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Abstract

We study the existence, non-existence, and multiplicity of positive solutions for a class of

systems of second-order ordinary differential equations using the fixed-point theorem of cone

expansion/compression type, the upper–lower solutions method, and degree arguments. We

apply our abstract results to study semilinear elliptic systems in bounded annular domains

with non-homogeneous boundary conditions. Here the nonlinearities satisfy local superlinear

assumptions.
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1. Introduction

We deal with systems of second-order ordinary differential equations which have
the form

�u00 ¼ f ðt; u; v; a; bÞ in ð0; 1Þ;

�v00 ¼ gðt; u; v; a; bÞ in ð0; 1Þ; ðPa;bÞ

with boundary conditions

uð0Þ ¼ uð1Þ ¼ 0;

vð0Þ ¼ vð1Þ ¼ 0; ðBCÞ

where the nonlinearities f and g are superlinear at the origin as well as at infinity, and
a; b are non-negative constants. We show that there exists a continuous curve G
which splits the positive quadrant of the ða; bÞ- plane into two disjoint sets S and R
such that System ðPa;bÞ; with boundary conditions (BC), has at least two positive

solutions in S; has at least one positive solution on the boundary of S; and has no
positive solutions in R: Our approach is based on fixed-point theorems of cone
expansion/compression type, the upper–lower solutions method, and degree
arguments.

In what follows, we will impose the following:

ðH0Þ The functions f ; g:½0; 1
 � ½0;þNÞ4-½0;þNÞ are continuous and non-
decreasing in the last four variables. In other words,

f ðt; u1; v1; a1; b1Þpf ðt; u2; v2; a2; b2Þ and gðt; u1; v1; a1; b2Þpgðt; u2; v2; a2; b2Þ

whenever ðu1; v1; a1; b1Þpðu2; v2; a2; b2Þ; where the inequality is understood inside
every component.

ðH1Þ There exists a subset U 1Cð0; 1Þ of positive Lebesgue measure such that for all
fixed a; b40;

lim
jðu;vÞj-0

cðt; u; v; a; bÞ
jðu; vÞj ¼ þN uniformly for almost everywhere tAU 1 ð1Þ

for either c ¼ f or c ¼ g: Here we use the notation jðx1;y; xmÞj ¼ jx1j þ?þ jxmj:
ðH2Þ There exist subsets U 2; U 3Cð0; 1Þ of positive Lebesgue measure such that

lim
jðu;vÞj-N

f ðt; u; v; 0; 0Þ
jðu; vÞj ¼ þN uniformly for almost everywhere tAU 2 ð2Þ

and

lim
jðu;vÞj-N

gðt; u; v; 0; 0Þ
jðu; vÞj ¼ þN uniformly for almost everywhere tAU 3: ð3Þ
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It is not difficult to see that there exists t%ðf Þ ¼ t%ðf ; x; Z; a; bÞ such that

Z 1

0

tf ðt; x; Z; a; bÞ dt ¼
Z 1

t%
f ðt; x; Z; a; bÞ dt:

Similarly, there exists t%ðgÞ ¼ t%ðg; x; Z; a; bÞ such that

Z 1

0

tgðt; x; Z; a; bÞ dt ¼
Z 1

t%
gðt; x; Z; a; bÞ dt:

The next assumptions are related to the numbers t%ðf Þ and t%ðgÞ; both denoted t%

for simplicity.
ðH3Þ There exist R0; a0; b0; s040 such that

Z t%

0

tf ðt;R0;R0; a0; b0Þ dtps0R0

and

Z t%

0

tgðt;R0;R0; a0; b0Þ dtpð1� s0ÞR0:

Also, we assume that there exists a subset UCð0; 1Þ such that f ðt; 0; 0; a0; b0Þ40
and gðt; 0; 0; a0; b0Þ40; for all tAU :

When jða; bÞj is sufficiently large, the next hypothesis together with ðH2Þ give a
non-existence result for System ðPa;bÞ:

ðH4Þ There exists a subset U 4Cð0; 1Þ of positive Lebesgue measure such that

lim
jða;bÞj-þN

hðt; u; v; a; bÞ ¼ þN uniformly for tAU 4 and all u; vX0;

for either h ¼ f or h ¼ g:

Remark 1. Observe the local character of the assumptions ðH1Þ; ðH2Þ; and ðH4Þ in
the variable t: We further note that the sets U 1; U 2; U 3; and U 4 may, in general, be
different and that hypothesis ðH3Þ is verified for instance when

lim
jzj-0

f ðt; zÞ
jzj ¼ lim

jzj-0

gðt; zÞ
jzj ¼ 0 uniformly for almost everywhere tA½0; 1
 ð4Þ

as well as when for some i; jAf3; 4g; we have that

lim
zi-0þ

f ðt; zÞ ¼ lim
zj-0þ

gðt; zÞ ¼ 0 uniformly for almost everywhere tA½0; 1
; ð5Þ

where z ¼ ðz1; z2; z3; z4Þ:
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Our main result is Theorem 1.1, which will be proved in Section 3.

