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Abstract

In this paper we study the existence, nonexistence and multiplicity of
positive solutions for nonhomogeneous Neumann boundary value problem of
the type 



−∆pu + λup−1 = uq in Ω,
u > 0 in Ω,

|∇u|p−2 ∂u
∂η = ϕ on ∂Ω,

where Ω is a bounded domain in IRn with smooth boundary, 1 < p < n, ∆pu =
div(|∇u|p−2∇u) is the p-Laplacian operator, p − 1 < q ≤ p∗ − 1, p∗ =
np/(n− p), ϕ ∈ Cα(Ω), 0 < α < 1, ϕ 6≡ 0, ϕ(x) ≥ 0 and λ is a real constant.
The proofs of our main results rely on different methods: lower and upper
solutions and variational approach.
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1 Introduction

In this paper we deal with quasilinear elliptic problems of the form



−∆pu + λup−1 = uq in Ω,
u > 0 in Ω,
|∇u|p−2 ∂u

∂η
= ϕ on ∂Ω,

(1λ)

where Ω is a bounded domain in IRn with smooth boundary, ϕ ∈ Cα(Ω), 0 < α <
1, ϕ 6≡ 0, ϕ(x) ≥ 0, 1 < p < n, ∆pu = div(| ∇u |p−2 ∇u) is the p-Laplacian
operator, p−1 < q ≤ p∗−1, p∗ = np/(n−p) is the critical exponent for the Sobolev
embedding W 1,p(Ω) ↪→ Lp∗(Ω) and λ is a real constant.

When p = 2, (1λ) becomes the second order semilinear elliptic problem




−∆u + λu = uq in Ω,
u > 0 in Ω,
∂u
∂η

= ϕ on ∂Ω,
(1.1)

with 1 < q ≤ 2∗ − 1 = (n− 2)/(n + 2).
The study of semilinear elliptic problems involving critical growth and Neumann

boundary conditions has received considerable attention in recent years. First we
would like to mention the progress for problem involving homogeneous boundary
condition, which correspond to ϕ ≡ 0 in (1.1). They have been studied for instance
by [1, 2, 4, 7], among others. Problem (1.1) with nonhomogeneous Neumann
boundary conditions which correspond to ϕ 6≡ 0 has been investigated by Deng-
Peng [5]. In the present paper we will improved the main results in [5]. We prove
that there exists λ∗ > 0 such that problem (1λ) has at least two positive solutions
if λ > λ∗, has at least one positive solution if λ = λ∗ and has no positive solution if
λ < λ∗. The proofs of our main results rely on different methods: lower and upper
solutions method and variational approach.

The special features of this class of problems, considered in this paper, is that
involve critical growth and a nonlinear operator. The arguments used in [5] to
prove the existence of the second solutions can not be carried out for a quasilinear
problem as (1λ). Moreover, because we are dealing with p−Laplacian equations, it
is technically much involved than in [5], in our case some estimates involving the
minimax level become more subtle to be established.

Next we describe in a more precise way our main results.

Theorem 1.1 For each q ∈ (p− 1, p∗ − 1], there exists λ∗ > 0 such that:
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(i) problem (1λ) possesses a minimal positive solution uλ if λ ∈ [λ∗,∞) and there
is no positive solution if λ < λ∗.

(ii) uλ is decreasing with respect to λ if λ ∈ [λ∗,∞).

(iii) uλ is bounded uniformly in W 1,p(Ω) and uλ → 0 as λ →∞.

Theorem 1.2 For each λ ∈ (λ∗, +∞) and q ∈ (p−1, p∗−1], problem (1λ) possesses
at least two positive solutions vλ and wλ.

The rest of this paper is organized as follows. The existence of minimal solution
uλ for (1λ) are obtained in section 2. The main tool is a general method of lower-
and upper-solutions described in section 2, similar to that given in [12]. Section 3
is devoted to proving Theorem 1.2.

The underling idea for proving Theorem 1.2 is first to show with the help of the
minimal solution uλ that there exists a solution vλ which is a local minimum of the
associated functional Jλ to problem (1λ) in W 1,p(Ω). For proving the existence of
the second solution we consider the perturbed functional Iλ(u) := Jλ(u + vλ). We
prove that this functional has the mountain pass geometry and using the Ekeland
variational principle we obtain a Palais-Smale sequence at this mountain pass level
c(vλ) of Iλ. Finally, doing an argument similar in spirit to that used in the classical
result due to Brezis-Nirenberg [3], we obtain a nontrivial critical point u of Iλ. Thus,
wλ = u + vλ is a second solution of problem (1λ).

Notation. In this paper we make use of the following notation.
If p ∈ (1,∞), p′ denotes the number p/(p−1) so that p′ ∈ (1,∞) and 1/p+1/p′ = 1;
Lp(Ω), denotes Lebesgue spaces with the norm ‖.‖Lp(Ω);
W 1,p(Ω), denotes Sobolev spaces with the norm ‖.‖1,p;
Ck,α(Ω), with k a non-negative integer and 0 ≤ α < 1, denotes Hölder spaces;
C, C0, C1, C2, . . . , denote (possibly different) positive constants;
|A|, denotes the Lebesgue measure of the set A ⊂ IRn;
ωn−1 is the (n− 1)-dimensional measure of the n− 1 unit sphere in IRn;
We denote by Rn

+ the half-space, that is, Rn
+ := {(x′, xn) ∈ IRn : xn ≥ 0};

D1,p
o (Ω) is the completeness of C∞

o (Ω) with respect to the norm ‖u‖ :=( ∫
Ω
|∇u|p dx

)
. We are denoting by S the best constant to the Sobolev emdedding

D1,p
o (Ω) ↪→ Lp∗(Ω), that is,

S = inf
D1,p

o (Ω)

{∫

Ω

|∇u|p dx ;

∫

Ω

|u|p∗ dx = 1

}
.
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We remark also that, S is independent of Ω and depends only of n. Moreover, when
Ω = IRn this infimum S is achieved by the functions uε given by

uε(x) = Cnε
(n−p)/p2

(ε + |x|p/(p−1))(p−n)/p,

where the constant Cn is chosen of form that

−∆puε = up∗−1
ε in IRn.

Thus,

S =
K1

K
(n−p)/n
2

with

K1 :=

∫

IRn

|∇uε|p dx and K2 :=

∫

IRn

|uε|p∗ dx. (1.2)

2 Proof of Theorem 1.1

Our argument to prove the existence of the first solution to problem (1λ) rely in the
lower and upper solution methods. Our first solution is a minimal solution uλ of
problem (1λ), in sense that uλ ≤ w, for all w solution of (1λ). The main of our next
subsection is to prove the existence of such minimal solution.

2.1 The existence of minimal solution

Let us first recall some definitions. We say that u ∈ W 1,p(Ω) is a weak solution of
problem (1λ) if for all v ∈ W 1,p(Ω) we have

∫

Ω

[ | ∇u |p−2 ∇u∇v + λ | u |p−2 uv
]

dx =

∫

Ω

|u|q−1uv dx +

∫

∂Ω

ϕv dσy. (2.3)

Hence the weak solutions of (1λ) correspond to nontrivial critical points of the energy
functional

Jλ(u) =
1

p

∫

Ω

[|∇u|p + λ|u|p] dx− 1

q + 1

∫

Ω

|u|q+1 dx−
∫

∂Ω

ϕu dσy, u ∈ W 1,p(Ω).

A function u ∈ W 1,p(Ω) ∩ L∞(Ω) is said to be a lower solution of (1λ) if
∫

Ω

[ | ∇u |p−2 ∇u∇v + λ | u |p−2 uv
]

dx ≤
∫

Ω

|u|q−1uv dx +

∫

∂Ω

ϕv dσy,
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for all v ∈ W 1,p(Ω), v ≥ 0. In the same way, a function u ∈ W 1,p(Ω) ∩ L∞(Ω) is
said to be a upper solution of (1λ) if

∫

Ω

[ | ∇u |p−2 ∇u∇v + λ | u |p−2 uv
]

dx ≥
∫

Ω

|u|q−1uv dx +

∫

∂Ω

ϕv dσy,

for v ∈ W 1,p(Ω), v ≥ 0.

