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Abstract. The main purpose of this paper is to establish the existence of
a solution of the semilinear Schrodinger equation

—Au+V(z)u = f(u), in R?

where V is a 1-periodic function with respect to z, 0 lies in a gap of the
spectrum of —A 4V, and f(s) behaves like + exp(as®) when s — £oo0.
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1 Introduction

This paper has been motivated by some recent works concerning the existence of
a solution of the semilinear Schrodinger equation

—Au+V(z)u= f(u), inRY (1.1)
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where V' is periodic with respect to z. First we would like to mention the progress
involving subcritical nonlinearities and the so-called definite case, i.e., when V()
is a positive potential bounded away from zero. Using the Nehari variational
principle, Pankov in [18] has proved an existence theorem for ground states, i.e.,
solutions having lowest energy among all nontrivial solutions. In [21], Rabinowitz
has obtained the existence of a nontrivial solution under less restrictive assump-
tions on f(s), based on an approximation technique with periodic functions. Coti
Zelati and Rabinowitz in [6] have proved the existence of infinitely many solutions.

In the indefinite case, the operator —A +V on LQ(RN) has a purely contin-
uous spectrum consisting of closed disjoint intervals. Supposing that 0 lies in a
gap of the spectrum of —A + V| Troestler and Willem [23], and Kryszewski and
Szulkin [15], have recently proved the existence of a nontrivial solution under the
assumption that the nonlinearity f(s) is superlinear and subcritical. Their proofs
are based on variational methods; in particular, after decomposing the space
H 1(RN ) into two infinite-dimensional subspaces, a generalized linking theorem
is applied to the functional corresponding to equation (1.1). This approach has
been simplified by Pankov and Pfltiger in [19] by using the approximation tech-
nique with periodic functions. Using this approach Chabrowski and Yang in [5]
have proved the existence of a nontrivial solution of the semilinear Schréodinger
equation

~Au+V()u = |[u* 2u+g(u), for zeRY;
u(z) — 0 as |z| — oo,

where N > 4, 2* = 2N/(N — 2) is the critical Sobolev exponent and the nonlin-
earity g(s) is superlinear and subcritical.

In this paper we consider the two dimensional case. To be more precise, we
deal with a semilinear elliptic problem of the form

—Au+V(z)u= f(u), in R? (1.2)

where f(s) has the maximal growth in s which allows to treat the problem vari-
ationally in H'(R?), that is, the so-called Trudinger-Moser case. There are some
technical difficulties in proving existence results for such kind of problems. The
associated functional for such problems on H'(R?) is in general strongly indefinite
near the origin. Furthermore, it is not clear whether the Palais-Smale condition
holds, because of the unboundedness of the domain and the fact that the embed-
ding of the Sobolev space H'(R?) into spaces LP(R?) (2 < p < 00) as well as
into the Orlicz space associated to the function ¢(s) = exp(4rs?) — 1 is not com-
pact. Problems involving this notion of criticality have been investigated recently,
among others, in [4, 8, 9, 10], for semilinear elliptic equations, and in [1, 11, 12, 13]
for quasilinear equations. In this paper we show that the approximation technique
with periodic functions in combination with some of the ideas contained in [9] and
[12, 13] can be used to overcome the difficulties arising from lack of compactness
of the energy functional corresponding to equation (1.2).
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For easy reference we state now the assumptions that will be assumed in our
main result.
(A)) V € C(R?,R) is a 1—periodic function in z; and z;
(A2) 0is in a spectral gap of the operator —A + V;
(A3) f € C(R), and there exists p > 2 such that

0 < uF(s):= ,u/ f@)dt <s f(s), VseR,
0
and there exists pq > 0 and s; > 0 such that

0 < F(s) < pl|f(s)], V[s| > s1;
(A4) f has critical growth, namely there exists ag > 0 such that

1£(s)] =400, Va<ay, and lim 1(s)

im ——— - _ =0, Va>a
s|—o0 exp(as?) |s|—o0 exp(as?) ’ 0

(Aj) for every M > 0 there exists sps > 0 such that

5 f(s) > M exp(ags®) for |s| > sy.

(Ag) f(s)=o(]s]), for s near 0.

2
S

Example 1.1 The function f(s) = sign(s)(e® — 1) satisfies assumptions
(A3)—(As), with ag = 1; for the proof, see Propostion 3.4 below.