Theorem 1.1. Suppose that the pair of functions consisting of f ðt; u; a; bÞ and

gðt; u; a; bÞ satisfies conditions ðH0Þ –ðH4Þ: Then there exist a positive constant %a and

a continuous function G : ½0; %a
-½0;þNÞ such that for all aA½0; %a
; System ðPa;bÞ with

boundary conditions (BC):

(i) has at least one positive solution if 0pbpGðaÞ;
(ii) has no solution if b4GðaÞ;
(iii) has a second positive solution if 0oboGðaÞ:

Applications: As a main application of Theorem 1.1, and indeed as a principal
motivation for Theorem 1.1 itself, we can prove the existence and multiplicity of
positive radial solutions for the following class of semilinear elliptic system in

annular domains. In fact, let 0or1or2; and let Aðr1; r2Þ ¼ fxARN : r1ojxjor2g;
with NX3; be an annulus. Consider the system

�Du ¼ hðjxj; u; vÞ in Aðr1; r2Þ;

�Dv ¼ kðjxj; u; vÞ in Aðr1; r2Þ;

ðu; vÞ ¼ ð0; 0Þ on jxj ¼ r1;

ðu; vÞ ¼ ða; bÞ on jxj ¼ r2; ðEa;bÞ

where a; b are non-negative parameters, and the nonlinearities h and k satisfy the
next four conditions.

ðA0Þ The functions h; k : ½0; 1
 � ½0;þNÞ2-½0;þNÞ are continuous and non-
decreasing in the last two variables.

ðA1Þ There exist a set L1Cðr1; r2Þ of positive Lebesgue measure, and a function c
such that either c ¼ h or c ¼ k and such that cðr; u; vÞ40; for almost everywhere
rAL1 and all u; v40:

ðA2Þ There exist subsets L2;L3Cðr1; r2Þ of positive Lebesgue measure such
that

lim
jðu;vÞj-N

hðr; u; vÞ
jðu; vÞj ¼ þN uniformly for almost everywhere rAL2 ð6Þ

and

lim
jðu;vÞj-N

kðr; u; vÞ
jðu; vÞj ¼ þN uniformly for almost everywhere rAL3: ð7Þ
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ðA3Þ lim
jðu;vÞj-0

hðr; u; vÞ
jðu; vÞj ¼ lim

jðu;vÞj-0

kðr; u; vÞ
jðu; vÞj

¼ 0 uniformly for almost everywhere rAðr1; r2Þ: ð8Þ

Note that performing the change of variable

t ¼ Ar2�N þ B;

where

A ¼ ðr1r2ÞN�2

rN2

2 � rN�2
1

and B ¼ rN�2
2

rN2

2 � rN�2
1

;

we see that System ðEa;bÞ is equivalent to the system

�u00 ¼ f ðt; u; v; a; bÞ in ð0; 1Þ;

�v00 ¼ gðt; u; v; a; bÞ in ð0; 1Þ;

uð0Þ ¼ uð1Þ ¼ vð0Þ ¼ vð1Þ ¼ 0;

where here the nonlinearities f and g are given by

f ðt; u; v; a; bÞ ¼ dðtÞhðð A
B�t

Þ1=ðN�2Þ; u þ ta; v þ tbÞ;

gðt; u; v; a; bÞ ¼ dðtÞkðð A
B�t

Þ1=ðN�2Þ; u þ ta; v þ tbÞ;

dðtÞ ¼ ð1� NÞ2 A2=ðN�2Þ

ðB�tÞ2ðN�1Þ=ðN�2Þ:

Now it is easy to see that f and g satisfy assumptions ðH0Þ–ðH4Þ; and hence the
following is an immediate consequence of Theorem 1.1.

Theorem 1.2. Under assumptions ðA0Þ–ðA3Þ; there exists a continuous function G :
½0; %a
-½0;þNÞ such that for all aA½0; %a
; we have:

(i) If 0pbpGðaÞ; then System ðEa;bÞ has at least one positive radial solution.

(ii) If the inequalities above are strict, or in other words if 0oboGðaÞ; then System

ðEa;bÞ has at least two positive radial solutions.

(iii) When b4GðaÞ; System ðEa;bÞ has no positive radial solutions.

