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Three positive radial solutions for elliptic equations in a ball
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Abstract

In this work we deal with a class of second-order elliptic problems of the form−�u = λk(|x|) f (u) in Ω , with
non-homogeneous boundary conditionu = a on∂Ω whereΩ is the ball of radiusR0 centered at origin,λ, a
are positive parameters,f ∈ C([0,+∞), [0,+∞)) is an increasing function andk ∈ C([0, R0], [0,+∞)) is not
identically zero on any subinterval of[0, R0]. We obtain via a fixed point theorem of cone expansion/compression
type the existence of at least three positive radial solutions.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The objective of this work is to establish the existence and multiplicity of positive radial solutions for
elliptic problems of the form

−�u = λk(|x|) f (u), u > 0 in Ω andu = a on∂Ω, (1.1)

where Ω is the ball of radius R0 centered at origin, λ, a are positive parameters,f ∈
C([0,+∞), [0,+∞)) is a increasing function andk ∈ C([0, R0], [0,+∞)) is not identically zero in
any subinterval of[0, R0].
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The following hypotheses will be assumed through this work.

(H0) f (t) > 0, for all t > 0.

(H1) limu→0
f (u)
u = 0.

(H2) limu→+∞ f (u)
u = 0.

(H3) There exists a functionϕ = ϕa ∈ C([0,+∞), [0,+∞)) verifying∫ +∞

1
ϕ(τ )τ− N

N−2 dτ < +∞

and positive constants̄α(a), τ̄ (a) andM(a) such that for allτ > τ̄ , we have

f (ατ + a)

f (α + a)
≤ Mϕ(τ ), for all α ≥ ᾱ. (1.2)

Theorem 1.1. Assume that the nonlinear function f(u) satisfies(H0)–(H3). Then Problem(1.1) has at
least one solution for all a, λ > 0.

Theorem 1.2. Assume that the function f(u) satisfies(H0)–(H3). Then, there exists̃δ > 0 such that
for all a ∈ (0, δ̃) there exists ãλ(a) > 0 such that for allλ > λ̃(a), Problem(1.1) has at least three
solutions.

Applications. Note that the hypotheses of our main results are satisfied by nonlinear functions of the
form

(a) f (u) = up1/(1 + uq1) with 1 < p1 and 0< p1 − q1 < min{1, 2/(N − 2)};
(b) f (u) = (uq2 + 1)ϕ(up2) with 1 < p2, 0 < q2 < min{1, 2/(N − 2)} andϕ ∈ C([0,+∞), [0,+∞))

is such that limu→0 ϕ(u)/u ≥ 0 and limu→+∞ ϕ(u) > 0.

The study of Problem (1.1) was in part motivated by several recent results for elliptic problems
on annular domains with nonhomogeneous boundary conditions. Among others we mention [1–6],
with references therein. In some of these articles existence and multiplicity in annular domains were
established using fixed point theorems of expansion/compression type. In their arguments the following
elementary property of nonnegative concave functions inC([0, 1], R) was crucial: for allα, β ∈ (0, 1)

we have

inf
t∈[α,β] u(t) ≥ α(1 − β)‖u‖∞. (1.3)

Our approach is also based on a fixed point theorem of cone expansion/compression type. There are,
however, some substantial differences between the problems in annular domains and balls. Our strategy
consists of, by a suitable change of variables, transforming our problem into an ODE problem such that
the fixed point operator associated preserves the cone of concave and nonnegative functions. To this
end it is crucial to find an alternative property to replace (1.3) which in our case is more delicate (see
Lemma 2.3below).