The main result of this paper is the following

Theorem 1.2 Under assumptions (A1) — (Ag) there exists a nontrivial solution
u € HY(R?) of (1.2).

The underlying idea for proving Theorem 1.2 is to show that for each k € N
sufficiently large, there is a nontrivial solution wuy of (1.2) which is k—periodic in
x1 and xo. The existence of u; and some estimates will be proved in Section 2
and will follow from a version of the so-called generalized mountain-pass theorem
without the Palais-Smale condition. This abstract minimax result is a consequence
of the Ekeland variational principle. In Section 3, using further estimates we show
that as k — oo, a subsequence of uy converges to a solution u of (1.2). Finally,
additional arguments prove that v is nontrivial.
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2 Approximation by a periodic problem

2.1 The periodic problem

We shall start by recalling an abstract minimax result which is a consequence of
the Ekeland variational principle (see [7]).

Theorem 2.1 Let X =Y & Z be a Banach space with dimY < oo. Let e €
0B1(0) N Z be fized and let p < R be given positive real numbers. Let

D={u=y+re : |ly| <R, 0<r <R}
Let I: X — R be a C' functional such that

b= inf I >maxI =a.
ZNoB, oD

Then there exists a Palais-Smale sequence, that is, (uy) in X such that
I(up) — ¢ > —o0 and I'(u,)— 0,
with

= inf 1
= inf ma ()

where

'={yeC(D,X):v(u) =u, u€ dD}.

With the help of the above theorem we prove the existence of solutions of
the problem:

—Au+V(z)u= f(u), in Q, u € Ey, := H;er(Qk), (Py)

where Q;, € R? is a cube with edge length k¥ € N and H;cr(Qk) denotes the space
of H'(Qj)—functions which are k—periodic in x; and 5.

It is known that the operator —A +V on Lf)er(Q;c) has a discrete spectrum
with eigenvalues Ap1 < Ago < --- < gy < ... diverging to 400 as i — oo.
Moreover, for each k, every eigenvalue Ay ; is contained in the spectrum of —A+V

in the whole space L?(R?) and the following minima
(k) = min{i : A\ ; > 0} (2.3)

are finite. This follows from spectral decomposition, for details see [22]. In par-
ticular, it follows that if (—a,b), a,b > 0, denotes the spectral gap around 0,
assumed in (As), then Ay ; ¢ (—a,b) for every k,i € N. We denote by ¢, the
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corresponding eigenfunctions. Notice that Fy C E,,; for all m € N, because of
the periodicity. Consequently, every eigenvalue of L = —A +V on L2_(Q%) is
also an eigenvalue of this operator in L}%er(ka) for all m € N. We define an
orthogonal decomposition of Ej by

Ey, =Y, ® Z;, where Y= span{qﬁk,l, ceey ¢k,’y(k)—1}~

The solutions of problem (Py) will be found as critical points of the energy func-
tional given by

1
Ji(u) = 5/ (|Vul? + V(z)u?)dx — F(u)dx, u € Ej.
k Qr
By ¢; : E}, — R we denote the quadratic part of the energy functional J, that is,
1
l(u) = 7/ (|IVul® + V(z)u?)dx.
2 Qr

Notice that the quadratic part ¢ is positive on Z; and negative on Yj. Also we
define a new scalar product (-, ) on Ej with corresponding norm || - || such that

2 .
/ (IVul® + V(2)u®)dz = _HUHZ l.f“ € Ya,
< Jul? i € Z.

Denoting by Sy : Ex, — Yi and Ty : Ex — Zj the orthogonal projections, the
energy functional Ji(u) becomes

1
I = 51 T | = [ Seu )~ [ Flupds, ue B

k

By the assumptions (A;) and (A4), the functional Ji is a well defined C*(Ey)
functional with Fréchet derivative given by

<J]/€(u)7v> = (Thu, )i, — (Sku, v)k — o (u)vdx, u € Ey.

These statements are standard (see e.g. [6], [20]), taking into account that for
any strongly convergent sequence (u,) C Ej there is a subsequence (u,;) and
h € Ej such that |uy,(z)] < h(z) almost every where in R?, and the following
Trudinger-Moser type inequality, see [4, 13].