We next give three typical examples of nonlinearities that satisfy the hypotheses of
Theorem 1.2.
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Example 1.3. Let h; k : ½r1; r2
 � ½0;þNÞ2-½0;þNÞ be nonlinearities given by

hðr; u; vÞ ¼ up þ vq and kðr; u; vÞ ¼ d1ðrÞðup þ vqÞ þ d2ðrÞupvq;

where p; q41 and d1; d2 : ½r1; r2
-R are non-trivial, non-negative continuous
functions such that d1ðrÞ40 and d2ðrÞ ¼ 0 in some sub-interval J of ½r1; r2
: For
instance, we may assume, L1 is any sub-interval with l ¼ h; L2 is also any sub-
interval and L3 ¼ J:

Example 1.4. Let h; k : ½r1; r2
 � ½0;þNÞ2-½0;þNÞ be nonlinearities given by

hðr; u; vÞ ¼ up þ vq and kðr; u; vÞ ¼ ðd1ðrÞðup þ vqÞ þ 1Þarctanðd2ðrÞðup þ vqÞÞ;

where p; q41 and d1; d2 : ½r1; r2
-R are non-negative continuous functions which
are positive in some subinterval J of ½r1; r2
:

Example 1.5. Let f0; g0 : ½0;þNÞ2-½0;þNÞ be continuous functions such that
f0ðu; vÞ40; g0ðu; vÞ40 for all u; v40; and such that

lim
jðu;vÞj-0

f0ðu; vÞ
jðu; vÞj ¼ lim

jðu;vÞj-0

g0ðu; vÞ
jðu; vÞj ¼ 0;

lim
jðu;vÞj-þN

f0ðu; vÞ
jðu; vÞj ¼ lim

jðu;vÞj-þN

g0ðu; vÞ
jðu; vÞj ¼ þN:

Take h; k : ½r1; r2
 � ½0;þNÞ2-½0;þNÞ defined by

hðr; u; vÞ ¼ d1ðrÞf0ðu; vÞ and kðu; vÞ ¼ d2ðrÞg0ðu; vÞ ;

where d1; d2 : ½r1; r2
-R are non-trivial, non-negative continuous functions.

In recent years, the study of semilinear elliptic problems in annular domains has
received considerable attention. We first refer to the progress made on the study of
single equations involving non-homogeneous boundary conditions. These problems
have been studied by Bandle and Peletier, Lee and Lin, Hai, among others. In [1],
Bandle and Peletier consider the problem

� Du ¼ uðNþ2Þ=ðN�2Þ and u40 in Aðr1; r2Þ;

u ¼ 0 for jxj ¼ r2 and u ¼ b for xj ¼ r1; ð9Þ

where NX3: They show the existence of a positive constant b0 such that Problem (9)
has one solution for bob0 and no solutions for b4b0: In [9], this result is extended to
nonlinearities f which are convex and superlinear at zero and infinity. Also,
uniqueness and multiplicity questions are discussed. Hai [7] extends the results of
[1,9] to nonlinearities locally Lipschitz continuous and superlinear at zero and
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infinity. More recently, Naito and Tanaka [10] have used Shooting Methods together
with Sturm’s comparison theorem to obtain nodal solutions.

In the context of elliptic systems in annular domains, we mention the works of
Dunninger and Wang on homogeneous Dirichlet boundary conditions, as well as
that of Lee on nonhomogeneous Dirichlet boundary conditions. (See [4,5], as well as
[8], and the references therein.) This work is more related to results of [8]. In fact, in
[8], among other problems, the following elliptic system is considered:

�Du ¼ lk1ðjxjÞf ðu; vÞ in Aðr1; r2Þ;

�Dv ¼ mk2ðjxjÞgðu; vÞ in Aðr1; r2Þ;

ðu; vÞ ¼ ð0; 0Þ on jxj ¼ r1;

ðu; vÞ ¼ ð %a; %bÞ on jxj ¼ r2; ð10Þ

where %a; %bAð0;þNÞ; ðl; mÞA½0;þNÞ2\fð0; 0Þg: Further, the following conditions
are imposed:

ðhÞ kiACð½r1; r2
; ½0;þNÞÞ does not vanish identically on any subinterval of ½r1; r2
;
ðh0Þ kiACð½r1; r2
; ð0;þNÞÞ so that ki40 on ½r1; r2
;
ðh0Þ f ; gACð½0;þNÞ2; ð0;þNÞÞ so that f ð0; 0Þ40 and gð0; 0Þ40;
ðh0

0Þ f ; gACð½0;þNÞ2; ½0;þNÞÞ with f ð0; 0Þ ¼ 0 and gð0; 0Þ ¼ 0;
ðh1Þ f and g are non-decreasing on ½0;þNÞ2;
ðh1

0Þ f andg are increasing on ½0;þNÞ2;
ðh2Þ limðu;vÞ-N

f ðu;vÞ
uþv

¼ limðu;vÞ-N

gðu;vÞ
uþv

¼ N:

