of the energy functional

Ĩ (�) = 1

p

∫
RN

(|∇�|p + V (x0)|�|p) dx −
∫

RN
G̃(x, �) dx,

that is,∫
RN

[|∇�0|p−2∇�0∇ + V (x0)�
p−1
0 ] dx =

∫
RN

g̃(x, �0) dx ∀ ∈ C∞
0 (RN),

(3.12)

whereG̃ is the primitive of

g̃(x, �0) = �(x)[f (�0) + �p∗−1
0 ] + (1 − �(x))f̃ (�0)

and

�(x) = lim
n→∞ ��(�nx + �nyn) a.e. inRN .

Notice that, ifx0 ∈ �, we have�(x) = 1 for all x ∈ RN , and so�0 is a critical point of the
energy functional

Ĩx0(�) = 1

p

∫
RN

(|∇�|p + V (x0)|�|p) dx −
∫

RN

[
F(�) + �p∗

p∗

]
dx.
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On the other hand, ifx0 ∈ ��, without loss of generality we suppose that the outer normal
vector� in x0 is (1, 0, . . . , 0). Let P ={x ∈ RN : x1 < 0}. Notice that� ≡ 1 onP, since for
eachx ∈ P , we have that�nx+�nyn ∈ �, forn large, because�nyn ∈ �. Thus, in both cases
g̃(x, s) = f (s) + s2∗−1, for all x ∈ P . This implies that the mountain-pass minimax level
c̃ associated to the functionalĨ is equal to the mountain-pass minimax levelc̃x0 associated
to the functionalĨx0. Indeed, from(g2), we haveĨx0(u)� Ĩ (u), for all u ∈ W1,p(RN) and
thenc̃� c̃x0. On the other hand,̃Ix0(u) = Ĩ (u) for all uwith support contained inP.

From (3.2), using Fatou’s Lemma and Lemma 3.1, we get

pc0�pĨ (�0) =
∫

RN
[�0g̃(x, �0) − pG̃(x, �0)] dx

× lim inf
n→∞

∫
RN

[�ng(�nx + �nyn, �n) − pG(�nx + �nyn, �n)] dx

� lim inf
n→∞

∫
RN\Fn

[�ng(�nx + �nyn, �n) − pG(�nx + �nyn, �n)] dx

� lim inf
n→∞

∫
RN\En

[vng(�nx, vn) − pG(�nx, vn)] dx

= lim inf
n→∞ [pI �n

(v�n) − I ′
�n

(v�n)v�n ]�pc0. (3.13)

Thus (i) holds.
Notice that if (ii) does not hold (that is,V (x0) > V0) we have

c0 < c̃� Ĩ (�0) = c0,

which is a contradiction; thenV (x0) = V0.
To show (iii), we observe that from (3.13), we have

lim
n→∞

1

p

∫
RN\En

[vng(�nx, vn) − pG(�nx, vn)] dx = c0 (3.14)

and

lim
n→∞

1

p

∫
RN

[vng(�nx, vn) − pG(�nx, vn)] dx = c0.

Thus

lim
n→∞

1

p

∫
En

[vng(�nx, vn) − pG(�nx, vn)] dx = 0. (3.15)

Now, using the definition ofg(z, s) and assumption(f3) we can prove that∫
En

[vng(�nx, vn)−pG(�nx, vn)] dx=
[(

1− p

p∗

)
ap∗+af (a)−pF(a)

]
|En|>0,

which together with (3.15) implies that limn→∞|En| = 0, and the proof is complete.�

Lemma 3.5. v�(x + y�)�(RN\F�)
(x) converges to�0 in Lp∗

(RN).
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Proof. Following the notation of Lemma 3.4, we set��(x) = v�(x + y�). We have proved
in last lemma thatb� → c0 and that�n converges in the weak sense to�0, a ground state
solution of the autonomous problem (3.1). From the proof of Lemma 3.4 and the regularity
result below, we also have thatg(�x + �y�, ��) converges uniformly over compacts to
f (�0) + �p∗

0 . Moreover, it follows from the definition ofg and (3.10), using the Hölder’s
inequality, that∫

F�

g(�x + �y�, ��)�� dx = �
k

∫
F�

�p
� � �

k
|��|pLp∗ |F�|

p∗−p

p∗ = o�(1),

which together with assumption(g3) implies that∫
F�

G(�x + �y�, ��) dx = o�(1).

Now from (3.14) and definition ofg, we have

pc0 + on(1) =
∫

RN\Fn

[�ng(�nx + �nyn, �n) − pG(�nx + �nyn, �n)] dx

=
∫

RN\Fn

[�nf (�n) − pF(�n)] dx +
(

1 − p∗

p

)∫
RN\Fn

�p∗
n dx.