Lemma 2.2 Ifu € H'(R?) and o > 0, then
/ [exp(au?) — 1)dz < co.
R2

Moreover, if |Vul|lrz < 1, |lullrz < M and a < 47, then there exists a constant
C = C(a, M), which depends only on o and M, such that

/}R2 [exp(au?) — 1]dz < C.
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For the proof of the next result we refer to Lemma 2 in [19].

Lemma 2.3 The norm ||- ||y is equivalent to the standard norm |||z in H'(Qy),
allulle < llullgr <bllully, Vu € Eg,

where a and b are positive constants independent of k.

2.2 Behavior of J; near the origin

We first study the behavior of the functional Ji near the origin in Zj.

Lemma 2.4 There exist constants p > 0 and o > 0 independent of k such that
infyen, Jp(u) > o, where Ny, = {z € Zy : ||z|lx = p}.

Proof. Let z € Zj, then

1
Ji(z) = 2|12 — F(u)dz.
o) = S22 /Qk<>

T2
Assumptions (Ag) implies that F(s) = o(|s|?) for s near 0, and using (A4), we have

that for every e > 0, 8 > g and ¢ > 2 there exists a constant Cy = C1(€,5,q) > 0
such that

F(s) < es? + C1s|%exp(Bs?) — 1], VseR. (2.4)

To proceed further we make use of the following inequality (to be proved later).

Claim 2.5 There exist constants pg > 0 and Cy > 0 independent of k such that

[ Tultlexp(3u) ~ 11z < Callulty g (25)

Qk
for all uw € HY(Qy,) with [ull 1 (@p) < Po-

Thus, applying Lemma 2.3, (2.4)—(2.5) and the Sobolev embedding theorem,
| Fdo < Catelzl + Cal1D:
Qk
for some positive constants C3 and Cy independent of k. Consequently
Ji(2) = Sl — ¢ 7+ Callz|lf
k(2) 2 5 lzlle = Cslell=lli + Call=[l%)-

Choosing € > 0 and p > 0 sufficiently small, the result follows.
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Verification of Claim 2.5: we may assume that u > 0, since we can replace
u by |u| without causing any increase in the integral of the gradient. We shall use
Schwarz symmetrization method (cf. [14]). Let u* be the symmetrization of u,
then it is well known that u* depends only on |z| and u* is a decreasing function
of |z|. Furthermore, for all u € H*(Qy), we have Ry > 0 such that |Qx| = |Bg,|,
and

/ |u|"dx = / |u*|"dz, for 1< r < oo,
k Br,,

/ |Vu\2d:172/ |Vu*|2de,
k Br,,

/ ful9fexp(Bu?) — 1)dz = / | fexp(Bu?) — 1)da.

k Br,,

Next, we use a continuous radial extension P : H. ((Bg,) — HL ;(R?), such that

rad
for all v € Hrlad(BRk)a

L. Pvlg, =uv;

2. [|Pvll2r2) < cllvllre(Bg,):

3. [[Pvll ey < cllvllm(Bg,)s
where ¢ > 0 does not depend on k. The construction of P can be done as follows:
noting that d := miny g, u*(r) = u*(Ry), we continue u*(r) by d(Ry +1—17) on
[Ri, R + 1], and then by zero on [Ry, + 1, +00). Easy calculations yield the stated

properties.
Thus, we have

/ |u\q[exp(ﬁu2)—1]dx:/ lu*2fexp(Blu*[2) — 1]da
Qk Ry,
< / |Pu|9[exp(B| Pu”[?) — 1]da
R2

S/ |u*|qexp(ﬂlu*|2)dl’+/ | Pu|?[exp(B|Pu*[*) — 1]dx
{lel<Ro} {le]>Ro}

(2.6)

where 0 < Ry < Ry is a number to be determined later. Using the Holder
inequality, we estimate the first term as

1/r 1/s
/ ]9 exp(Blu*?)de < / exp(rBlu*|?)de / [ de |
Bpg, BRO BRO

0
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where 1/r + 1/s = 1 with s such that gs = 2*. Let v(z) = u*(x) — u*(Rp); then
v € H}(Bg,) and we can estimate

/ |Vv\2da;:/ \Vu*|2da:§/ |Vu*|2dx§/ Vul2dz < 03 g,
Br Brp, Br Qk

0 0 k

If we now take

||U||§11(Qk) < p1 with rf8p; <2m, (2.7)
then
/ exp(rﬁ|u*\2)dm Sexp(2T6|u*(Ro)\2)/ eXp(QTBUQ)d:C
B, Br,

2
< el (R)P) [ e (2rﬁpl“2) da
o, TVl
< C<R0)7

in view of the Trudinger-Moser inequality, cf. [17].
Thus, using the continuous imbedding H'(R?) < L9%(R?), we get

/ u*[? exp(Blu* Pz < C(Ro)ully - (2.8)
R,

B 0
where C'(Rp) > 0 does not depend on k.