More precisely, under conditions ðhÞ; ðh0Þ; ðh1Þ; and ðh2Þ; the existence of a

continuous curve G is established, which splits the region ½0;þNÞ2\fð0; 0Þg into two

disjoint subsets O1 and O2 such that System (10) with %a ¼ %b ¼ 0; has at least two
(respectively at least one, no) positive radial solutions for ðl; mÞAO1 (respectively
G;O2). On the other hand, under the conditions ðh0Þ; ðh0

0Þ; ðh1
0Þ; and ðh2Þ; the

existence of both a continuous curve G; which splits the region ½0;þNÞ2\fð0; 0Þg into
two disjoint subsets O1 and O2; and a subset ODO1 is established such that System
(10) has at least two (respectively, at least one, no) positive radial solutions for
ðl; mÞAO (respectively ðO1\OÞ,G;O2).

Note that System (10) is equivalent to the system

�u00 ¼ l %d1ðtÞf ðu þ t %a; v þ t %bÞ in Aðr1; r2Þ;

�v00 ¼ m %d2ðtÞgðu þ t %a; v þ t %bÞ in Aðr1; r2Þ;

uð0Þ ¼ uð1Þ ¼ vð0Þ ¼ vð1Þ ¼ 0;

where %diðtÞ ¼ dðtÞkiðð A
B�t

Þ1=ðN�2ÞÞ; with i ¼ 1; 2:
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Take d40; l ¼ a þ d and m ¼ b þ d; with a; bA½0;þNÞ: Consider the nonlinea-
rities

f1ðt; u; v; a; bÞ ¼ ða þ dÞ %d1ðtÞf ðu þ t %a; v þ t %bÞ;

g1ðt; u; v; a; bÞ ¼ ðb þ dÞ %d2ðtÞgðu þ t %a; v þ t %bÞ:

Taking d40 sufficiently small, Theorem 1.2 allows us to improve the results of [8],
since the coefficients ki may vanish in parts of the interval ðr1; r2Þ; and since the
hypotheses ðh0

0Þ; ðh1
0Þ and ðh2Þ imply the multiplicity results above for O ¼ O1:

Observe that, in [8], the coefficients ki are considered positive in the interval ðr1; r2Þ
because System (10) is compared with another one with constant coefficients that is
studied using Shooting Methods (see Lemmas 4.4 and 4.5 in [8]).

This paper is organized as follows. Section 2 contains preliminary results. Section
3 is devoted to proving our main result, Theorem 1.1.

Notation summary. Here is a brief summary of some notation:

Bðp;RÞ: the open ball with radius R centered at the point p:
C; C0; C1; C2;y : positive (possibly different) constants.
iðF ;Cr;CÞ ¼ 1: the fixed-point index of F with respect to the cone C:
degðF ;A; yÞ: mapping degree for the equation FðxÞ ¼ y; for xAA:

2. Preliminary results

It is not difficult to show that if the pair ðu; vÞ is a solution of System ðPa;bÞ; then
for all tA½0; 1
;

uðtÞ ¼
Z 1

0

Kðt; tÞf ðt; uðtÞ; vðtÞ; a; bÞ dt;

vðtÞ ¼
Z 1

0

Kðt; tÞgðt; uðtÞ; vðtÞ; a; bÞ dt; ðSa;bÞ

where Kðt; tÞ is the Green’s function

Kðt; sÞ: ¼
tð1� sÞ if tps;

sð1� tÞ if t4s:

�
ð11Þ
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Let

Aðu; vÞðtÞ: ¼
Z 1

0

Kðt; tÞf ðt; uðtÞ; vðtÞ; a; bÞ dt;

Bðu; vÞðtÞ: ¼
Z 1

0

Kðt; tÞgðt; uðtÞ; vðtÞ; a; bÞ dt;

Fðu; vÞ: ¼ðAðu; vÞ;Bðu; vÞÞ:

Therefore, System ðSa;bÞ is equivalent to the fixed point equation

Fðu; vÞ ¼ ðu; vÞ

in the usual Banach space X ¼ Cð½0; 1
;RÞ � Cð½0; 1
;RÞ endowed with the norm
jjðu; vÞjj :¼ jjujj

N
þ jjvjj

N
; where jjwjj

N
:¼ suptA½0;1
jwðtÞj:

The proof of the existence of the first positive solution of ðPa;bÞ will be based on

the following fixed-point theorem of cone expansion/compression type. One may
refer to [2,3,6] for proofs and further discussion of the fixed point index.