The rest of this work is organized as follows.Section 2contains preliminary results andSection 3is
devoted to proving our main results,Theorems 1.1and1.2.
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2. Preliminary results

We will establish the existence of positive radial solutions of the problem (1.1). In fact, we will obtain
positive solutionsu = u(r ) of the problem of ordinary equations

−(r N−1u′)′ = r N−1λk(r ) f (u + a) in (0, R0) andu(Ro) = u′(0) = 0. (2.1)

Considera : (0, R0] → [0,+∞); a(r ) = (r 2−N − R(2−N)
0 )/(N −2). Performing the change of variable

t = a(r ), z(t) = u(r (t)), we see that (2.1) can be rewritten as

−z′′(t) = λr 2(N−1)(t)h(t) f (z(t) + a) in (0,+∞) andz(0) = z′(+∞) = 0, (2.2)

whereh(t) = k(a−1(t)) is a continuous function which does not vanish identically on any subinterval of
(0,+∞). Finally, integrating the equations of (2.2) twice and using the boundary conditions, (2.2) can
be brought into the form of the following integral equation:

z(t) = λ

∫ t

0

∫ +∞

s
G(τ )h(τ ) f (z(τ ) + a)dτds (2.3)

whereG(τ ) = (R2−N
0 + (N − 2)τ )2(1−N)/(N−2). Consequently, we may solve (2.1) using fixed point

techniques. For this, we make use of the following well known fixed point theorem (see [7,8]).

Lemma 2.1. Let X be a Banach space with norm| · |, and letC ⊂ X be a cone in X. For R> 0, define
CR = C ∩ B[0, R], where B[0, R] = {x ∈ X : |x| ≤ R} denotes the closed ball of radius R centered at
the origin of X, which is a completely continuous map for which there exists0 < r < R such that

|Fx| < |x|, x ∈ ∂Cr and |Fx| > |x|, x ∈ ∂CR, or

|Fx| > |x|, x ∈ ∂Cr and |Fx| < |x|, x ∈ ∂CR,

where∂CR = {x ∈ C : |x| = R}. Then F has a fixed point u∈ C with r < |u| < R.

X will denote the space of continuous and bounded functionsz : [0,+∞) → R endowed with the
norm|z|∞ = sup{|z(t)| : t ∈ [0,+∞)}.

C1 will denote the cone of nonnegative and concave functions ofX such thatz(0) = 0. Notice that the
elements ofC1 are increasing functions.

In C1 we consider the operatorF : C1 → X given by

F(z)(t) := λ

∫ t

0

∫ +∞

s
G(τ )h(τ ) f (z(τ ) + a)dτds.

Lemma 2.2. We have that F is well defined, F(C1) ⊂ C1, and F is a completely continuous operator.

Proof. Notice that for alls ≥ 0,∫ +∞

s
G(τ )dτ = 1

N
G(s)N/2(N−1) and

∫ +∞

0

(∫ +∞

s
G(τ )dτ

)
ds < +∞.

Hence,F is well defined.
Also, notice that the functionF(z)(t) belongs to classC2 and its derivatives are given by

d

dt
F(z(t)) =

∫ +∞

t
G(τ ) f (z(τ ) + a)dτ and

d2

dt2
F(z)(t) = −G(t) f (z(t) + a).



1166 J.M. do Ó et al. / Applied Mathematics Letters 18 (2005) 1163–1169

ThusF(z)(t) is increasing and concave. Therefore,F(C1) ⊂ C1.
It remains to prove thatF is a completely continuous operator. Let(zn) ∈ C1 such that|zn|∞ ≤ c0

andM1 = max{ f (t + a) : t ∈ [0, c0]}. Thus, it follows that

|F(zn)(t)| ≤ M1

∫ +∞

0

∫ +∞

s
G(τ )dτds and

∣∣∣∣ d

dt
F(zn)(t)

∣∣∣∣ ≤ M1

∫ +∞

0
G(τ )dτ.

By the Arzelá–Ascoli compactness criterion for uniform convergence, up to a subsequence, we can
assume that(F(zn)) is uniformly convergent on compact subsets of[0,+∞). To prove that there exists
a uniformly convergent subsequence ofF(zn) it suffices to recall that givenε > 0, there isT = T(ε)

such that∫ +∞

T

∫ +∞

s
G(τ )dτds < ε.