To estimate the second term in (2.6) we use the following Radial Lemma
(cf. [3, Lemma A.IV.])

. [P |2 e
|Pu*(z)] < Wr), for x # 0. (2.9)
Writing
k Pu* 2k
/ | Pu*|?(exp(B|Pu*|?) — 1)dx = Z/ Mdm
{le]>Ro} |I|>Ro} kit

we can estimate the single terms by (2.9) and Holder

/ | Pu*|?| Pu*|** da
{lz|>Ro}
* 2k *
(HPU ||L2(R2)) / | Pu \qu
VT |z|>Ro ||
Pu* 2% :
Wlien ) ([ ) el
VT l2|> Ry 1T]2FT

Lsa(R?)
r * 2k
< ™ 1/ | Pu ||L2(]R2) Pu*
S — i | 1P
rk—1 VTR,

IN

IA

(2.10)

Lsa(R?)



Vol. 13, 2006 Schrédinger equation involving critical growth 175

We have [[Pu*2age) < e1llulZags, ) = allulZao,) < callulldg, < c2 o1,

where p; is as in (2.7). Hence, choosing Ry > 1 such that Réfl/rk > ¢ p1/VT,
V k > 1, the last expression in (2.10) is bounded by

C ||Pu* || with C independent of k

(Qr)

Hence
[ PwllepIPe) - e < Clullgg,,  (210)
{lz|=Ro}
Finally, from estimates (2.8) and (2.11) we complete the proof of the claim. O

2.3 Behavior of J; near infinity

Lemma 2.6 Let Y be a finite dimensional subspace of Ey. Then Jy is bounded
above in'Y, and moreover, given m > 0 there is an R > 0 such that

Je(u) < —m, VueY wih |u| > R.

Proof. By assumption (Ajz) it follows that there exists a positive constant ¢ such
that

F(s)>cls|*, u>2, V(z,8)€Qr xR
Thus, given u € Y — {0}, for all ¢ > 0,
Jp(tu) < 20, (u) = ct*||ullf, + di,

which implies that Ji(tu) — —oo as t — +oo. From this fact together with
compactness we deduce easily the result. O

2.4 Uniform bound of the minimax-levels

In the following Lemma we set L? := L?(Qj) and sz,z = W?22(Qy). Then we
have

Lemma 2.7 There exists a constant C' > 0 (independent of k), such that
lyle < Cllylizz, ¥y € Vs (2.12)
and

[9lloc < Cllylizz, ¥y €Yy (2.13)
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Proof. First note that there exists a constant ¢ (independent of k) such that
[Ylloo < ellyllyyz> and [lyllx < cllyllyz2-
Next, note that there exists a constant ¢; (independent of k) such that
[Yllwz2 < el = Ay +yllzp
Finally, we show that there exists a constant ¢y (independent of k) such that

= Ay +yllr2 < clyllrz.-

Let ¢p,; denote as before the normalized eigenvectors of L = —A +V on Ej; note
that for 0 < ¢ <y, — 1 the corresponding eigenvalues A ; satisfy o9 < A < —a,
where 0y = minX (the spectrum of —A + V(z) on H'(R?)) and —a the lower
bound of the spectral gap around 0 of —A 4 V(). Thus, we have

Ye—1 2

Z Ok i Ak Pk i

i=1

| - Ay + V(@)l3; =

Ly
Yie—1
<clyllZz. ¥y € Y (2.14)
Finally, we have
= Ay+yllz = IV@y+yllez <= Ay+V(@yllz <cllylrz (215
which yields

= Ay +yllez <clyllez: +V(@)y+yllee < (c+ Vi + Dllyllrz < callyllrz
(2.16)
0

In order to prove the linking condition required by Theorem 2.1, we consider
the following sequence of nonnegative functions

1 (logn)*/? if || <1/n
wn(z) = Ner- loggl‘/(logn)lﬂ if 1/n<|z|<1 (2.17)
™0 if |z >1

Notice that w, € H'(R?), suppw, C Bi(0), |[Vwnlzz: = 1 and |jwn|z2 =
O(1/(logn)'/?) as n — oo. Hereafter, without loss of generality, we suppose
that Bs(0) C Qg for k suitably large.