Lemma 2.1 (Maximum Principle) Let u1, u2 ∈ W 1,p(Ω) be nonnegative
functions such that for all v ∈ W 1,p(Ω), v ≥ 0 we have
∫

Ω

[ | ∇u1 |p−2 ∇u1∇v + λup−1
1 v

]
dx ≤

∫

Ω

[ | ∇u2 |p−2 ∇u2∇v + λup−1
2 v

]
dx, (2.4)

then u1 ≤ u2 almost everywhere in Ω.

Proof. Taking v = (u1 − u2)
+ ∈ W 1,p(Ω) in (2.4) we have

0 ≥
∫

Ω

[|∇u1|p−2∇u1 − |∇u2|p−2∇u2].∇(u1 − u2)
+ dx

+λ

∫

Ω

(up−1
1 − up−1

2 )(u1 − u2)
+ dx

=

∫

Ω

|∇u1|p−2 + |∇u2|p−2

2
|∇(u1 − u2)

+|2 dx

+

∫

u1≥u2

|∇u1|p−2 − |∇u2|p−2

2
[|∇u1|2 − |∇u2|2] dx

+λ

∫

Ω

(up−1
1 − up−1

2 )(u1 − u2)
+ dx.

Observe that every summand in this last expression is nonnegative, and hence we
obtain that (u1 − u2)

+ = 0 almost everywhere in Ω or, equivalently, u1 ≤ u2 almost
everywhere in Ω.

In order to prove the existence of first solution to problem (1λ), we consider the
following auxiliary problem:

{ −∆pw + λwp−1 = f(x) in Ω,
|∇w|p−2 ∂w

∂η
= ϕ on ∂Ω,

(2λ)

Our next result concerns existence of solutions for problem (2λ) and some
properties of the associated solution operator.
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Lemma 2.2 If ϕ ∈ Cα(Ω), 0 < α < 1, ϕ 6≡ 0 and ϕ ≥ 0, then for each nonnegative
function f ∈ Lp′(Ω), the problem (2λ) possesses a unique weak positive solution
wλ ∈ C1,α(Ω̄) for all λ > 0. Moreover, the associated operator Tλ : Lp′(Ω) →
W 1,p(Ω), f 7→ wλ is continuous and nondecreasing.

Proof. First we use variational argument to prove the existence of solution. More
precisely, we use minimization argument to the associated energy functional of the
problem (2λ),

Iλ(w) =
1

p

∫

Ω

[|∇w|p + λ|w|p] dx−
∫

Ω

fw dx−
∫

∂Ω

ϕw dσy,

defined on the reflexive Banach space W 1,p(Ω). Note that Iλ is coercive. Indeed,

Iλ(w) ≥ C1‖w‖p
1,p − ‖f‖Lp′ (Ω)‖w‖Lp(Ω) − ‖ϕ‖Lp′ (∂Ω)‖w‖Lp(∂Ω)

≥ C2‖w‖p
1,p − C3,

where above we have used Holder inequality, Sobolev embedding and trace
embedding W 1,p(Ω) ↪→ Lp(∂Ω).

Now, we proceed to prove that Iλ is sequentially weakly lower semi-continuous.
To this end is sufficient to show that for un ⇀ u weakly in W 1,p(Ω) we have

∫

Ω

fun dx →
∫

Ω

fu dx (2.5)

and ∫

∂Ω

ϕun dσy →
∫

∂Ω

ϕu dσy. (2.6)

Since f ∈ Lp′(Ω), (2.5) follows from the definition of weak convergence. Finally,
(2.6) follows from the trace embedding.

Let ui be a weak solutions of (2λ) associated to fi ∈ Lp′(Ω), that is
∫

Ω

[ | ∇ui |p−2 ∇ui∇v + λ|ui|p−1uiv
]

dx =

∫

Ω

fiv dx +

∫

∂Ω

ϕv dσy

for all v ∈ W 1,p(Ω) and i = 1, 2.
If f1 ≤ f2, using Lemma 2.1, we obtain that u1 ≤ u2. From this we get the

uniqueness and that Tλ is nondecreasing.
Using regularity result due to Lieberman [13] we may prove that u ∈ C1,α(Ω).

Finally, by the maximum principle or Hanark’s inequality it is standard to prove
that u > 0 (see [14, 16]). This completes the proof of Lemma 2.2.
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Proposition 2.3 Let u, u ∈ W 1,p(Ω)∩L∞(Ω) be, respectively, a lower solution and
a upper solution of problem (1λ), with 0 ≤ u(x) ≤ u(x) almost everywhere in Ω.
Then there exists a minimal ( and, respectively, a maximal ) weak solution u∗ (resp.
u∗ ) for problem (1λ).

Proof. Consider the interval [u, u] with the topology of W 1,p(Ω) and the operator
S : [u, u] → Lp′(Ω) defined by Sv := vq. Since u ∈ L∞(Ω), we see that S is
well defined. Moreover, for un, u ∈ [u, u] with un → u in W 1,p(Ω), we have that
‖Sun − Su‖Lp′ (Ω) → 0, and hence S is continuous.

Considering the operators: [u, u]
S−→ Lp′(Ω)

Tλ−→ W 1,p(Ω), we can define
F : [u, u] 7→ W 1,p(Ω); given by F = Tλ ◦ S, where F (v) = w is the unique weak
positive solution of the boundary value problem

{ −∆pw + λwp−1 = vq in Ω,
|∇w|p−2 ∂w

∂η
= ϕ on ∂Ω.

It is clear that F is continuous and nondecreasing.
Writing u1 = F (u) and u1 = F (u), for all v ∈ W 1,p(Ω) with v ≥ 0, we have

∫

Ω

[ | ∇u1 |p−2 ∇u1∇v + λup−1
1 v

]
dx =

∫

Ω

uqv dx +

∫

∂Ω

ϕv dσy

≥
∫

Ω

[ | ∇u |p−2 ∇u∇v + λup−1v
]

dx

and∫

Ω

[ | ∇u1 |p−2 ∇u1∇v + λ(u1)p−1v
]

dx =

∫

Ω

uqv dx +

∫

∂Ω

ϕv dσy

≤
∫

Ω

[ | ∇u |p−2 ∇u∇v + λup−1v
]

dx.

Thus, applying Lemma 2.1 and taking into account that F is nondecreasing, we get

u ≤ F (u) ≤ F (u) ≤ F (u) ≤ u, a.e. in Ω.

Repeating the same reasoning, we can obtain the existence of sequences (un) and
(un) in W 1,p(Ω) satisfying

u0 = u, un+1 = F (un),
u0 = u, un+1 = F (un),
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and for every weak solution u ∈ [u, u] of problem (1λ), we have

u0 ≤ u1 ≤ ... ≤ un ≤ u ≤ un ≤ ... ≤ u1 ≤ u0 a.e. in Ω.

Since
∫

Ω

[ | ∇un+1 |p−2 ∇un+1∇v + λup−1
n+1v

]
dx =

∫

Ω

uq
nv dx +

∫

∂Ω

ϕv dσy

≤
∫

Ω

uqv dx +

∫

∂Ω

ϕv dσy

and
∫

Ω

[ | ∇un+1 |p−2 ∇un+1∇v + λ(un+1)p−1v
]

dx =

∫

Ω

(un)qv dx +

∫

∂Ω

ϕv dσy

≤
∫

Ω

uqv dx +

∫

∂Ω

ϕv dσy,

we obtain that (un) and (un) are bounded in W 1,p(Ω). Therefore, up to subsequences,
we have un ⇀ u∗, un ⇀ u∗ weakly in W 1,p(Ω), un → u∗, un → u∗ in Lr(Ω)
for 1 ≤ r < p∗ and un → u∗, un → u∗ almost everywhere in Ω. Moreover,
by construction we have u∗, u∗ ∈ [u, u] and u∗ ≤ u∗ almost everywhere in Ω.
Now, using that S(un) → S(u∗), S(un) → S(u∗) and the continuity of Tλ we
conclude that un+1 = F (un) → F (u∗) and un+1 = F (un) → F (u∗) in W 1,p(Ω).
Thus u∗, u∗ ∈ W 1,p(Ω) with u∗ = F (u∗), u∗ = F (u∗). This completes the proof of
Proposition 2.3.

Lemma 2.4 There exists λ∗ ≥ 0, such that problem (1λ) possesses a minimal
positive solution for each λ ∈ (λ∗, +∞) and (1λ) has no positive solution for
λ ∈ (−∞, λ∗).