We now verify thatF is continuous. Let(zn) be a sequence inC1 such that|zn − z0|∞ → 0 asn → ∞.
Thus

|F(zn)(t) − F(z0)(t)| ≤
∫ +∞

0
|Γn(s) − Γ0(s)|ds

where

Γn(s) =
∫ +∞

s
G(τ ) f (zn(τ ) + a)dτ and Γ0(s) =

∫ +∞

s
G(τ ) f (z0(τ ) + a)dτ.

It follows from |zn − z0|∞ → 0 that Γn(s) → Γ0(s) and thatΓn(s) ≤ C/N G(s)N/2(N−1) for
all s ∈ [0,+∞), whereC is a positive constant. By the Lebesgue dominated convergence theorem,
|F(zn) − F(z0)|∞ → 0, which implies thatF is continuous. �

It is clear that givenz ∈ C1 \ {0}, there exists a uniqueτ1 = τ1(z) such that

2z(τ1) = |z|∞.

Define

τ ∗ := sup{τ1(F(z)) : z ∈ C1}
and

C := {z ∈ C1 : 2z(t) ≥ |z|∞,∀t ≥ τ ∗}.
Lemma 2.3. τ ∗ is a positive real number andC is a cone invariant under F.

Proof. Firstly we show thatτ ∗ is a positive real number. Suppose to the contrary thatτ ∗ = +∞. Then
there must exist a sequencezn ⊂ C1 \ {0} such thatτn = τ1(F(zn)) is a strictly increasing sequence of
positive real numbers converging to+∞. By definition ofτn we have∫ τn

0

∫ +∞

s
Hn(τ )dτds =

∫ +∞

τn

∫ +∞

s
Hn(τ )dτds (2.4)

whereHn(τ ) = G(τ )h(τ ) f (zn(τ ) + a). According to (2.4) and using integration by parts we have

2τn

∫ +∞

τn

Hn(τ )dτ +
∫ τn

0
τ Hn(τ )dτ =

∫ +∞

τn

τ Hn(τ )dτ. (2.5)
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Sincezn is concave it follows from (2.5) that∫ τn

0
τUn(τ )dτ �

∫ +∞

τn

τUn(τ )dτ (2.6)

whereUn(τ ) = G(τ )h(τ ) f (αnτ + a) with αn = zn(τn)/τn. Now, since f (αnτ + a) ≥ f (αn + a), for
all τ ≥ 1, by using (2.6) we obtain that∫ τn

1
τUn(τ )dτ �

∫ +∞

τn

τUn(τ )dτ.

Hence,∫ τn

1
τh(τ )G(τ )dτ ≤

∫ +∞

τn

τh(τ )G(τ )
f (αnτ + a)

f (αn + a)
dτ. (2.7)

Next we consider two cases.

Case 1. There exits a subsequence(αnk) of (αn) such thatαnk < α for all k. In this case, from (2.7) and
(H3), we get∫ τnk

1
τh(τ )G(τ )dτ ≤

∫ +∞

τnk

τh(τ )G(τ )
f (ατ + a)

f (αnk + a)
dτ

=
∫ +∞

τnk

τh(τ )G(τ )
f (ατ + a)

f (α + a)

f (α + a)

f (αnk + a)
dτ

≤ C
∫ +∞

τnk

τG(τ )ϕ(τ )dτ.

Case 2. αn ≥ α for all n. In this case, from (2.7) and(H3), we obtain∫ τn

1
τh(τ )G(τ )dτ ≤ C

∫ +∞

τn

τG(τ )ϕ(τ )dτ.

In both cases, sinceG(τ ) = (R2−N
0 + (N − 2)τ )2(1−N)/(N−2), it is easy to see that∫ τn

1
τh(τ )G(τ )dτ ≤ C

∫ +∞

τn

τ−N/(N−2)ϕ(τ )dτ,

and from(H3) we see that the right integral of the inequality above converges to zero whenn goes to
infinity. But this is impossible, since

∫ +∞
1 τh(τ )G(τ )dτ > 0.