From the next lemma we see that the orthogonal projection T} of w, onto
Z is a nontrivial map for all n sufficiently large.
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Lemma 2.8 ||Tyw,||? =1+ O(—~), for all k and all n.

logn

Proof. Let L =—A+V on Ej. We have by (2.14)

[Skwallz = |(meSkwn>Lﬁ‘ <c ”wn”LiHL Skwnllz

< ¢ Jwnllzz ISkwallz < c llwnl2s,

and thus

&
ISswnlli < € llwnll72 <

logn’

Therefore

1
140 (o) = [ 19nl? + Vi@t = [T = 1Sknl

1
_ ||Tkwn||i+o( )

logn

and the result follows.

Let @ := Lkwn , and define for n > ng the sets
n 1Tkwn [l

Qr(n) ={v+sa" :vEYy, v <n, 0<s<n}

We prove

Lemma 2.9 Let k — oo; then there exists ng > 0 such that for all n > ng

lim max{Jy(u) : u € Qu(n)} < 21
0

k—oo

177

(2.18)

(2.19)

(2.20)

(2.21)

Proof. Assume by contradiction that this is not the case. Thus there exists a

sequence n — oo such that

lim max{Jy(u) : u € Qr(n)} > 21
k—oo (o))

and hence there exists d;(n) — 0 as k — oo, with

max{Jo(w) : € Qun)} > 2F — 6
Qo

For each k, let uf = v 4+ t£&" be the point where this maximum is achieved. So,

1 27
SUSE =1k ~ [ Flunde= 2"~ 4,

Qk ao
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which together with (As) implies that
4
th1? > ==+ oh I — o
Qg
By Lemma 2.7 there exists a number d (independent of k) such that
d [lvglle > [vg |
and hence by (2.22)

k k

Since ((Jk|y,erzs) (ur), uy) = 0 we get

AP = ekl — [ syl =0
Qk
which implies

[ = g fus)uy.
k

NoDEA

(2.22)

(2.23)

(2.24)

(2.25)

(2.26)

By (2.17) and Lemma 2.8 we have for = € By/,(0), setting M,, = \/%\/logn

(2.27)

(2.28)

iw’;(m) _ b Trwn () _ 1 1 Spwn(=) S1- .
M, M, ||Tkwn||k ||TkwnHk M, ||Tkwn||k IOgn
Using (2.24) and (2.27) we can now estimate uf (z) as follows, for large n and
T € Bl/n(O),
Mok —k
k k vn(x) wn(m>
=t M,
[ [onloo ¢
>tk | -2 -
Ltk M, logn
[ d c
>, -2 41—
- " | M, + log n}
Then
d
uf (2) > tE M, [1 — e(n)] with e(n) := i + logn — 0.

By (As) it follows that there exists s; > 0 such that f(s)s > 6“052, Vs > s1. So

from (2.25) we obtain, for large k and any n > ng

2 > /B  ExPloall 45 AL
r/n
2

.
= s explaag(1 — e(m)) 2165 *M2)

tk 2
> mr? exp [ZIOgn (ao(l - e(n))2|4L| - 1)}
™

(2.29)
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from which follows that ¢* is bounded in k, for all n > ng. Assume that t* — ¢9.
From the last estimate we conclude that [t0|? < 4% -1 This, in conjunction

ag (1—e(n))
with (2.22), implies that

am 1 S 2 s 4am 5
ag (=€) = ° = ag "
We now improve the estimate (2.28):
Claim: There exists some ¢ > 1 such that
K |vploo c
by = < + /0 (2.30)

tk M, ~ logn

If the claim were not true, then we would have by the second line of (2.28)

k
Ea) > ek, |~ e g > 5 M, [1 — 20" 2.31
Instead of (2.29) we can now write
k|2 r? k12952 k2
[t5]* > T explaolty|* M7 (1 — 2b7)7 (2.32)
> 72 exp [[|tﬁ|2j—°(1 — 4bk) — 1} 210gn} (2.33)
0

We now consider two cases:

Case 1: [th|? > 47 4 20mpk  Then

(e 75) (e 7))