Lemma 2.1. Let X be a Banach space with norm j � j; and let CCX be a cone in X : For

r40; define Cr ¼ C-B½0; r
 where B½0; r
 ¼ fxAX : jxjprg is the closed ball of radius

r centered at origin of X : Assume that F : Cr-C is a compact map such that Fxax;
for all xA@Cr ¼ fxAC : jxj ¼ rg: Then:

1. If jxjpjFxj for all xA@Cr; then iðF ;Cr;CÞ ¼ 0:
2. If jxjXjFxj for all xA@Cr; then iðF ;Cr;CÞ ¼ 1:

Let us consider the cone C in X defined by

C ¼ fðu; vÞAX : ðu; vÞð0Þ ¼ ðu; vÞð1Þ ¼ 0; and u; v are concave functionsg:

Lemma 2.2. F : X-X is completely continuous and FðCÞCC:

Proof. We only give the main ideas of the proof. The Arzela–Ascoli theorem implies
that F : X-X is completely continuous. Is is easy to see that F1 and F2 (the
coordinates functions of Fðu; vÞ) are twice differentiable on ð0; 1Þ with F 00

1p0 and

F 00
2p0: This implies that FðCÞCC: &

Remark 2. For each subset U i; i ¼ 1; 2; 3; 4; there exist 1� ei4di40 and subsets of

positive measure #U iCU i-ðdi; 1� eiÞ such that for all u; vAC; we have

inf
tA #U i

ðuðtÞ þ vðtÞÞXdið1� eiÞjjðu; vÞjj: ð12Þ
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3. Proof of Theorem 1.1

3.1. The first positive solution for System ðPa0;b0Þ

Using that f ; g : ½0; 1
 � ½0;þNÞ4-½0;þNÞ are continuous and non-decreasing in
the second and third variables, and assumptions ðH1Þ and ðH3Þ we apply the Lemma
2.1 to prove the existence of a first positive solution for System ðPa0;b0Þ; where ða0; b0Þ
is given in assumption ðH3Þ:

Lemma 3.1. Assume condition ðH3Þ; then for all ðu; vÞACR0
;

jjFðu; vÞjjpjjðu; vÞjj:

Proof. Given ðu; vÞACR0
;

Aðu; vÞðtÞ ¼
Z 1

0

Kðt; tÞf ðt; uðtÞ; vðtÞ; a0; b0Þ dt

p
Z 1

0

Kðt; tÞf ðt;R0;R0; a0; b0Þ dt

p
Z 1

0

Kðt%; tÞf ðt;R0;R0; a0; b0Þ dt

¼
Z t%

0

tf ðt;R0;R0; a0; b0Þ dt

p s0R0:

Similarly, we can prove that

Bðu; vÞðtÞpð1� s0ÞR0:

Hence, for all ðu; vÞACR0
;

jjFðu; vÞjj ¼ jjAðu; vÞjj
N

þ jjBðu; vÞjj
N
pR0 ¼ jjðu; vÞjj: &

Lemma 3.2. Assume hypothesis (1.1). Then there exists R1Að0;R0Þ such that for all

ðu; vÞACR1
;

jjFðu; vÞjjXjjðu; vÞjj:
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Proof. Using assumption ðH1Þ with c ¼ f ; and according Remark 2, given M40

there exists R1 ¼ R1ðMÞAð0;R0Þ such that for all ðu; vÞA½0;R1
2 and almost every

tA #U 1;

f ðt; u; v; a0; b0ÞXMjðu; vÞj:

Thus, for all ðu; vÞACR1
;

jjAðu; vÞjj
N
X

Z 1

0

Kð1=2; tÞf ðt; uðtÞ; vðtÞ; a0; b0Þ dt

X

Z
#U 1

Kð1=2; tÞf ðt; uðtÞ; vðtÞ; a0; b0Þ dt

XM

Z
#U 1

Kð1=2; tÞ½uðtÞ þ vðtÞ
 dt

X d1ð1� e1ÞMjjðu; vÞjj
Z
#U 1

Kð1=2; tÞ dt;

where in the last inequality we have used (12). Finally, taking M40 sufficiently large
such that

d1ð1� e1ÞM
Z
#U 1

Kð1=2; tÞ dt41;

we get

jjFðu; vÞjjXjjðu; vÞjj:

An analogous estimate holds if we use assumption ðH1Þ with c ¼ g: &

Now, in view of Lemmas 3.1 and 3.2, as a direct consequence of Lemma 2.1, we
have the following result.

Theorem 3.3. F has a fixed point ðu; vÞAC such that R1ojjðu; vÞjjoR0:
Therefore, the pair ðu; vÞ is a positive solution of System ðPa0;b0Þ:

Using a combination of the maximum principle and hypothesis ðH3Þ we obtain
that both u and v are positive functions.

3.2. A priori estimate

Next, as a consequence of assumption ðH2Þ we have the following a priori estimate
for positive solutions of System ðPa;bÞ:
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Lemma 3.4. There exists C040 independent of a and b such that jjðu; vÞjjpC0; for all

positive solution ðu; vÞ of System ðPa;bÞ with boundary condition (BC).