Proof. Notice that u ≡ 0 is a lower solution of (1λ) for all λ ≥ 0. Now, we take
w1 the positive solution of problem (2λ) with f ≡ 0 and λ = 1. Thus, u = w1 is a
upper solution of (1λ0) with λ0 = 1 + maxx∈Ω wq−p+1

1 . Using Proposition 2.3 we get
a minimal solution uλ0 of (1λ0). Finally, by Harnack’s inequality (see Theorem 1.2
in [16]) we have u ≡ 0 < uλ0 < u. Thus

Λ = {λ ∈ IR : (1)λ possesses at least one positive solution} (2.7)
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is a nonempty set. Notice that uλ0 is a upper solution of (1λ) for all λ ≥ λo. Thus,
using the same argument above we conclude that [λo,∞) ⊂ Λ. Moreover, uλ1 ≤ uλ2

if λ2 ≤ λ1 and Λ ⊂ [0, +∞), because for uλ solution of (1λ) then uλ satisfies (2.3)
and taking v = 1 as test function we get

λ

∫

Ω

up−1
λ dx =

∫

Ω

uq
λ dx +

∫

∂Ω

ϕ dσy > 0,

which implies that λ > 0. Consequently, setting

λ∗ = inf Λ,

we have λ∗ ∈ [0, +∞). Moreover, for all λ ∈ (λ∗,∞), (1λ) possesses one minimal
solution and has no solution if λ ∈ (−∞, λ∗).

Lemma 2.5 λ∗ is positive real number and the problem (1λ∗) possesses a minimal
positive solution.

Proof. Our goal is prove that λ∗ is attained. To this end, let us take (λj) a
decreasing sequence in (λ∗,∞), satisfying limj→∞ λj = λ∗ and (uj) in W 1,p(Ω)
the correspondent sequence of minimal positive solutions of problem (1λj

) given
in Lemma 2.4. We claim that (uj) is bounded in W 1,p(Ω). Indeed, suppose by
contradiction (up to subsequences) that ‖uj‖1,p → +∞, as j → +∞. From this we
will prove that ∫

Ω

up−1
j dx →∞ as j −→ +∞. (2.8)

Setting wj = uj/‖uj‖1,p, we have ‖wj‖1,p = 1 and wj > 0 in Ω. Thus, (up to
subsequences) there exists w ∈ W 1,p(Ω) such that wj ⇀ w weakly in W 1,p(Ω),
wj → w in Lr(Ω) for 1 ≤ r < p∗, and wj → w almost everywhere in Ω. Taking
v = w/‖uj‖p−1

1,p as a test function in (2.3), we obtain

∫

Ω

|∇wj|p−2∇wj∇w dx +

∫

Ω

(λju
p−1
j − uq

j)

‖uj‖p−1
1,p

w dx =
1

‖uj‖p−1
1,p

∫

∂Ω

ϕw dσy. (2.9)

Passing to the limit in (2.9) and using a convergence result due Lucio-Bocardo (see
Theorem 2.1 in [17]) we concluded that

∫

Ω

(λju
p−1
j − uq

j)

‖uj‖p−1
1,p

w dx →
∫

Ω

|∇w|p dx. (2.10)
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Similarly, taking v = wj/‖uj‖p−1
1,p in (2.3) and passing to the limit we obtain

∫

Ω

|∇wj|p dx−
∫

Ω

(uq
j − λju

p−1
j )

‖uj‖p−1
1,p

wj dx → 0. (2.11)

From (2.10)-(2.11) we conclude that

‖∇wj‖Lp → ‖∇w‖Lp . (2.12)

Now, observe that wj satisfies

{
−∆pwj + λwp−1

j = fj in Ω,

|∇wj|p−2 ∂wj

∂η
= ϕj on ∂Ω,

(2.13)

where fj = uq
j/‖uj‖p−1

1,p and ϕj = ϕ/‖uj‖p−1
1,p . It is not difficult to see that fj ⇀ f

weakly in Lp(Ω), and ϕj → 0 almost everywhere in ∂Ω. By a convergence result
due Lucio-Bocardo (see Theorem 2.1 in [17]) and Brézis-Lieb’s Lemma (see [18]),
we conclude that ∇wj → ∇w strongly in (Lp(Ω))n. This fact implies that wj → w
strongly in Lp∗(Ω). Since Ω is a bounded domain, we conclude that wj → w strongly
in W 1,p(Ω). Observe that w ≥ 0 and w 6≡ 0. Therefore, there exists a subset V ⊂ Ω
of positive Lebesgue measure such that w > 0 almost everywhere in V . Thus,
there exists jo such that for all j ≥ jo we have uj → +∞ almost everywhere in
V . Therefore, given M > 0 there exists jo such that uj(x) ≥ M for all j ≥ jo and
almost everywhere in V . So, for each 1 ≤ r ≤ p∗, we have

M r|V| ≤
∫

V
ur

j dx ≤
∫

Ω

ur
j dx.

Thus, making M → +∞, we obtain (2.8).
On the other hand, choosing v = 1 in (2.3) and using the Holder’s inequality

we have

C(Ω, q, p)

(∫

Ω

up−1
j dx

) q
p−1

≤
∫

Ω

uq
j dx = λj

∫

Ω

up−1
j dx−

∫

∂Ω

ϕ(y) dσy. (2.14)

where C = C(Ω, q, p) > 0, which is a contradiction with (2.8). Since (uj)
is bounded in W 1,p(Ω), taking subsequence if necessary, we can assume that
there exists a function u ∈ W 1,p(Ω) such that uj ⇀ u weakly in the spaces
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W 1,p(Ω), Lp+1(Ω))∗, Lp(∂Ω) and Lq(Ω) for each q ∈ (1, p∗). Since uj satisfies
(1λj

), we have

∫

Ω

[ | ∇uj |p−2 ∇uj∇v + λj | uj |p−2 ujv
]

dx =

∫

Ω

uq
jv dx +

∫

∂Ω

ϕv dσy. (2.15)

Hence, using a convergence result due to Lucio-Bocardo (see Theorem 2.1 in [17])
we have ∇wn → ∇w strongly. Moreover, by Brezis-Lieb’s Lemma, we have after
taking the limit

∫

Ω

[ | ∇u |p−2 ∇u∇v + λ∗ | u |p−2 uv
]

dx =

∫

Ω

uqv dx +

∫

∂Ω

ϕv dσy. (2.16)

Therefore, u is a weak solution of (1)λ∗ . Finally, applying Proposition 2.3 and using
the fact that u ≡ 0 is a lower solution of (1)λ∗ , we conclude that there exists a
minimal solution uλ∗ of (1)λ∗ .

We notice that until this moment we have proved the items (i) and (ii) of
Theorem 1.1.

2.2 Asymptotic behavior of the minimal solution

Next we are going to prove the last item of Theorem 1.1. For this end firstly we
observe that taking v = uλ as a test function in (2.3) we obtain

‖∇uλ‖p
Lp(Ω) =

∫

∂Ω

ϕ(y)uλ dσy +

∫

Ω

(uq+1
λ − λup

λ) dx. (2.17)

Let λ1 be a fixed element in Λ. From (ii) in Theorem 1.1 follows that for each
λ ≥ λ1, the respective minimal solutions uλ satisfies uλ ≤ uλ1 in Ω. Thus, using this
fact and the Hölder’s inequality with 1/p′ + 1/p = 1,

‖∇uλ‖p
Lp(Ω) ≤ ‖ϕ‖Lp′ (∂Ω)‖uλ‖Lp(∂Ω) +

∫

{uλ≤1}
1 dx +

∫

{uλ≥1}
uq+1

λ1
dx− λ

∫

Ω

up
λ dx.

(2.18)
Thus, applying the trace embedding theorem and Young’s inequality, we have

‖ϕ‖Lp′ (∂Ω)‖uλ‖Lp(∂Ω) ≤ ‖ϕ‖Lp′ (∂Ω)‖uλ‖1,p

≤ Cε‖ϕ‖p′

Lp′ (∂Ω)
+ ε(‖∇uλ‖p

Lp(Ω) + ‖uλ‖p
Lp(Ω)),

(2.19)
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which together with (2.18) and (2.19) implies that

(1− ε)‖∇uλ‖p
Lp(Ω) ≤ Cε‖ϕ‖p′

Lp′ (∂Ω)
+ ε

( ∫

{uλ≤1}
dx +

∫

{uλ≥1}
up

λ1
dx

)

+

∫

{uλ≤1}
dx +

∫

{uλ≥1}
uq+1

λ1
dx− λ

∫

Ω

up
λ dx.