- 4 20 a

=1+bF 20052 —1> %bﬁ

for n sufficiently large such that 20b% < 1/2, which implies by (2.32) that

[tk12 > 7r? exp[bF log n]

and hence bF < —<—_ i.e., the claim (2.30).

n — logn’
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Case 2: [th|?2 < i—’or + ?—:bﬁ. Then we obtain together with (2.22)

47 4 clvk] 4 clvF|e
0+ — k|2 < |tF )2« 22 ZEnle 2T TlPniloo
R e~

and hence by (2.23)

i.e.,

2
fo<T L 5 2.34
‘Unloo — \/m + k ( )

Thus, the claim (2.30) is proved.
Using (2.30), the estimate (2.28) can now be improved: for x € By, (0) we
have by (2.22)

2
WP (@) > |2 [1— ¢ —m}

logn
2
> o logn — d — ¢y/dx logn, (2.35)
0
and thus, for k(n) sufficiently large
2
Jup™*(z) = = logn — (d +1).
Qo
By (As) we may choose a number n; > ng such that
f(s) s e~ a0 >f[:= edJrli for s> s3.
o
Finally, we estimate more precisely (2.26): Let n; such that 2 logn,d(d+1) > s%;

then, for n > nq, using (2.35), we get ’

[t12>p eolunl® g (2.36)
B/ (0)

> 6e—d—1/ teogndx _ ﬁe_d_lﬂ'
Bl/n(o)

_ s
=

But this contradicts

47 1

ag 1 —€(n)

)

lim |tF]? <
k—oo

for n sufficiently large. Thus, Lemma 2.9 is proved. O
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2.5 Palais-Smale sequences

In view of Lemmas 2.4, 2.6 and 2.9, we can apply Theorem 2.1 to obtain a Palais-
Smale sequence (uf)) C Ey, i.e., satisfying

1
J(ufﬁl) = f/ I Vufﬁl \2 +V(m)(ufn)2]d$ —/ F(ufﬁl)dx — cp, (2.37)
2 Qk Qk
where
— inf I € [0, 21 /ey — 6),
ck = inf (v(w)) € [o,2m/ g — 0)
and

(2.38)

k) =| [ [Tuh o+ Vieuddldo— [ flub)ods
Qk Qk
< emlldlle, V¢ E E,
with €, — 0 as m — oo; we recall that Q(n) is given in (2.21).

Proposition 2.10 There is a positive constant C' independent of k and m such
that ||uk,||x < C.

Proof. Setting ¢ = uF, in (2.38) we get

T, 17— 1Sk, [1; —/ f(ug yup,der| < e lug, 1, (2.39)
Qk
while (2.37) can be written as
Tkl = ISkl —2 [ Plub)de =20+ 85, (240
Qk

with 6% — 0 as m — +oo. From (2.39) and (2.40) we get

\2 | Pbade— [ gl < 2+ 8 + el
k

Qk

which yields, using assumption (As)

< 2¢ + (57kn + em||u§1||k

2
[ sttt =2 [ e
Qk
Thus, we have

Flub)ubde < —E 20+ 88, + emlufy ] < c+ emlub i (241)
Qk B
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Setting ¢ = TpuF, we get by (2.38)

T, 1% S/ |f (up) || Ty |daz + | Tt .

Qk

k
and by setting y = H;:%H we obtain

[Teakilhe < [ 1)l +n. (2.42)
Qk
We now rely on the following inequality O

Lemma 2.11

b < (e —1) +s (log" 8)Y/2,  for allt >0 and s > e'/4
- (et2—1)—|—is2, forallt >0 and 0 < s < el/*

Proof. For s > 0 given, consider max;>o{ts— (et2 —1)}. Let t denote the (unique)
point where the maximum is attained. Then s = 2tset§. Consider the following
cases:

ty > %: then s > eti, which implies (log+ 3)1/2 > t,. Thus

r&a&c{ts - (et2 —1)} =tss— (etz —1) < t,s < (logt )2 s

0<t; < % and s > e/%: then tys < 5 and 5 < s(logJr 5)1/2 iff s > e'/4. Hence,
the first inequality is proved.