Proof. Assume by contradiction that there exists a sequence of solution ðun; vnÞAX

of System ðPa;bÞ such that jjðun; vnÞjj-N: Without loss of generality we may assume

that jjunjjN-N: From assumption ðH2Þ we can take a sequence of real numbers

ansþN such that for almost every tAU 2 and a; bX0;

f ðt; unðtÞ; vnðtÞ; a; bÞ
unðtÞ þ vnðtÞ

Xan: ð13Þ

Thus, using the fact that un is concave together with Remark 2,

jjunjjNXunðtÞ ¼
Z 1

0

Kðt; tÞf ðt; unðtÞ; vnðtÞ; a; bÞ dt

X

Z
#U 2

Kðt; tÞf ðt; unðtÞ; vnðtÞ; a; bÞ
unðtÞ þ vnðtÞ

unðtÞ dt

X d2ð1� e2ÞjjunjjN
Z

#U 2

Kðt; tÞf ðt; unðtÞ; vnðtÞ; a; bÞ
unðtÞ þ vnðtÞ

dt;

which together with (13), implies that

1

an

Xd2ð1� e2Þ
Z

#U 2

Kðt; tÞ dt;

which is a contradiction. &

3.3. Lower and upper solutions

Now, we will establish the classical lower and upper solutions method for our class
of problems. To do this, consider the system

�u00 ¼ f0ðt; u; vÞ in ð0; 1Þ

�v00 ¼ g0ðt; u; vÞ in ð0; 1Þ

uð0Þ ¼ uð1Þ ¼ vð0Þ ¼ vð1Þ ¼ 0; ðSÞ

where f0 and g0 are non-negative continuous functions which are non-decreasing in
the variables u and v:
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As usual, we say that ðu; vÞ is a lower solution for System (S) when ðu; vÞ verify the
following inequations:

�u00p f0ðt; u; vÞ in ð0; 1Þ;

�v00p g0ðt; u; vÞ in ð0; 1Þ;

ðu; vÞp 0 on f0; 1g: ðTÞ

Similarly we define the upper solution of System (S) putting ‘‘greater or equal’’
instead of ‘‘least or equal’’.

Lemma 3.5. Let ð
%
u;
%
vÞ and ð %u; %vÞ be a lower and upper solution, respectively, of System

(S) such that

ð0; 0Þpð
%
u;
%
vÞpð %u; %vÞ:

Then System (S) has a non-negative solution ðu; vÞ verifying

ð
%
u;
%
vÞpðu; vÞpð %u; %vÞ:

Proof. Let

Mðu; vÞðtÞ: ¼
Z 1

0

Kðt; tÞf0ðt; uðtÞ; vðtÞÞ dt;

Nðu; vÞðtÞ: ¼
Z 1

0

Kðt; tÞg0ðt; uðtÞ; vðtÞÞ dt;

Gðu; vÞ: ¼ðMðu; vÞ;Nðu; vÞÞ:

Therefore, System (S) is equivalent to the fixed point equation

Gðu; vÞ ¼ ðu; vÞ

in the Banach space X ¼ Cð½0; 1
;RÞ � Cð½0; 1
;RÞ endowed with the norm
jjðu; vÞjj: ¼ jjujj

N
þ jjvjj

N
:

Now, we need to introduce the following auxiliary operator G̃ defined as follows:

G̃ðu; vÞ: ¼ ðM̃ðu; vÞ; Ñðu; vÞÞ;
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where

M̃ðu; vÞðtÞ: ¼
Z 1

0

Kðt; tÞf0ðt; xðt; uÞ; zðt; vÞÞ dt;

Ñðu; vÞðtÞ: ¼
Z 1

0

Kðt; tÞg0ðt; xðt; uÞ; zðt; vÞÞ dt

and

xðt; uÞ :¼ maxf
%
uðtÞ;minfu; %uðtÞgg and zðt; vÞ :¼ maxf

%
vðtÞ;minfv; %vðtÞgg:

It is easy to see that the operator G̃ has the following properties:

(a) G̃ is a bounded and completely continuous operator;
(b) if the pair ðu; vÞAX is a fixed point of G̃; then ðu; vÞ is a fixed point of G with

ð
%
u;
%
vÞpðu; vÞpð %u; %vÞ;

(c) if ðu; vÞ ¼ lG̃ðu; vÞ with 0plp1 then jjðu; vÞjj1pC3; where C3 does not depend

on l; and ðu; vÞAX :

Thus using the topological degree of Leray–Schauder we obtain a fixed point of the
operator G: Then the lemma is proved. &

Lemma 3.6. Assume that ðPa2;b2Þ has a non-negative solution and

ð0; 0Þpða1; b1Þrða2; b2Þ;

then ðPa1;b1Þ has a non-negative solution.