Thus ∫
RN\Fn

�p∗
n dx →

∫
RN

�p∗
0 dx

and the proof is complete.�

We use the classical interactions method due to Moser to prove the regularity of the weak
solutions, more precisely, we shall prove the following result:

Proposition 3.6. v� belongs toLs(RN) for all s ∈ [p∗, +∞]. Moreover, |v�|∞ �C, for
all 0< � < �0 and the solutionsv� decay uniformly to zero as|x| → +∞.

Proof. In order to use the same kind of argument in[23], we are going to prove by induction
thatv� ∈ L�n(RN) for all�n=p�n, where�=N/(N−p). By Gagliardo–Nirenberg–Sobolev
inequality we have thatv� ∈ L�1. Assume thatv� ∈ L�n(RN); then, we shall prove that
v� ∈ L�n+1(RN). For this end we consider the test function = �pv�[Tk(v�)]sn , where
Tk(v�) = min{k, v�}, sn = p(�n − 1) and� ∈ C∞

0 (RN, [0, 1]).
Using the fact thatv� is a critical point ofI� and assumptions(g2), (f1) and(f2) we find∫

RN
[|∇v�|p−2∇v�∇ + V (�x)v

p−1
� ] dx�

∫
RN

[�
2
v

p−1
� + C(�)v

p∗−1
�

]
 dx,

which implies that∫
RN

|∇v�|p−2∇v�∇ dx�C(�)

∫
RN

v
p∗−1
�  dx. (3.16)
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From (3.16), it is easy to see that∫
RN

�p[Tk(v�)]sn |∇v�|p dx + sn

∫
RN

�pv�[Tk(v�)]sn−1|∇v�|p−2∇v�∇[Tk(v�)] dx

� − p

∫
RN

�p−1v�[Tk(v�)]sn |∇v�|p−2∇v�∇� +
∫

RN
v

p∗
� �p[Tk(v�)]sn dx.

(3.17)

By Young’s inequality it follows that∣∣∣∣∫
RN

�p−1v�[Tk(v�)]sn |∇v�|p−2∇v�∇� dx

∣∣∣∣
� (p − 1)�

p
p−1

p

∫
RN

�p[Tk(v�)]sn |∇v�|p dx + 1

p�p

∫
RN

v
p
� [Tk(v�)]sn |∇�|p dx.

(3.18)

Using Gagliardo–Nirenberg–Sobolev inequality, we obtain

|�v�[Tk(v�)]
sn
p |p

Lp∗ �C

{∫
RN

|∇�|pv
p
� [Tk(v�)]usn dx +

∫
RN

�p[Tk(v�)]sn |∇v�|p dx

+
(

sn

p

)p ∫
RN

�pv
p
� [Tk(v�)]sn−p|∇[Tk(v�)]|p dx

}
,

whereC = C(N, p, �). This estimate together with (3.17) and (3.18) implies

|�v�[Tk(v�)]
sn
p |p

Lp∗ �C�p(n−1)

{∫
RN

|∇�|pv
p
� [Tk(v�)]sn dx

+
∫

RN
v

p∗
� �p[Tk(v�)]sn dx

}
.

Now, in order to prove thatu ∈ L�n+1(|x|��) for some large� > 0, we consider the
function � ∈ C∞

0 (RN, [0, 1]) such that� ≡ 1 if |x|�� > 4, � ≡ 0 if |x|�� − 2 and
|∇�|�1. Hence, by Holder’s inequality,∫

RN
v

p∗
� �p[Tk(v�)]sn dx� |�v�[Tk(v�)]

sn
p |p

Lp∗ |v�|p
∗−p

Lp∗
(|x|��/2)

.

Thus

|�v�[Tk(v�)]
sn
p |p

Lp∗ �C�p(n−1){||∇�|v�[Tk(v�)]
sn
p |pLp

+ |�v�[Tk(v�)]
sn
p |p

Lp∗ |v�|p
∗−p

Lp∗
(|x|��/2)

}.
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Since|v�|Lp∗ �C, for all � ∈ (0, �0), we can take� suitably large such that[2C�p(n−1)]
|v�|p

∗−p

Lp∗
(|x|��/2)

�1, for all � ∈ (0, �0). Thus, we get the estimate

|�v�[Tk(v�)]
sn
p |p

Lp∗
(|x|��)

� |�v�[Tk(v�)]
sn
p |p

Lp∗

�C�p(n−1)

∫
RN

|∇�|pv
p
� [Tk(v�)]sn dx

�C�p(n−1)

∫
|x|��/2

v�n
� dx

for all � ∈ (0, �0), whereC =C(N, p, �, �). Therefore, lettingk → +∞, by the dominated
convergence theorem,

|v�|L�n+1(|x|��) �C
1

�n �
n−1
�n |v�|L�n (|x|��/2) ∀� ∈ (0, �0). (3.19)

We can use the same argument taking� ∈ C∞
0 (RN, [0, 1]) with � ≡ 1 if |x0 − x|��′,

� ≡ 0 if |x0 − x|�2�′ and|∇�|�2/�′, to prove that

|v�|L�n+1(|x|��′) �C
1

�n �
n−1
�n |v�|L�n (|x|�2�′) ∀� ∈ (0, �0), (3.20)

where�′ is a suitable small positive constant independent ofx0 andC = C(N, p, �, �′).
Therefore, from (3.19) and (3.20), by a standard covering argument we can show that

|v�|L�n+1 �C
1

�n �
n−1
�n |v�|L�n ∀� ∈ (0, �0).