(2.20)

Therefore, taking ε ∈ (0, 1) and using (2.20) we conclude that uλ → 0 as λ → ∞
in Lp(Ω). Since uλ ∈ C1,α, we deduce that uλ → 0 as λ → ∞. This completes the
proof of Theorem 1.1.

3 Proof of Theorem 1.2

In order to prove Theorem 1.2 we first show with the help of the minimal
solution uλ that there exists a solution vλ which is a local minimum of the associated
functional Jλ to problem (1λ) in W 1,p(Ω). This is necessary because the minimal
solution uλ is not a variational solution so it is not clear how to get an estimate to
its the energy level. For proving the existence of the second solution we consider the
perturbed functional Iλ(u) := Jλ(u + vλ) and we prove that this functional has the
mountain pass geometry. Using the Ekeland variational principle we obtain a Palais-
Smale sequence at this mountain pass level c(vλ) of Iλ. Finally, doing an argument
similar in spirit to that used in the classical result due to Brezis-Nirenberg [3], we
obtain a nontrivial critical point u of Iλ. Thus, wλ = u + vλ is a second solution of
problem (1λ).

3.1 Existence of a local minimum

Here we are going to prove the existence of a local minimum of the energy functional
Jλ for all λ > λ∗. To do that, it is crucial in our argument the existence of the
minimal solution obtained in the last section.

Proposition 3.1 For each λ ∈ (λ∗, +∞), the functional Jλ has a local minimum
vλ in W 1,p(Ω).

Proof. Fixed λ ∈ (λ∗, +∞), we can take real numbers λ1, λ2 ≥ λ∗ such that
λ2 < λ < λ1. Let uλi

be the positive minimal solution associated to the problem
(1λi

), for i ∈ {1, 2} given by Theorem 1.1. Thus,

0 < uλ1 ≤ uλ2 . (3.21)
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Since λ2 < λ < λ1, for all v ≥ 0 we have
∫

Ω

[ | ∇uλ1 |p−2 ∇uλ1∇v +λup−1
λ1

v
]

dx

<

∫

Ω

[ | ∇uλ1 |p−2 ∇uλ1∇v + λ1u
p−1
λ1

v
]

dx

=

∫

Ω

uq
λ1

v dx +

∫

∂Ω

ϕv dσy,

(3.22)

and
∫

Ω

uq
λ2

v dx +

∫

∂Ω

ϕv dσy =

∫

Ω

[ | ∇uλ2 |p−2 ∇uλ2∇v + λ2u
p−1
λ2

v
]

dx

<

∫

Ω

[ | ∇uλ2 |p−2 ∇uλ2∇v + λup−1
λ2

v
]

dx.
(3.23)

Thus, using (3.21), (3.22) and (3.23), for all v ≥ 0 we get

∫

Ω

[ | ∇uλ1 |p−2 ∇uλ1∇v + λup−1
λ1

v
]

dx <

∫

Ω

[ | ∇uλ2 |p−2 ∇uλ2∇v + λup−1
λ2

v
]

dx.

(3.24)
Next, we apply the minimization methods to the Euler Lagrange functional

J̃λ(u) =
1

p

∫

Ω

[|∇u|p + λ|u|p] dx−
∫

Ω

F̃ (u+) dx−
∫

∂Ω

ϕu+dσy,

associated to the problem

{ −∆pu + λup−1 = f̃(u) in Ω,
|∇u|p−2 ∂u

∂η
= ϕ on ∂Ω,

where F̃ (t) =
∫ t

0
f̃(s) ds is the primitive of function

f̃(u(x)) =





uq
λ1

(x) if u(x) ≤ uλ1(x),
uq(x) if uλ1(x) ≤ u(x) ≤ uλ2(x),
uq

λ2
(x) if uλ2(x) ≤ u(x).

It is not difficult to prove that the functional J̃λ is coercive and bounded below on
W 1,p(Ω). Indeed, it is enough to observe that

∫

Ω

F̃ (uλ1(x)) dx ≤
∫

Ω

F̃ (u(x)) dx ≤
∫

Ω

F̃ (uλ2(x)) dx.
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Therefore, we get a minimizer vλ to J̃λ in W 1,p(Ω), which without loss of generality
we can assume that vλ is positive. By regularity theory vλ ∈ C1,α. Moreover,

−∆puλ1 + λup−1
λ1

≤ f̃(uλ1) ≤ f̃(vλ) ≤ f(uλ2) ≤ −∆puλ2 + λup−1
λ2

.

Thus, by weak comparison principle (see Lemma 2.1), we have

uλ1 ≤ vλ ≤ uλ2 .

Set

K := {x ∈ Ω : vλ(x) = uλ2(x)}.
Using (3.24), we have that K 6= Ω and so by the Proposition 2.1 in Guedda-Veron[8],
we obtain that 0 < vλ < uλ2 . Therefore, there exists ε0 > 0 such that for each
ε ∈ (0, ε0),

uλ1(x) + εδ(x) ≤ vλ ≤ uλ2(x)− εδ(x),

where δ(x) = inf{|x − y| ; y ∈ ∂Ω}. Moreover, it is easy to see that the function
F̂ (u) := F̃ (u) − F (u) on the interval of functions [uλ1 , uλ2 ] is independent of u, so

J̃λ − Jλ is constant in C1-ball, {u ∈ C1(Ω) ∩ W 1,p(Ω) : ‖u − vλ‖1,0 ≤ ε}, which
means that vλ is a local minimum of Jλ in the C1-topology. Finally, using the same
argument as in the proof of Theorem 1.1 in [11] (see also [6]) we obtain that vλ is
also a local minimum of functional Jλ in the space W 1,p(Ω).

3.2 The perturbed functional

Here, we are denoting by vλ the local minimum obtained in the Proposition 3.1.
Next we are going to prove that the perturbed functional Iλ(u) := Jλ(u + vλ) has
the mountain pass geometry.

Lemma 3.2 (mountain pass geometry) The functional Jλ satisfies:
(i) there exist α ∈ IR and ρ > 0 such that

Jλ(u) ≥ α for u ∈ W 1,p(Ω) with ‖u− vλ‖ = ρ;

(ii) there exists ũλ ∈ W 1,p(Ω) such that ‖ũλ‖ > ρ and Jλ(ũλ) < α.
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Proof. (i) follows from the fact that vλ is local minimum of Jλ. To prove (ii) it is
enough to observe that

Jλ(vλ + tvλ) =
(1 + t)p

p
‖vλ‖p

1,p −
(1 + t)q+1

q + 1
‖vλ‖q+1

Lq(Ω) − (1 + t)

∫

∂Ω

vλϕ dσy

≤ (1 + t)p

p
‖vλ‖p

1,p −
(1 + t)q+1

q + 1
‖vλ‖q+1

Lq(Ω)

and q + 1 > p.

Therefore, we can conclude that the set

Γ =
{
γ ∈ C([0, 1],W 1,p(Ω)) : γ(0) = vλ and Jλ(γ(1)) < Jλ(vλ)

}
,

is nonempty and the mountain pass level

c(vλ) := inf
γ∈Γ

max
0≤t≤1

Jλ(γ(t)),

is well defined. Moreover, following [9] we have the following characterization to the
minimax level c(vλ),

c(vλ) = inf
v∈W 1,p(Ω)\{0}

max
t≥0

Iλ(tv) = inf
v∈W 1,p(Ω)\{0}

max
t≥0

Jλ(vλ + tv). (3.25)

Next, using this characterization we can state.

Proposition 3.3 If q = p∗ − 1, then the following estimate is true

c(vλ) < Jλ(vλ) +
1

2n
Sn/p.

Proof. By (3.25) we have

c(vλ) ≤ max
t≥0

Jλ(vλ + tv), for all v ∈ W 1,p(Ω)\{0}. (3.26)

Since the equation (1λ) is equivariant with respect to rotations and translations in
IRn, we can assume without lost of generality that x0 = 0 ∈ ∂Ω and Ω ⊂ {xn > 0}.
For each x ∈ IRn we write x = (x′, xn) ∈ IRn−1 × IR. In the following, we assume
that in some neighborhood of origin, the boundary of Ω is give by

xn = h(x′) = g(x′) + o(|x′|2), ∀ x′ = (x1, ...xn−1) ∈ D(0, δ), (3.27)
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where

D(0, δ) = B(0, δ) ∩ {xn = 0}, g(x′) :=
1

2

n−1∑
i=1

αix
2
i

and αi > 0 are the principal curvatures of ∂Ω in x0 = 0.
Next, we are going to estimate

J(vλ + tuε) =
1

p

∫

Ω

[|∇(vλ + tuε)|p + λ|vλ + tuε|p] dx

− 1

p∗

∫

Ω

|vλ + tuε|p∗ dx−
∫

∂Ω

ϕ(vλ + tuε) dσy.