Proof. Let the pair ðu2; v2Þ be a non-negative solution of System ðPa2;b2Þ: Since the

functions f ; g are increasing functions in the last two variables, we have that ðu2; v2Þ
is a super-solution and ð0; 0Þ is a sub-solution for System ðPa1;b1Þ: Thus using the

lemma above we have complete the proof of Lemma 3.6. &

3.4. Non-existence

Next, we establish the following non-existence result

Lemma 3.7. Suppose hypotheses ðH2Þ and ðH4Þ: Then there exist C40 such that for

all ða; bÞ with jða; bÞj4C System ðPa;bÞ has no solutions.

Proof. Assume by contradiction that there exists a sequence ðan; bnÞ with
jðan; bnÞj-þN such that for each n; System ðPan;bn

Þ possesses a positive solution

ðun; vnÞAC:
By assumption ðH4Þ; given M40; there exists C40 such that for all

ða; bÞ with jða; bÞjXC; without lost of generality and according to Remark 2,
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we have

f ðt; u; v; a; bÞXM for all tA #U 4 and u; vX0: ð14Þ

Thus,

unðtÞ ¼
Z 1

0

Kðt; tÞf ðt; unðtÞ; vnðtÞ; an; bnÞ dt

X

Z
#U 4

Kðt; tÞf ðt; unðtÞ; vnðtÞ; an; bnÞ dt; ð15Þ

which together with (14) implies that for n sufficiently large we obtain

unðtÞXM

Z
#U 4

Kðt; tÞ dt:

Hence

jjunjjNXM sup
tAU 4

Z
#U 4

Kðt; tÞ dt:

Since we can choose M in (14) arbitrarily large, we conclude that ðunÞ is an
unbounded sequence in X :

On the other hand, by using assumption ðH2Þ; we have that given M40 there exits
R40 such that for all uXR;

f ðt; u; v; a; bÞXMu for all tA #U 2 and a; bX0: ð16Þ

Using again estimates (12) and (15), for n sufficiently large, we get

unðtÞXM

Z
#U 2

Kðt; tÞunðtÞ dtXMð1� E2Þd2jjunjjN
Z
#U 2

Kðt; tÞ dt:

Hence

1XMð1� E2Þd2 sup
tAU 2

Z
#U 2

Kðt; tÞ dt;

which it is a contradiction with the fact that M can be chosen arbitrary large. The
proof of Lemma 3.7 is now complete. &

Let us define

%a :¼ supfa40 : ðPa;bÞ has a positive solution for some b40g:

From Lemma 3.7 it follows immediately that

0o %aoN:
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It is easy to see, using the sub- and super-solutions methods that for all aAð0; %aÞ there
exists b40 such that System ðPa;bÞ has a solution. Furthermore, using Lemma 3.7

and the Arzelá–Ascoli Theorem, we can prove that exists b40 such that ðP %a;bÞ has a
positive solution.

Now, we introduce the following function:

GðaÞ :¼ supfb40 : ðPa;bÞ has a positive solutiong:

As a consequence of Lemma 3.6, we see that G : ð0; %aÞ-R is a continuous and non-
increasing function.

We would like to observe that until now, we have proved that System ðPa;bÞ has at
least one solution when 0pbpGðaÞ and has no solutions when b4GðaÞ:

3.5. The second positive solution

In this section we shall use the degree theory to prove the existence of a second
positive solution for System ðPa;bÞ in the region of the plane

S: ¼ fða; bÞAR2:0oao %a and 0oboGðaÞg: ð17Þ

Let ða; bÞAS and let ðu1; v1ÞAX be a positive solution of System ðPa;bÞ and

ð %u; %vÞAX be a positive solution of System ðPða;GðaÞÞÞ: Using that f ; g are monotone

increasing functions in the variables u; v; a; b and using the maximum-principle
argument we may suppose

ð0; 0Þp ðu1ðtÞ; v1ðtÞÞpð %uðtÞ; %vðtÞÞ;

ð0; 0Þo ðu1
0ð0Þ; v1

0ð0ÞÞoð %u0ð0Þ; %v0ð0ÞÞ;

ð0; 0Þ4 ðu1
0ð1Þ; v1

0ð1ÞÞ4ð %u0ð1Þ; %v0ð1ÞÞ:

Now we consider the Banach space

X1 ¼ fðu; vÞAC1ð½0; 1
;RÞ � C1ð½0; 1
;RÞ:ðu; vÞð0Þ ¼ ðu; vÞð1Þ ¼ ð0; 0Þg

endowed with the norm

jjðu; vÞjj1: ¼ jjujj
N

þ jjvjj
N

þ jju0jj
N

þ jjv0jj
N
:

Let r140 such that jjðu1; v1Þjj1or1: We also consider the open subset A of X1

contained ðu1; v1Þ given by

A: ¼ fðu; vÞAX1 satisfying conditions ðiÞ2ðivÞ belowg

(i) ð0; 0ÞoðuðtÞ; vðtÞÞoð %uðtÞ; %vðtÞÞ for all tAð0; 1Þ;
(ii) ð0; 0Þoðu0ð0Þ; v0ð0ÞÞoð %u0ð0Þ; %v0ð0ÞÞ;
(iii) ð0; 0Þ4ðu0ð1Þ; v0ð1ÞÞ4ð %u0ð1Þ; %v0ð1ÞÞ;
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(vi) jjðu; vÞjj1or1:

Let G : X1-X1 such that G ¼ F jX1
: The existence of our second positive solution of

System ðPa;bÞ will be a consequence of the following basic result.

Lemma 3.8. Let ða; bÞAS: Then using the notation above, we have:

(i) degðId � Gða;bÞ;A; 0Þ ¼ 1

(ii) There exists r24r1 such that degðId � Gða;bÞ;Bð0; r2Þ; 0Þ ¼ 0:

Proof. Let us consider the auxiliary operator Gða;bÞ : X1-X1 given by

Gða;bÞðu; vÞ :¼ ð %Aðu; vÞ; %Bðu; vÞÞ;

where

%Aðu; vÞðtÞ: ¼
Z 1

0

Kðt; tÞ %fðt; uðtÞ; vðtÞ; a; bÞ dt;

%Bðu; vÞðtÞ: ¼
Z 1

0

Kðt; tÞ %gðt; uðtÞ; vðtÞ; a; bÞ dt

and

%fðt; u; v; a; bÞ :¼
f ðt; x0ðt; uÞ; z0ðt; vÞ; a; bÞ if 0pu and 0pv;

0 if uo0 or vo0;

�

%gðt; u; v; a; bÞ :¼
gðt; x0ðt; uÞ; z0ðt; vÞ; a; bÞ if 0pu and 0pv;

0 if uo0 or vo0;

�

with

x0ðt; uÞ :¼ minfu; %uðtÞg and z0ðt; vÞ :¼ minfv; %vðtÞg:

As in the proof of Lemma 3.5 it is easy to see that the operator Gða;bÞ satisfies the

following properties:

(a) Gða;bÞ is a completely continuous operator;

(b) if the pair ðu; vÞAX1 is a fixed point of Gða;bÞ; then ðu; vÞ is a fixed point of Gða;bÞ
with ð0; 0Þpðu; vÞpð %u; %vÞ;

(c) if ðu; vÞ ¼ lGða;bÞðu; vÞ with 0plp1 then jjðu; vÞjj1pC3; where C3 does not

depends of l and ðu; vÞAX1:

Using the a priori estimate property established in assertion ðcÞ; we have that there
exists r24r1 such that

degðId � Gða;bÞ;Bððu1; v1Þ; r2Þ; 0Þ ¼ 1: ð18Þ
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By the Maximum Principle, the operator Gða;bÞ has no fixed point in Bððu1; v1Þ; r2Þ\A:

Now, if Gða;bÞ has a fixed point on @A; then we have a second positive solution of

System ðPa;bÞ: Otherwise, we have that the topological degree of Leray–Schauder is

defined for the equation ðId � Gða;bÞÞðZÞ ¼ 0; ZAA: Then by using (18) and the

excision property of mapping degree we have

degðId � Gða;bÞ;A; 0Þ ¼ 1:

Since Gða;bÞðu; vÞ ¼ Gða;bÞðu; vÞ; ðu; vÞA@A; the part (i) of Lemma 3.8 is now

complete.
Next, according to ðH2Þ the Lemma 3.4 allow us to obtain a priori estimate r2 for

solutions of the equation

ðu; vÞ ¼ Gða;bÞðu; vÞ; ðu; vÞAX1; ð19Þ

which does not depends of the parameters a and b: Let ð %a; %bÞ such that jð %a; %bÞj is
sufficiently large such that System ðPð %a; %bÞÞ has no positive solutions (see Lemma 3.4).

Thus

degðId � Gð %a; %bÞ;Bð0; r2Þ; 0Þ ¼ 0:

Hence, by the homotopy invariance property of the mapping degree we have

degðId � Gða;bÞ;Bð0; r2Þ; 0Þ ¼ 0:

The proof of Lemma 3.8 is now complete. &

Finally, the Lemma 3.8 and the excision property of the topological degree imply

degðId � Gða;bÞ;Bððu1; u2Þ; r2Þ\A; 0Þ ¼ �1;

hence we have a second solution of System ðPa;bÞ and the proof of Theorem 1.1 is

complete.
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