The second inequality holds in fact always (without restrictions on s): indeed,
1 1
ts<t?+-s°< (e252 -1+ Zg?
4 4
Hence, the Lemma is proved. O

We now continue with the estimate of (2.42). Note that by assumption (A4),
for 3 > ay there exists a constant ¢ > 0 such that |f(r)| < ce®, for all r € R.
Hence, we can estimate (2.42) by using the above inequality with ¢ = |yx(x)| and

s = |3 (up,(2)]:

[ ot <e [ @ -vee | Bsh fos (Bret)]

c 1
+5f SUs)?
Qun{x:| f(uk,)|<el/4} €
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The first term on the right is uniformly bounded, arguing as in (2.5). For the
second term, we have

oc* (Sl )] Vg @B /B (4

For estimating the third term, we use that by (Ag) there exist constants ¢ and
so > 0 such that |f(s)| < ¢|s| for |s| < so, and hence

|f(5)|* < cf(s)s, for {s € R:|s| < sp and |f(s)| < 61/4},

while for |s| > sg
ol/4
1f(8)]> < ——f(s)s, for {s € R: |s| > 59 and |f(s)] < e'/*}.
S0

Hence the third term can be estimated as

c 1
o SV < [ febyd. @)
Q| f (uly,)|<el/4} Qk

So, the estimate (2.42) becomes, joining (2.43), (2.43) and (2.44),

Tkl < [ Fb) gt m S et enllid it en (245)

Qk

Repeating now the same argument as for (2.42), by setting ¢ = SpuF, and z, =
Spuk /|| Skuk || we have

ISkup I < [ Fug,) 2k + €m, (2.46)
Qk

and then arguing as above

ISuakili < [ b+ en < ot enllubili+ en. (2.47)
Qk

Joining the estimates (2.45) and (2.47) we finally obtain
gl < C,

where C' is a constant independent of k.
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Next, we show:

Proposition 2.12 The Palais-Smale sequence (uF)) contains a subsequence, still

denoted by (uF)), which converges to a nontrivial critical point uy, of Jy with
J(ug) = ck.

Proof. By Proposition 2.10 we may assume that

uk —qu, in FEj

Uy —ur in LUQr), Vg1
ub (z) — up(z) ae. in Qy (2.48)

We now use the following result; for the proof we refer to Lemma 2.1 in [9].

Lemma 2.13 f(uF) — f(ug) in L'(Qy).

First, we prove that uy is a critical pont of Jg. It follows from assumption
(A3) and Lemma 2.13, using the generalized Lebesgue dominated convergence
theorem, that also F(u¥,) — F(u) in L'(Q}). This fact together with (2.37) and
(2.48) imply that

lim |Vuk |2de = —/ V() (ug)?dz + 2c; + 2/ F(ug)dx (2.49)
k

M=o JQu k

Also, it follows from Lemma 2.13 and (2.38) that
| (VuTo+Viapmedo = [ funods, ¥oe B
Qk Qk
Hence uy, is a critical point of Jg.

Next, we prove that u is nontrivial. Assume for the sake of contradiction
that ux, = 0. From (2.49) we get

lim |Vl |2dz = 2¢. (2.50)

mTJQr

Using this, and that ¢; < 27/, we can choose ¢ > 1 sufficiently close to 1
and 8 > ag sufficiently close to ag such that ¢8||VuF,||2, < 4m. Hence, from
assumption (A4) and using the Trudinger-Moser inequality, we obtain

[ isttgsar <o [ et <
Qk Qk

Now, using this estimate, from (2.38) with ¢ = u¥, we have

lim IVul |2dz = 0.
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But this contradicts (2.50), since ¢ > 0. Consequently uy is a nontrivial critical
point of Jg.

Finally, we prove that Ji(ux) = cx. We argue by contradiction, assuming
that Jg(ug) < ck; this implies that

/ |Vug 2dz < [20/C + 2/ F(uy)dx — V(a:)(uk)de} . (2.51)
Qk Qr Qr
Let
Uk _ ufn
Vgl
and
T Re + 2, Flun)de — [, V(@)ugPda]i 72’

Since v¥, — vy # 0 in HY(Qy) and ||V 12(g,) < 1, it follows by a result of P.-L.
Lions [16] (see also [2]) that

4
1- ||V'Uk||%2(Q

sup/ exp(p [vF |2)dx < 0o, Vp<
Qk

Notice that since Ji(ug) > 0 and ¢ < 27/ap we have

@ _ 1
2w C — Jk(uk)’

which implies that we may choose ¢ > 1 and 3 > «aq such that for some § > 0 and
€m — 0

