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Abstract

In this work we deal with a class of second-order elliptic problems of the feriu = Ak(|x]) f (u) in {2, with
non-homogeneous boundary condition= a on a2 where(? is the ball of radiusRy centered at origin,A, a
are positive parameters§, € C([0, +00), [0, +00)) is an increasing function aride C([0, Ro], [0, +00)) is not
identically zero on any subinterval (@, Ryg]. We obtain via a fixed point theorem of cone expansion/compression
type the existence of at least three positive radial solutions.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The objective of this work is to establish the existence and multiplicity of positive radial solutions for
elliptic problems of the form

—Au=xk(|x)fu), u>0inf2andu=aonds?, (1.2)

where 2 is the ball of radiusRy centered at origin, A,a are positive parametersf e
C([0, +00), [0, +00)) is a increasing function ank € C([0, Rp], [0, +00)) is not identically zero in
any subinterval of0, Rp].
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The following hypotheses will be assumed through this work.

(Ho) f(t) > 0O, forallt > 0.

(Hy) limyo 13 = 0.

(HZ) Iimu—>+oo % =0.

(H3) There exists a functiop = ¢4 € C([0, +00), [0, +00)) verifying

+00 N
f p(t)r N2dr < 400
1
and positive constants(a), T(a) andM(a) such that for alk > 7, we have

f(at +a) _
m < M(p(T), fOI‘ a“ o> . (12)

Theorem 1.1. Assume that the nonlinear function(u) satisfiesHg)—(H3). Then Problen{l.1) has at
least one solution for all aA > 0.

Theorem 1.2. Assume that the~ function(d) satisfies(Ho)—(Hs). Then, there existd > 0 such that
for all a € (0, §) there exists &.(a) > 0 such that for allx > A(a), Problem(1.1) has at least three
solutions.

Applications. Note that the hypotheses of our main results are satisfied by nonlinear functions of the
form

(@) f(u) =uPr/(1+u%)withl < p;and O< p; — g1 < min{1, 2/(N — 2)};
(b) f(u) = U2+ 1D)puP?) with1 < p2,0 < g2 < min{1,2/(N — 2)} andy € C([0, +00), [0, +00))
is such that limg_.o¢(u)/u > 0 and lim,— 4+ ¢(u) > 0.

The study of Problem1(1) was in part motivated by several recent results for elliptic problems
on annular domains with nonhomogeneous boundary conditions. Among others we ménrthn [
with references therein. In some of these articles existence and multiplicity in annular domains were
established using fixed point theorems of expansion/compression type. In their arguments the following
elementary property of nonnegative concave functior@ (i, 1], R) was crucial: for alk, 8 € (0, 1)
we have

tei[gfﬂ] u@® = a(d - Allullee. (1.3)

Our approach is also based on a fixed point theorem of cone expansion/compression type. There are
however, some substantial differences between the problems in annular domains and balls. Our strateg
consists of, by a suitable change of variables, transforming our problem into an ODE problem such that
the fixed point operator associated preserves the cone of concave and nonnegative functions. To thi
end it is crucial to find an alternative property to replate)which in our case is more delicate (see
Lemma 2.3below).

The rest of this work is organized as follow&ection 2contains preliminary results argkction 3is
devoted to proving our main resulfBheorems 1.And1.2
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2. Preliminary results

We will establish the existence of positive radial solutions of the problef). (In fact, we will obtain
positive solutionsl = u(r) of the problem of ordinary equations

—r NIy = rN"Lak(r) f (u + a) in (0, Ry) andu(Ry) = u'(0) = 0. (2.1)
Considem : (0, Ryg] — [0, +00); a(r) = (r&N — Réz_N))/(N — 2). Performing the change of variable
t =a(r), z(t) = u(r (t)), we see thatd.1) can be rewritten as

—Z'(t) = ar2N=D)ht) f (z(t) + a) in (0, +00) andz(0) = Z (+o0) = 0, (2.2)

whereh(t) = k(a~1(t)) is a continuous function which does not vanish identically on any subinterval of
(0, +00). Finally, integrating the equations d.@) twice and using the boundary condition8,3) can
be brought into the form of the following integral equation:

t +o00
zZ(t) = A/ f G()h(z) f (z(7) + a)drds (2.3)
0 Js

whereG(r) = (RSN 4 (N — 2)1)24-N)/(N-2 Consequently, we may solve.() using fixed point
techniques. For this, we make use of the following well known fixed point theorem{ &3k [

Lemma2.1. Let X be a Banach space with notm|, and letC c X be a cone in X. For R~ 0, define
Cr = C N B[O, R], where BO, R] = {x € X : |X| < R} denotes the closed ball of radius R centered at
the origin of X, which is a completely continuous map for which there &Xists < R such that
[FX| < |X|,x € 3Cr and |FXx| > |X|, X € dCR, Or
[FX| > |X|, X € 3C; and |FX| < |X]|, X € 3CR,
wheredCr = {x € C : |X| = R}. Then F has afixed pointa C withr < |u| < R.
X will denote the space of continuous and bounded functionf0, +o00) — R endowed with the
norm|zj., = sug|z(t)| : t € [0, +00)}.
C1 will denote the cone of nonnegative and concave functioné sdich thatz(0) = 0. Notice that the

elements of’; are increasing functions.
In C1 we consider the operatér : C1 — X given by

t +o00
F(2@) =A / / G(t)h(r) f (z(r) + a)drds.
0 Js

Lemma2.2. We have that F is well defined(&) c C1, and F is a completely continuous operator.