Interaction yields

|v�|L�n+1 �C

∑ 1
�n �

∑ n−1
�n |v�|L�1 ∀� ∈ (0, �0),

whereC is independent ofn, since both series are convergent. Finally, lettingn → ∞, and
observing that|u|∞ � limn→∞|u|L�n we deduce easily thatv� ∈ L∞(RN) and, besides,

|v�|∞ �C for all 0< � < �0.

Sincev� ∈ L�1(RN) ∩ L∞(RN), using the interpolation inequality, we prove thatv� ∈
L�(RN) for all � ∈ [�1, ∞].

By a similar argument used to prove Theorem 1 in[23] (see also[13, Theorem 8.17]),
for any open ballBr(x) of radiusr centered at anyx ∈ RN and some constantC(N, �2),
the nonnegative functionu ∈ W1,p(RN) such that

−�pu�h(x)

in the weak sense, satisfies the estimate

sup
Br(x)

u(y)�C{|u|Lp(B2r (x)) + |h|L�2(B2r (x))}.

Thus, for the family{v�} we have

sup
Br(x)

v��C{|v�|Lp(B2r (x)) + |vp∗−1
� |L�2(B2r (x))} ∀� ∈ (0, �0).
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By the preceding results we know thatv
p∗−1
� ∈ L�2(RN)and, moreover,|vp∗−1

� |
L�2(RN )

�C

whereC is independent of�. Therefore, the uniform vanishing property of the family
{v�}0<�<�0

is implied. �

The next regularity result is a direct consequence of the previous proposition and a result
due to Tolksdorf (cf.[26]).

Corollary 3.7. The functionsv� belongs toC
1,�
loc (Br), where� = �(r) ∈ (0, 1).

Finally, since the solutionsv� decay uniformly to zero as|x| → +∞, we can take� > 0
such that��(x) = v�(x + y�)�a for all |x|�� and for all� ∈ (0, �0). On the other hand,
taking�0 to be suitably small we see thatB�(0) ⊂ ��. Therefore, in both cases we see that

g(�x + �y, ��) = f (��) + �p∗−1
� in RN for all � ∈ (0, �0). Therefore the existence of a

positive bounded state solution of problem(P�) for all � ∈ (0, �0) is proved.
When 1< p�2, elliptic regularity theory implies that�� belongs to classC2 and��

converges inC2 to �0. Using Lemma 3.6, we have that�� possesses a global maximum
point x� and after translation we may assume that��(0) = max|x|�R�� = maxRN ��, for
someR > 0. Now, using that�0 is radially symmetric and a similar result to the Lemma
4.2 in [19], we can prove that for� sufficiently small,�� possesses no critical points other
than the origin.

Finally, we are going to prove the exponential decay.

Lemma 3.8. The family{��}0<�<�0
satisfies

��(x)�C exp(−	|x|) ∀x ∈ RN ,

where C and	 are positive constants independents of�.

Proof. Using assumption(f1) and the fact that the solutions�� decay uniformly to zero
as|x| → +∞, we can take�0 > 0 such that

2(f (��(x))�1−p
� + ��(x)p

∗−p)�V0 = inf
�

V (x) for all |x|��0.

Consequently,

−�p�� + V0

2
�p−1

� �f (��(x)) + ��(x)p
∗−1 − V0

2
�p−1

� �0 for all |x|��0.

Let � andM be positive constants such that(p − 1)�p < V0/2 and��(x) �M exp(−��0)

for all |x| = �0. Hence, the function�(x) = M exp(−�|x|) satisfies

−�p� + V0

2
�p−1�

(
V0

2
− (p − 1)�p

)
�p−1 > 0 for all x �= 0.

Sincep > 1, we have that the function� : RN → R, �(x) = |x|p is convex, thus

(|x|p−2x − |y|p−2y)(x − y)�0 for all x, y ∈ RN .
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We now take as a test function
 = max{�� − �, 0} ∈ W
1,p
0 (|x| > �0). Hence, combining

these estimates,

0�
∫

RN

[
(|∇��|p−2∇�� − |∇�|p−2∇�)
 + V0

2
(�p−1

� − �p−1)

]

dx

� V0

2

∫
{x∈RN :�� ��}

(�p−1
� − �p−1)(�� − �) dx�0 for all |x|��0.

Therefore, the set{x ∈ RN : |x|��0 and��(x)��(x)} is empty. From this we can easily
conclude the proof. �
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