For the sake of clarity we estimate separability the gradient term, critical and
subcritical term. We are going to use the following notations

K1,s(ε) :=

∫

Ω

|∇uε|s dx, K2,r(ε) :=

∫

Ω

ur
ε dx.

(i) Estimate of the gradient term: Let t ∈ [0,∞), p ∈ [2, 3), α ∈ [0, 2π] and
γ ∈ [p− 1, 2]. The following elementary inequality holds

(1 + t2 + 2t cos α)p/2 ≤ 1 + tp + pt cos α + Ctγ. (3.28)

Since
∫

Ω

|∇(vλ + tuε)|p dx =

∫

Ω

|∇vλ|p
(
1 + 2t

∇vλ∇uε

|∇vλ|2 + t2
|∇uε|2
|∇vλ|2

)p/2

dx,

from (3.28) we obtain
∫

Ω

|∇(vλ + tuε)|p dx ≤
∫

Ω

(
|∇vλ|p + tp|∇uε|p + pt|∇vλ|p−2〈∇vλ∇uε〉+ tγ|∇uε|γ

)
dx,

which together with L∞ estimate due to Lierbmann [13] and Cauchy-Schwarz’s
inequality implies

∫

Ω

|∇(vλ + tuε)|p dx ≤
∫

Ω

|∇vλ|p dx + tp
∫

Ω

|∇uε|p dx + tγK1,γ(ε). (3.29)

(ii) Estimate of the critical power term: In order to estimate the critical power
term we consider the elementary inequality

(1 + s)p∗ ≥ 1 + sp∗ + p∗s + p∗sp∗−1 + Csγ, s ≥ 0, (3.30)
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where γ ∈ (1, p∗ − 1] ( see [10] for more details ). Thus, from (3.30),

∫

Ω

(vλ + tuε)
p∗ dx ≥

∫

Ω

vp∗
λ dx + tp

∗
∫

Ω

up∗
ε dx + p∗tp

∗−1

∫

Ω

up∗−1
ε vλ dx. (3.31)

(iii) Estimate of the subcritical power term: Firstly, we notice that for each
a, b ≥ 0 and 1 < p < n we have

(a + b)p ≤ ap +p +C max{abp−1, bap−1},

which implies that

∫

Ω

|vλ + tuε|p dx ≤
∫

Ω

vp
λ dx + tp

∫

Ω

up
ε dx + C1t

p−1

∫

Ω

vλu
p−1
ε dx + C2t

∫

Ω

vp−1
λ uε dx.

Since vλ ∈ L∞(Ω), we get

∫

Ω

|vλ + tuε|p dx ≤
∫

Ω

vp
λ dx+ tp

∫

Ω

up
ε dx+C3t

p−1

∫

Ω

up−1
ε dx+C4t

∫

Ω

uε dx. (3.32)

Using the estimates (3.29), (3.31) and (3.32) we obtain

Jλ(vλ + tuε) ≤ Jλ(vλ) + Fλ(t, ε) + Gλ(t, ε), (3.33)

where

Fλ(t, ε) =
tp

p
(K1,p + λK2,p)− tp

∗

p∗
K2,p∗ ,

and

Gλ(t, ε) = C1t
γK1,γ(ε) + C2t

p−1K2,p−1(ε) + C3tK2,1(ε)− tp
∗−1

∫

Ω

up∗−1
ε vλ dx.

To finish the proof of Proposition 3.3, we need the following result.

Lemma 3.4 For each λ > 0 and ε > 0 sufficiently small we have

max
t>0

Fλ(t, ε) <
1

2n
Sn/p (3.34)

and
G(t, ε) = tγO(εα) + tp−1O(εβ) + tO(εδ)− tp

∗−1O(εη), (3.35)
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where

α =
n− p

p2
γ +

γ

p
− nγ

p
+

p− 1

p
n,

β =
n− p

p2
(p− 1)− (n− p)

p
(p− 1) +

p− 1

p
n,

δ =
n− p

p2
− (n− p)

p
+

p− 1

p
n,

η =
n− p

p2
(p∗ − 1)− (n− p)

p
(p∗ − 1) +

p− 1

p
n.

Proof. We begin by proving estimate (3.34). For this purpose, we consider two
cases: p2 ≤ n and p2 > n.

Case: p2 ≤ n. Notice that

K1,p(ε) =

∫

IRn
+

|∇uε|pdx−
∫

D(0,δ)

dx′
∫ h(x′)

0

|∇uε|pdxn + O(ε(n−p)/p), (3.36)

because

−
∫

IRn
+

|∇uε|p dx +

∫

Ω

|∇uε|p dx +

∫

D(0,δ)

dx′
∫ h(x′)

0

|∇uε|pdxn = O(ε(n−p)/p).

Since
∣∣∣
∫

Ω

|∇uε|p dx−
∫

IRn
+

|∇uε|p dx +

∫

D(0,δ)

dx′
∫ h(x′)

0

|∇uε|pdxn

∣∣∣

=
∣∣∣−

∫

IRn
+\Ω

|∇uε|p dx +

∫

D(0,δ)

dx′
∫ h(x′)

0

|∇uε|pdxn

∣∣∣

≤
∫

IRn
+\B+(0,δ)

|∇uε|p dx = C(n, p)ε(n−p)/p

∫

IRn
+\B+(0,δ)

|x|p/(p−1)

(ε + |x|p/(p−1))n
dx

≤ C(n, p)ε(n−p)/p

∫ ∞

δ

rp/(p−1)+n−1

rp(n−1)/(p−1)
dr = C(n, p)ε(n−p)/p

∫ ∞

δ

1

r(n−1)/(p−1)
dr < ∞,

because 1 < p2 ≤ n implies 2p− 1 < p2 ≤ n and consequently (n− p)/(p− 1) > 1.
Now, notice that

K1 = 2

∫

IRn
+

|∇uε|pdx =

∫

IRn

|∇uε|pdx =
(n− p

p− 1

)n
∫

IRn

|x|p/(p−1)

(1 + |x|p/(p−1))n
dx. (3.37)
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Thus, K1 does not depend of ε.

From (3.36)-(3.37) it follows that

K1,p(ε) =
1

2
K1 −

∫

D(0,δ)

dx′
∫ g(x′)

0

|∇uε|pdxn

−
∫

D(0,δ)

dx′
∫ h(x′)

g(x′)
|∇uε|pdxn + O(ε(n−p)/p)

=
1

2
K1 −

∫

IRn−1

dx′
∫ g(x′)

0

|∇uε|pdxn −
∫

D(0,δ)

dx′
∫ h(x′)

g(x′)
|∇uε|pdxn

+

∫

IRn−1

dx′
∫ g(x′)

0

|∇uε|pdxn −
∫

D(0,δ)

dx′
∫ g(x′)

0

|∇uε|pdxn + O(ε(n−p)/p).

Thus

K1,p(ε) =
1

2
K1 −

∫

IRn−1

dx′
∫ g(x′)

0

|∇uε|p dxn

−
∫

D(0,δ)

dx′
∫ h(x′)

g(x′)
|∇uε|p dxn + O(ε(n−p)/p), (3.38)

where in the last inequality we have used the following estimate

∫

IRn−1

dx′
∫ g(x′)

0

|∇uε|pdxn −
∫

D(0,δ)

dx′
∫ g(x′)

0

|∇uε|p dxn

=

∫

IRn−1\D(0,δ)

dx′
∫ g(x′)

0

|∇uε|pdxn

= C(n, p)ε(n−p)/p

∫

IRn−1\D(0,δ)

dx′
∫ g(x′)

0

|x|p/(p−1)

(ε + |x|p/(p−1))n
dxn

≤ C(n, p)ε(n−p)/p

∫

IRn−1\D(0,δ)

dx′
∫ g(x′)

0

1

(ε + |x′|p/(p−1))n−1
dxn.
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Using radial variable we deduce
∫

IRn−1

dx′
∫ g(x′)

0

|∇uε|pdxn −
∫

D(0,δ)

dx′
∫ g(x′)

0

|∇uε|pdxn

≤ C1(n, p)ε(n−p)/p

∫ ∞

δ

r2rn−2

rp(n−1)/(p−1)
dr

≤ C2(n, p)ε(n−p)/p

∫ ∞

δ

1

r(n−p)/(p−1)
dr < ∞.