Proof. Notice that for alls > 0,

+00 1 —+00 —+00
/ G(r)dr = NG(S)N/Z(N_D and / </ G(r)dr) ds < +o0.
S 0 5

Hence,F is well defined.
Also, notice that the functiof (z)(t) belongs to clas€? and its derivatives are given by

2

+00
%F(Z(t)) = / G(r)f(z(r) + a)dr and % F(2)(t) = —-G(t) f(z(t) + a).
t
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ThusF (2)(t) is increasing and concave. Therefdrg(1) C Cs.
It remains to prove thaf is a completely continuous operator. L&) € C; such thaizy|. < Co

andM1 = max f(t +a) : t € [0, cg]}. Thus, it follows that

d

—F t

qt (zn) ()

+o00 +o00 +o00
[F(zn) ()] < le f G(t)drds and < le G(7)dr.
0 S 0

By the Arzela—Ascoli compactness criterion for uniform convergence, up to a subsequence, we can
assume thatF (zn)) is uniformly convergent on compact subset§®@f+oco). To prove that there exists

a uniformly convergent subsequenceFafz,) it suffices to recall that givea > 0, there isT = T (¢)

such that

o0 400
/ / G(tr)drds < e.
T S

We now verify thatF is continuous. Letz,) be a sequence ity such thaiz, — zp|ooc — 0 asnh — occ.
Thus

+o0
[F(zn) () — F(zo)(1)] < /0 |Ih(S) — To(s)|ds
where
“+00 —+00
I'h(s) = f G() f(za(r) +a)dr and Io(s) = / G(7) f (zo(7) + a)dr.
S S

It follows from |z, — Zolee — O thatIh(s) — Io(s) and thatlh(s) < C/NG(s)N2N-D for
all s € [0, +00), whereC is a positive constant. By the Lebesgue dominated convergence theorem,
|F(zn) — F(20)|loo — 0, which implies thaf is continuous. [

Itis clear that giverz € C1 \ {0}, there exists a uniqug = r1(2) such that
22(11) = |Z| 0.
Define
* = suft1(F(2) : z€ C1}
and
C:=1{zeC1 : 2z(t) > |Z|oo, Yt > T¥}.
Lemma2.3. * is a positive real number an@is a cone invariant under F.

Proof. Firstly we show that* is a positive real number. Suppose to the contrarythat +oo. Then
there must exist a sequengeC C1 \ {0} such thatr, = 11(F(zn)) is a strictly increasing sequence of
positive real numbers converging+ex. By definition ofr, we have

T [+00 +00  p+00
f / Hn(7)drds = f / Hn(z)drds (2.4)
0 S n S

whereHp (1) = G(r)h(7) f (zn(r) 4+ @). According to 2.4) and using integration by parts we have

+00 Tn +00
an/ Hn(t)dt+/ tHn(7)dr =/ tHn(7)dr. (2.5)
n 0 Tn
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Sincez, is concave it follows fromZ.5) that

Tn +00
/ tUp(r)dr < / tUn(7)dr (2.6)
0 Tn

whereUn(t) = G(t)h(t) f (ant + @) with oy = zn (1) /tn. Now, sincef (ant + @) > f(any + @), for
all t > 1, by using 2.6) we obtain that

Tn 400
f tUn(r)dr < f tUn(7)dr.
1 Tn

Hence,

f ((an + a)

fan T a) dr. (2.7)

Tn +00
/ th(t)G(r)dr < / th(t)G(7)
1 T

Next we consider two cases.

Case 1. There exits a subsequen@g, ) of (en) such thaty,, < o for all k. In this case, fromZ.7) and

(H3), we get

f(at + a)
f(on, + @)
f@r+a f@+a
f@+a) f(an +a)

n 400
/ “ th()G(7)dr < / th()G(7) dr
1 T

Nk

+00
= f th(t)G(7)

Nk

+00
< C/ 1G(1)e(T)dr.