Finally, it is clear thatC is a invariant cone underF . �

Lemma 2.4. Assume(H2). Given a> 0 andλ > 0, there exists R1 = R1(a, λ) sufficiently large that

|F(z)|∞ < |z|∞, for each z∈ ∂CR1. (2.8)

Proof. It follows from condition(H2) that givenε > 0 there existsR > a such that

f (s) ≤ εs, for eachs ≥ R.

Thus, for eachz ∈ ∂CR, we have

f (z(τ ) + a) ≤ f (R + a) ≤ f (2R) ≤ 2εR
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which implies that

|F(z)|∞ = max
t≥0

∫ t

0

∫ +∞

s
λG(τ )h(τ ) f (z(τ ) + a)dτds

≤ 2εR
∫ +∞

0

∫ +∞

s
λG(τ )h(τ )dτds.

Finally, choosingε > 0 sufficiently small we prove that (2.8) holds. �
Lemma 2.5. Assume condition(H0). Given R, a, λ > 0 there is R2 = R2(a, λ) ∈ (0, R) small enough
that

|F(z)|∞ > |z|∞, for each z∈ ∂CR2. (2.9)

Proof. Since f (a) > 0, givenM > 0 there existsr1 ∈ (0, R) small enough that

f (s + a) ≥ Ms, for all s ∈ [0, r1].
Thus, for eachz ∈ ∂CR2,

|F(z)|∞ ≥ F(z)(τ ∗) =
∫ τ∗

0

∫ +∞

s
λG(τ )h(τ ) f (z(τ ) + a)dτds

≥
∫ τ∗

0

∫ +∞

τ∗
MλG(τ )h(τ )z(τ )dτds

≥ |z|∞ τ ∗M

2

∫ +∞

τ∗
λG(τ )h(τ )dτ.

ChoosingM > 0 sufficiently large that

τ ∗M
∫ +∞

τ∗
λG(τ )h(τ )dτ > 2,

we prove that (2.9) holds. �
Lemma 2.6. Assume condition(H0). Then given R3 > 0 there is a constant̄λ = λ̄(a) > 0 such that for
all λ > λ̄ we have

|F(z)|∞ > |z|∞, for each z∈ ∂CR3. (2.10)

Proof. For eachz ∈ ∂CR3, we have

|F(z)|∞ ≥ F(z)(τ ∗) ≥ τ ∗ f (z(τ ∗))
∫ +∞

τ∗
λG(τ )h(τ )dτ

= λτ ∗ f

(
R3

2

) ∫ +∞

τ∗
G(τ )h(τ )dτ.

Thus, takinḡλ such that

λ̄τ ∗ f

(
R3

2

) ∫ +∞

τ∗
G(τ )h(τ )dτ = R3

we complete the proof ofLemma 2.6. �
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3. Proof of the main results

Proof of Theorem 1.1. It follows from Lemmas 2.1, 2.4 and2.5 that the operatorF has a fixed point
z ∈ C such thatR2 < |z|∞ < R1.

Proof of Theorem 1.2. Let R3 andλ̄ be like inLemma 2.6. Givenλ > λ̄ takeη = η(λ) > 0 such that

η

∫ +∞

0

∫ +∞

s
λG(τ )h(τ )dτds < 1.

Using assumption(H1) we can chooseR4 ∈ (0, R3) such that

f (t) ≤ ηt,∀t ∈ (0, R4).

Thus, for alla ∈ (0, R4/2) andz ∈ ∂CR4/2 we have

f (z(τ ) + a) ≤ f

(
R4

2
+ a

)
≤ η

(
R4

2
+ a

)
≤ ηR4.

Therefore,

|F(z)|∞ ≤ ηR4

∫ +∞

0

∫ +∞

s
λG(τ )h(τ )dτds

< R4.

Finally, by using a combination ofLemmas 2.4and 2.5, and by choosingR1 and R2 such that
0 < R2 < R4 < R3 < R1 we have that there exist three fixed pointsz1, z2 andz3 of operatorF in
C such that

R2 < |z1|∞ < R4 < |z2|∞ < R3 < |z3|∞ < R1.
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