Now, notice that

I(ε) :=

∫

IRn−1

dx′
∫ g(x′)

0

|∇uε|pdxn

=
(n− p

p− 1

)p

ε(n−p)/p

∫

IRn−1

dx′
∫ g(x′)

0

|x|p/(p−1)

(ε + |x|p/(p−1))n
dxn

=
(n− p

p− 1

)p
∫

IRn−1

dx′
∫ ε(p−1)/pg(x′)

0

|x|p/(p−1)

(1 + |x|p/(p−1))n
dxn.

(3.39)

Thus,

lim
ε→0

I(ε)

ε(p−1)/p
=

(n− p

p− 1

)p
∫

IRn−1

|x′|p/(p−1)g(x′)
(1 + |x′|p/(p−1))n

dx′

which implies that
I(ε) = O(ε(p−1)/p).

Moreover,

|I1(ε) : | =
∣∣∣
∫

D(0,δ)

dx′
∫ h(x′)

g(x′)
|∇uε|pdxn

∣∣∣

= C(n, p)εn−p/p
∣∣∣
∫

D(0,δ)

dx′
∫ h(x′)

g(x′)

|x|p/(p−1)

(ε + |x|p/(p−1))n
dxn

∣∣∣

= C(n, p)ε(n−p)/p
∣∣∣
∫

D(0,δ)

dx′
∫ h(x′)

g(x′)

|x|p/(p−1)

(ε + |x|p/(p−1))(ε + |x|p/(p−1))n−1
dxn

∣∣∣

≤ C(n, p)ε(n−p)/p
∣∣∣
∫

D(0,δ)

dx′
∫ h(x′)

g(x′)

1

(ε + |x′|p/(p−1))n−1
dxn

∣∣∣

≤ C(n, p)ε(n−p)/p

∫

D(0,δ)

|h(x′)− g(x′)|
(ε + |x′|p/((p−1))n−1

dx′.
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Since h(x′) = g(x′) + o(|x′|2), it follows that for all σ > 0, there exists C(ε) > 0
such that |h(x′) − g(x′)| ≤ σ|x′|2 + C(σ)|x′|α for all x′ ∈ D(0, δ), where 2 < α <
(n− 1)/(p− 1). Thus,

I1(ε) ≤ C(n, p)ε(n−p)/p

∫

D(0,δ)

σ|x′|2 + C(σ)|x′|α
(ε + |x′|p/(p−1))n−1

dx′.

Now, observing that

ε(n−p)/p/ε(p−1)/p

∫

D(0,δ)

|x′|2
(ε + |x′|p/(p−1))n−1

dx′ ≤ C,

and

ε(n−p)/p/ε(p−1)/p

∫

D(0,δ)

|x′|α
(ε + |x′|p/(p−1))n−1

dx′ ≤ C(n, p)ε(p−1)(α−2)/p,

we obtain
I1(ε) ≤ C(n, p)ε(p−1)/p(σ + C(σ)ε(p−1)(α−2)/p).

Since σ is arbitrary and α > 2 we conclude that I1(ε) = o(ε(p−1)/p). Therefore,

K1,p(ε) = 1
2
K1 − I(ε)− I1(ε) + O(ε(n−p)/p)

= 1
2
K1 − I(ε) + o(ε(p−1)/p).

(3.40)

Now, let us obtain a more refined estimate of K2,p∗(ε). To this end, firstly notice
that

K2,p∗(ε) =

∫

IRn
+

|uε|p∗dx−
∫

D(0,δ)

dx′
∫ h(x′)

0

|uε|p∗dxn + O(εn/p)

=
1

2
K2 −

∫

D(0,δ)

dx′
∫ g(x′)

0

|uε|p∗dxn −
∫

D(0,δ)

dx′
∫ h(x′)

g(x′)
|uε|p∗dxn + O(εn/p)

=
1

2
K2 −

∫

IRn−1

dx′
∫ g(x′)

0

|uε|p∗dxn −
∫

D(0,δ)

dx′
∫ h(x′)

g(x′)
|uε|p∗dxn + O(εn/p)

=
1

2
K2 − II(ε)− III(ε) + O(εn/p).

Since

II(ε) :=

∫

IRn−1

dx′
∫ g(x′)

0

up∗
ε dxn = εn/p

∫

IRn−1

dx′
∫ g(x′)

0

1

(ε + |x|p/(p−1))n
dxn
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=

∫

IRn−1

dy′
∫ ε(p−1)/pg(y′)

0

1

(1 + |y|p/(p−1))n
dyn, (3.41)

we have II(ε) = O(ε(p−1)/p). Using the same estimate as in I1(ε) we have
III(ε) = o(ε(p−1)/p). Thus, for 1 < p2 ≤ n we have

K2,p∗(ε) =
1

2
K2 − II(ε) + o(ε(p−1)/p). (3.42)

We can now proceed analogously to obtain a refined estimate for K2,p(ε). To this
end, we consider two cases p2 < n and p2 = n separably.

Case 1: p2 < n. In this case we have

K2,p(ε) =

∫

Ω

up
ε dx ≤

∫

IRn

up
ε dx = ε(n−p)/p

∫

IRn

1

(ε + |x|p/(p−1))n−p
dx

= wnε(n−p)/p
( ∫ 1

0

rn−1

(ε + |r|p/(p−1))n−p
dr +

∫ ∞

1

rn−1

(ε + |r|p/(p−1))n−p
dr

)

= O(ε(n−p)/p)

= o(ε(p−1)/p).

Case 2: p2 = n. Let R > 0 such that Ω ⊂ B(0, R). Notice that

K2,p(ε) =

∫

Ω

up
ε dx ≤

∫

B(0,R)

up
ε dx = ε(n−p)/p

∫

B(0,R)

1

(ε + |x|p/(p−1))n−p
dx

= wnε
(n−p)/p

∫ R

0

rn−1

(ε + |r|p(p−1))n−p
dr

= wnε
p−1

∫ R/ε(p−1)/p

0

sn−1

(1 + |s|p/(p−1))n−p
ds

= Cεp−1
(
1− log(ε(p−1)/p)

)

= ε(p−1)/p
(
ε(p−1)2/p − ε(p−1)2/p log(ε(p−1)/p)

)

= o(ε(p−1)/p).

Hence, for 1 < p2 ≤ n we have

K2,p(ε) = o(ε(p−1)/p). (3.43)
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Since p∗ > p, there exist tε > 0 such that

Jλ(tεuε) = max
t>0

{1

p
(K1,p(ε) + λK2,p(ε))t

p − K2,p(ε)

p∗
tp
∗
}

. (3.44)

Follows from estimates (3.40), (3.42) and (3.43), that there exists ε0 > 0, K ′ > 0
and K ′′ > 0 such that

K2,p∗(ε) ≥ K ′ and K1,p(ε) + K2,p(ε) ≤ K ′′, ∀ ε ∈ (0, ε0). (3.45)

Consequently, tε is uniformly bounded in (0, ε0). Since, K3(ε) = o(ε(p−1)/p) for p2 ≤ n
we get

Jλ(tε) = sup
t>0

{1

p
K1(ε)t

p − K2(ε)

p∗
tp
∗
}

+ o(ε(p−1)/p)

=
1

p
K1(ε)

K2(ε)

K1(ε)
tp
∗

1 − 1

p∗
K2(ε)t

p∗
1 + o(ε(p−1)/p)

=
1

n
K2(ε)t

p∗
1 + o(ε(p−1)/p)

=
1

n
K2(ε)

(K1(ε)

K2(ε)

)n/p

+ o(ε(p−1)/p)

=
1

n

( K1(ε)

K2(ε)(n−p)/n

)n/p

+ o(ε(p−1)/p).