Nk

Case 2. ap > @ for all n. In this case, fromZ.7) and(H3), we obtain
Tn 400
f th()G(r)dr < Cf 1G(1)e(T)dr.
1 Tn
In both cases, sind8(t) = (RN + (N — 2)7)2-N/(N=2) it is easy to see that

n +00
/ th()G(r)dr < C/ t_N/(N_2)<p(T)d1:,
1 Tn

and from(Hs) we see that the right integral of the inequality above converges to zero mvgeas to
infinity. But this is impossible, sincy‘é_froo th(r)G(r)dr > 0.
Finally, it is clear that is a invariant cone unddf. [

Lemma2.4. AssumdH>). Given a> 0andx > 0, there exists R= Ry (a, 1) sufficiently large that
IF(2)|eo < |Zloo, for each ze 9Cr,. (2.8)
Proof. It follows from condition(Hz) that givens > 0 there existR > a such that
f(s) < ¢s, foreachs > R.
Thus, for eaclz € dCRr, we have
f(zx)+a) < f(R+a) < f2R) < 2¢R
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which implies that

t +00
IF(2)|oo = rtn%xf / AG(t)h(t) f(z(r) + a)drds
z0 Jo Js

o0 400
< 28R/ / AG(t)h(r)drds.
0 S

Finally, choosing: > 0 sufficiently small we prove tha2(8) holds. [

Lemma 2.5. Assume conditioHgp). Given Ra, A > Othereis B = Rx(a, A) € (0, R) small enough
that

|F(2)|oo > |Zloo, for each ze 9Cr,. (2.9)
Proof. Sincef (a) > 0, givenM > 0 there exists; € (0, R) small enough that
f(s+a) > Ms, forallse[0,rq].

Thus, for eaclz € 9Cr,,
T* +00
F@lw > F@)(e") = / / AG(Oh(T) f (2(¢) + aydeds
0 S

™ p+4o0
> / / MAG(7)h(z)z(r)drds
0 T*

* +00
> IZIOOIZM/ G (1)h(r)dr.

*

ChoosingM > 0 sufficiently large that

+00
™*M / AG(D)h(z)dr > 2,

*

we prove thatZ.9) holds. O

Lemma 2.6. Assume conditiotHo). Then given R> Othere is a constant = A(a) > 0such that for
all » > A we have

|F(2)|oc > |Zloo, for each ze CRg,. (2.10)

Proof. For eaclz € 9Cr,, we have

+o0
IFleo = F@)(") > T*f(Z(T*))f AG(7)h(r)dr
400
=Art™f (%)/ G(t)h(r)dr.
Thus, takings such that

+00
ey (%)/ G(0)h()dr = Rs

*

we complete the proof dfemma 2.6 [
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3. Proof of themain results

Proof of Theorem 1.1. It follows from Lemmas 2.12.4 and2.5 that the operatoF has a fixed point
z e CsuchthatRy, < |z < R1.

Proof of Theorem 1.2. Let Rz and be like inLemma 2.6 Givenx > A taken = n(1) > 0 such that

+oco  p+o0
7)/ / AG(t)h(r)drds < 1.
0 S

Using assumptioiH;) we can choos&;, € (0, R3) such that
f(t) <nt,vt € (0, Ry).
Thus, for alla € (0, R4/2) andz € dCg,/2 We have

f(zr)+a) < f (%—f—a) §n<%+a) < nk4.

Therefore,

400 p+oo
IF@loo < nR4/ / AG(0)h(r)deds
0 S

< Ra4.

Finally, by using a combination obemmas 2.4and 2.5, and by choosingR; and R, such that
0 < R < R4 < Rs < Ry we have that there exist three fixed poirisz, andzz of operatorF in
C such that

Ro < |Z1]le0 < R4 < |22|l00 < R < |Z3|00 < R1.

Acknowledgements

The first author was supported by CNPq, PRONEX-MCT/Brazil and the Millennium Institute for
the Global Advancement of Brazilian Mathematics, IM-AGIMB. The second author was supported by
UTA-Grant 4734-02. The third author was supported by DICYT - USACH.

References

[1] C. Bandle, L.A. Peletier, Nonlinear elliptic problems with critical exponent in shrinking annuli, Math. Ann. 280 (1988)
1-19.

[2] J.M. do O, S. Lorca, P. Ubilla, Three positive solutions for a class of elliptic systems in annular domains, Proc. Edingburgh
Math. Soc. (in press).

[3] J.M. do O, S. Lorca, P. Ubilla, Multiparameter elliptic equations in annular domains, J. Differential Equations 211 (2005)
1-19.

[4] D.D. Hai, Positive solutions for semilinear elliptic equations in annular domains, Nonlinear Anal. 37 (1999) 1051-1058.

[5] Y.-H. Lee, Multiplicity of positive radial solutions for multiparameter semilinear elliptic systems on an annulus,
J. Differential Equations 174 (2001) 420—441.

[6] M.G. Lee, S.S. Lin, On the positive solution for semilinear elliptic equations on annular domain with non-homogeneous
Dirichlet boundary conditions, J. Math. Anal. Appl. 181 (1994) 348-361.

[7] K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, New York, 1985.

[8] D. Guo, V. Lakshmikantham, Nonlinear Problem in Abstract Cones, Academic Press, Orlando, FL, 1988.



	Three positive radial solutions for elliptic equations in a ball
	Introduction
	Preliminary results
	Proof of the main results
	Acknowledgements
	References