Finally, we observe that the statement (3.34) will be proved once we have proved
the following claim

Claim 3.1 The following estimate is holds

K1(ε)

K2(ε)(n−p)/n
< 2−p/nS + o(ε(p−1)/p). (3.46)

From (1.2), inequality (3.46) is equivalent to

K1(ε)

K2(ε)(n−p)/n
< 2−p/n K1

K
(n−p)/n
2

+ o(ε(p−1)/p)

= K1

2
1

(
K2
2

)(n−p)/n
+ o(ε(p−1)/p),
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that is,

K1(ε)
(K2

2

)(n−p)/n

<
K1

2
K2(ε)

(n−p)/n + o(ε(p−1)/p).

From (3.40)-(3.42) we have

(K1

2
−I(ε)

) (K2

2

)(n−p)/n

<
K1

2

(K2

2
−II(ε)+o(ε(p−1)/p)

)(n−p)/n

+o(ε(p−1)/p). (3.47)

Now, notice that for aα > 0, we have

(1− t)α = 1− αt + o(t), as t → 0.

In particular, taking

t =
II(ε) + o(ε(p−1)/p)

K2

2

,

we obtain

(K2

2
−II(ε)+o(ε(p−1)/p)

)(n−p)/n

= (
K2

2
)(n−p)/n−(

n− p

n
)(

K2

2
)−p/nII(ε)+o(ε(p−1)/p).

Thus, (3.47) is equivalent to

−I(ε)(
K2

2
)(n−p)/n < −K1

2

(K2

2

)−p/n(n− p

n

)
II(ε) + o(ε(p−1)/p).

Since, II(ε) = O(ε(p−1)/p) we get

I(ε)

II(ε)
>

(n− p

n

)K1

K2

+ o(1),

which implies that (3.46) is equivalent to

lim
ε→0

I(ε)

II(ε)
>

((n− p)

n

)K1

K2

. (3.48)
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From (3.39) and (3.41) we get

lim
ε→0

I(ε)

II(ε)
=

(
(n− p)/(p− 1)

)p

lim
ε→0

∫

IRn−1

dy′
∫ ε(p−1)/pg(y′)

0

|y|p/(p−1)

(1 + |y|p/(p−1))n
dyn

∫

IRn−1

dy′
∫ ε(p−1)/pg(y′)

0

1

(1 + |y|p/(p−1))n
dyn

=
(

n−p
p−1

)p

∫

IRn−1

|y′|p/(p−1)

(1 + |y′|p/(p−1))n
dy′

∫

IRn−1

1

(1 + |y′|p/(p−1))n
dy′

=
(

n−p
p−1

)p

∫ ∞

0

rn+p/(p−1)

(1 + rp/(p−1))n
dr

∫ ∞

0

rn

(1 + rp/(p−1))n
dr

.

(3.49)
Now we calculate the last term in 3.49). If p/(p− 1) ≤ β ≤ p(n− 1) + 1/(p− 1),
integrating on by parts we have

∫ ∞

0

rβ−p/(p−1)

(1 + rp/(p−1))n−1
dr =

p(n− 1)

(p− 1)β − 1

∫ ∞

0

rβ

(1 + rp/(p−1))n
dr. (3.50)

Observing that

rβ

(1 + rp/(p−1))n
=

rβ−p/(p−1)

(1 + rp/(p−1))n−1
(1− 1

1 + rp/(p−1)
),

we obtain
∫ ∞

0

rβ

(1 + rp/(p−1))n
dr =

∫ ∞

0

rβ−p/(p−1)

(1 + rp/(p−1))n−1
dr −

∫ ∞

0

rβ−p/(p−1)

(1 + rp/(p−1))n
dr. (3.51)

From (3.50) and (3.51) we get

(
1− (n− 1)p

(p− 1)β − 1

) ∫ ∞

0

rβ

(1 + rp/(p−1))n
dr = −

∫ ∞

0

rβ−p/(p−1)

(1 + rp/(p−1))n
dr,

that is
∫ ∞

0

rβ

(1 + rp/(p−1))n
dr =

(p− 1)β − 1

(n− 1)p− (p− 1)β + 1

∫ ∞

0

rβ−p/(p−1)

(1 + rp/(p−1))n
dr. (3.52)
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From (3.49) and (3.52) with β = n + p/(p− 1) we obtain

lim
ε→0

I(ε)

II(ε)
=

(n− p

p− 1

)p (p− 1)(n + 1)

n− 2p + 1
=

(n− p)p

(p− 1)p−1

n + 1

n− 2p + 1
. (3.53)

By (1.2), we have

(n− p

n

)K1

K2

=
(n− p

n

)
∫ ∞

0

rn+p/(p−1)−1

(1 + rp/(p−1))n
dr

∫ ∞

0

rn−1

(1 + rp/(p−1))n
dr

(n− p

p− 1

)p

.

Taking β = n + p/(p− 1)− 1 in (3.52) we have

n− p

n

(K1

K2

)
=

n− p

n

(p− 1)((n− 1) + p/(p− 1))

(n− 1)p− (p− 1)((n− 1) + p/(p− 1))

(n− p

p− 1

)p

=
(n− p)p

(p− 1)p−1
.

(3.54)

Since n+1 > n−2p+1, (3.53)-(3.54) yields that (3.48) is true. Therefore the claim
was proved in the case 1 < p2 ≤ n.

Case 2: p2 > n. Let R > 0 such that Ω ⊂ B(0, R). Notice that

K3(ε) =

∫

Ω

up
ε dx ≤ cε(n−p)/p

∫ R

0

rn−1

(ε + rp/(p−1))n−p
dr.

Consequently,
K3(ε) = O(ε(n−p)/p). (3.55)

Choosing 0 < a ≤ A < ∞ such that a|x′|2 ≤ h(x′) ≤ A|x′|2 for x′ ∈ D(0, δ), we
have

K1(ε) =

∫

Ω

|∇uε|pdx =

∫

IRn
+

|∇uε|p dx−
∫

D(0,δ)

dx′
∫ h(x′)

0

|∇uε|pdxn + O(ε(n−p)/p)

=
K1

2
−

∫

D(0,δ)

dx′
∫ h|x′|2

0

|∇uε|pdxn + O(ε(n−p)/p)

≤ K1

2
−

∫

D(0,δ)

dx′
∫ a|x′|2

0

|∇uε|pdxn + O(ε(n−p)/p)
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Using that |x|p/(p−1) ≥ |x′|p/(p−1), we have

∫

D(0,δ)

dx′
∫ a|x′|2

0

|∇uε|pdxn ≥ ε(n−p)/p

∫

D(0,δ)

dx′
∫ a|x′|2

0

|x′|p/(p−1)

(ε + |x|p/(p−1))n
dxn. (3.56)

For δ ∈ (0, 1), we have ε + |x|p/(p−1) ≤ C(ε + |x′|p/(p−1)). Consequently

ε(n−p)/p

∫

D(0,δ)

dx′
∫ a|x′|2

0

|x′|p/(p−1)

(ε + |x|p/(p−1))n
dxn ≥ c1ε

(n−p)/p

∫

D(0,δ)

a|x′|2|x′|p/(p−1)

(ε + |x′|p/(p−1))n
dx′

(3.57)
Now, observe that

ε(n−p)/p

∫

D(0,δ)

a|x′|2|x′|p/(p−1)

(ε + |x′|p/(p−1))n
dx′ = ε(n−p)/p

∫ δ

0

r2rp/(p−1)rn−1

(ε + rp/(p−1))n
dr

= ε(n−p)/pε(2p−n−1)/p

∫ δ/ε(p−1)/p

0

sp/(p−1)+n

(1 + sp/(p−1))n
ds

≥ ε(n−p)/pε(2p−n−1)/p

∫ δ/ε
p−1

p

1

sp/(p−1)+n

(1 + sp/(p−1))n
ds

≥ ε(n−p)/pε(2p−n−1)/p

∫ δ/ε(p−1)/p

1

1

(1 + sp/(p−1))n
ds

≥ c2ε
(n−p)/pε(2p−n−1)/p

∫ δ/ε(p−1)/p

1

1

spn/p−1
ds,

where in the last inequality above we have used the fact that 1 + sp/(p−1) ≤
sp/(p−1) + sp/(p−1). Setting

f(ε) := ε(2p−n−1)/p

∫ δ/ε(p−1)/p

1

1

spn/p−1
ds,

we have

K1(ε) ≤ 1

2
K1 − c2ε

(n−p)/pf(ε) + O(ε(n−p)/p). (3.58)

To estimate K2(ε), notice that

K2(ε) =
1

2
K2 −

∫

D(0,δ)

dx′
∫ h(x′)

0

up∗
ε dxn + O(εn/p)

≥ 1

2
K2 −

∫

D(0,δ)

dx′
∫ A|x′|2

0

up∗
ε dxn + O(εn/p)
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and

∫

D(0,δ)

dx′
∫ A|x′|2

0

up∗
ε dx ≤ Aεn/p

∫

D(0,δ)

|x′|2
(ε + |x′|p/(p−1))n

dx′

= Aεn/p

∫ δ

0

= O(εn/p).

Thus

K2(ε) ≥ 1

2
K2 −O(ε(n−p)/p). (3.59)

Let tε be such that

max
t>0

Jλ(tuε) = Jλ(tεuε).

From (3.55)− (3.59) we conclude that tε is uniformly bounded for ε ∈ (0, εo). Thus,

Jλ(tεuε) ≤ sup
t>0
{1

p
tpK1(ε)t

p − 1

p∗
tp
∗
K2(ε)}+ O(εp/(p−1))

=
1

n

( K1(ε)

K2(ε)
p/(p−1)

)n/p

+ O(εp/(p−1)).

Now we claim that
K1(ε)

K2(ε)
p/(p−1)

< 2−p/nS −O(εp/(p−1)), (3.60)

for ε small(that is sufficiently to show (3.46)). Indeed by (3.58)-(3.59), we see that
(3.60) is equivalent to

K1

2
− coε

p/(p−1)f(ε) < 2−p/nS
(1

2
K2 −O(εp/(p−1))

)n/p

+ O(εp/(p−1))

= 1
2
SK

(n−p)/n
2 + O(εp/(p−1)).

Since S = K1/K
n/p
2 we have that

K1

2
− coε

p/(p−1)f(ε) <
1

2
K1 + O(εp/(p−1)), (3.61)

because limε→0 f(ε) = ∞. Therefore, (3.60) is true. Thus (3.46) is holds in the
case p2 > n.
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Finally we are going to prove (3.35). To this, notice that

K1,γ(ε) =

∫

Ω

|∇uε|γ dx

= (
n− p

p− 1
)γε(n−p)γ/p2

∫

Ω

|x|γ/p−1

(ε + |x|p/(p−1))nγ/p
dx

= Cεα

∫

Ω

|x|γ/p−1

(1 + |x|p/(p−1))nγ/p
dx

= O(εα),

where α = (n− p)γ/p2 + γp − nγ/p + (p− 1)n/p. On the outer hand, if r > 1 we
have

K2,r(ε) : =

∫

Ω

ur
ε dx

= ε(n−p)r/p2−r(n−p)/p+(p−1)n/p

∫

Ω

1

(1 + |x|p/(p−1))r(n−p)/p
dx

= O(ε(n−p)r/p2−r(n−p)/p+(p−1)n/p).

Taking r = p− 1 and r = 1, we obtain respectively, β and δ. Since vλ ∈ L∞(Ω), we
have ∣∣∣

∫

Ω

up∗−1
ε vλ

∣∣∣ dx ≤
∫

Ω

up∗−1
ε dx = O(ε(n−p)r/p2−r(n−p)/p+(p−1)n/p),

with r = p∗ − 1. Thus, we obtain η.

Finishing the proof of Proposition 3.3: If p ∈ [2, 3), fixe ε0 > 0 and consider
the function h : [0, +∞)× [0, ε0) → IR defined by hλ(t, ε) = Fλ(t, ε) + Gλ(t, ε).

From (3.45) and (3.34), there exists C1 > 0 and C2 > 0 such that

hλ(t, ε) ≤ C1(t
p + tγ + tp−1 + t)− C2t

p∗−1.

Since γ < p∗, there exists t0 > 0 such that tε ≤ t0 for all 0 < ε ≤ ε0, where
h(tε, ε) = maxt≥0 h(t, ε). Thus,

hλ(t, ε) ≤ hλ(t0, ε) = Fλ(t0, ε) + Gλ(t0, ε) ≤ maxt≥0 Fλ(t, ε) + Gλ(t0, ε).

From (3.34) we obtain G(t0, ε) = O(εθ) for some θ > 0. Thus, we obtain from (3.34)
that

hλ(t, ε) <
1

2n
Sn/p.

Noting that u ∈ C1,α(Ω) (see Lieberman [13]) we obtain u,∇u ∈ L∞. Thus, the
cases 1 < p < 2 and 3 ≤ p follows using the same argument as in Azorero-Peral [10].
This completes the proof of Proposition 3.3.
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3.3 Proof of Theorem 1.2

Until this moment we have proved the existence of a local minimum vλ of energy
functional Jλ and we are ready to prove the existence of a second critical point
of Jλ, which is of mountain pass type. Indeed, in view of Lemma 3.2 we can
apply the Mountain-Pass Theorem to obtain a sequence (wn) in W 1,p(Ω) such that
Jλ(wn) → c(vλ) and J ′λ(wn) → 0 in W−1,p′(Ω). Now, we consider two cases.

Subcritical case: p − 1 < q < p∗ − 1. In this case, since the embedding
W 1,p(Ω) ↪→ Lq(Ω) is compact the result follows easily.

Critical case: q = p∗ − 1. Here we going to proof that Jλ satisfies the (PS)c(vλ)

condition, or exists one solution wλ such that

Jλ(wλ) < Jλ(vλ).

Since
1

p

∫

Ω

|∇wn|p + λ|wn|p − 1

p∗

∫

Ω

wp∗
n −

∫

∂Ω

wnϕ = on(1) + c(vλ)

and ∫

Ω

|∇wn|p + λ|wn|p −
∫

Ω

wp∗
n −

∫

∂Ω

wnϕ = on(1)‖wn‖1,p,

by Sobolev embedding and Holder’s inequality, we obtain

(
1

p
− 1

p∗
)‖wn‖p

1,p ≤ c(vλ) + (on(1) + C1‖ϕ‖Lp′ (∂Ω))‖wn‖1,p,

consequently, (wn) is bounded in W 1,p(Ω). Thus, we may extract a subsequence still
denoted by (wn) such that

wn ⇀ w, weakly in W 1,p(Ω);
wn → w, strongly in Lp(Ω);
wn → w, a.e. on Ω.

By a convergence result due to Lucio-Bocardo (see Theorem 2.1 in [17]) we have
∇wn → ∇w almost everywhere in Ω. Using this and standard argument yield that
w must be a critical point of Jλ. We observe that w 6= 0. In fact, by the definition
of the weakly solution, we obtain

λ

∫

Ω

wp−1
n dx =

∫

Ω

wq
n dx +

∫

∂Ω

ϕdσy.
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Making n → +∞, we get a contradiction.
We shall have established the Theorem 1.2 if we prove the following:

Claim 3.2 Jλ(w) = c(vλ), or Jλ(w) < Jλ(vλ).

Applying the Brezis-Lieb Lemma, we obtain

‖∇wn‖p = ‖∇w‖p + ‖∇(wn − w)‖p + on(1), (3.62)

and
‖wn‖p∗

Lp∗ = ‖w‖p∗

Lp∗ + ‖wn − w‖p∗

Lp∗ + on(1). (3.63)

From (3.62) and (3.63) we have

1

p
‖wn − w‖p − 1

p∗
‖wn − w‖p∗ + Jλ(wn) = c(vλ) + on(1). (3.64)

‖wn − w‖p − ‖wn − w‖q+1

Lp∗ + J ′λ(w)w = J ′λ(wn)wn + on(1). (3.65)

Substituting (3.65) in (3.64) results that

on(1) + c(vλ) = Jλ(w) + (
1

p
− 1

p∗
)‖wn − w‖p∗

Lp∗ , (3.66)

or let, ‖wn−w‖p∗

Lp∗ → l ≥ 0. If l = 0 the proof is finished. If not, l > 0. By Sobolev
inequality, we get

‖wn − w‖Lp∗ ≤ S‖wn − w‖1,p.

Thus,
l ≥ Sn/p.

Returned to (3.66) we obtain

c(vλ) = Jλ(w) + (
1

p
− 1

p∗
)‖wn − w‖p∗

Lp∗ − on(1)

= Jλ(w) + (
1

p
− 1

p∗
)l

≥ Jλ(w) +
1

n
Sn/p

> Jλ(w) +
1

2n
Sn/p.

(3.67)

Since

c(vλ) < Jλ(vλ) +
1

2n
Sn/p,

we concludes the Claim 3.2. This finishes the proof of Theorem 1.2.
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