2T

qﬁHVU’;ﬁH%%Q,C) < T()HVuan%Z(Qk) -9
Ck + fQ m 2 fQ ‘um|2d$] =+ €m
cp — Jk(uk)

[ew + [, Fur)dz — fo o)|ugl?dz]  §

- _Z

- e — Ji(uk) 2

for m sufficiently large. Now note that
ck+ Jo, Fluk)de — 2fQ x)|ug|?dz 1

Cr — Jk(uk) 1 — ||VU;€||2L2(Q]C)
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since

1
(=190l o+ [ Flude =3 [ Viulie]
Qk

1
= ¢ — Jp(ug) + §||Vuk||2L2(Qk)

k

1
—IVuelliz o, e + F(ug)dx — = V(z)|ug|*dz
(@) o 2
k

Qr
%HvukH%?(Qk)

1
= cp — Jr(ug) + §||Vuk||2L2(Qk) - ||Vvk||2L2(Qk) ”vkaQLz(

Q)

Thus, we have shown that

47
1- ||Vvk||%2(

N

aBlIVu, 17200 < -
Q)

By assumption (A4) there exists a constant ¢ such that

/ F(u )7 < c/ gl ? :c/ QBT 2ok
k k k

and the last integral is bounded by the above considerations, and hence the L?
norm of f(uF,) is bounded. Setting ¢ = uF, in (2.38), and concluding by Holder
and the above estimate that ka fuk)uk — 0, we get

m%iinoo ||Vuﬁ1HL2(Qk) = ”vukHLQ(Qk); and hence uﬁ@ — uy in Fy.

This is impossible in view of (2.49) and (2.51). a

3 Proof of the Theorem

We have proved in the last section that for every k suitably large, we have that
up € Ey is a critical point of J with

Ji(uk) = cx € (0,21 /g — ) and |ugllr < C.
So, up to subsequence, we can assume that
up —u in HL (R?), wup(z) —u(z) ae. in R%

For fixed ¢ € C§° (R?), we can take k suitably large such that the support of ¢ is
contained in @ and so

/ VukV(b—l—V(x)ukqb:/ f(ug)o. (3.52)
R? R?
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Now, using again Lemma 2.1 in [9], we have that for any fixed bounded domain
Q of R?,

f(ug) — f(u)in L' (Q) as k — oo. (3.53)

Thus, taking the limit in (3.52) with Q = supp(¢), we see that u is a weak
solution of problem (1.2). Moreover, since ||ug||x < C for all k € N, we conclude
that u € H'(R?) and u is a critical point of the C'—functional .J : H'(R?) — R
given by

J(u) = 1/ (| Vu [? +V (2)u?)dz —/ F(u)dz
2 ]RZ R?
at level ¢ = limy_ o c; (taking a subsequence). Thus, from Lemma 2.9, we see
that ¢ < 27 /ap.
If w is nontrivial we have finished. Next, we prove that there exists a non-
trivial solution. To this end we make use of the following result (to be proved
later).

Proposition 3.1 There are constants r,n > 0 and a sequence of vectors &, € R?
such that

k—oo

liminf/ |ug|* dx > n, (3.54)
K (&)

where K,.(§) is the closed cube with edge length r centered a the point .

Using Proposition 3.1, we can find a sequence of integer vectors by, € Z? and
a positive number r; such that the sequence u (), defined by ug(z) = ug(x +by),
satisfies

/ oLz (3.55)
Ky, (0

Since V(z) and f(s) are 1—periodic functions in 1 and z9, by an easy computation
we obtain
luklle = e, Ji(ur) = Ji(t) and Ji (i) = 0.

Then,
Uy — 0 in HL(R?), Up(z)—u(z) ae. in R?

and, as before, it follows that @ is a weak solution of problem (1.2). Furthermore,
@ is nontrivial in view of (3.55) and the Sobolev embedding Theorem.

Before proving Proposition 3.1 we state the following auxiliary result whose
proof can be found in [19].
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Lemma 3.2 Let Q,, be the cube of edge length l, — oo as n — oo centered at
the origin, and K,.(§) as in Proposition 3.1. Let (u,) C HL_(RY) be a sequence
of l,—periodic functions such that ||u,| g1 (q,) < ¢ for some constant independent
of n. Suppose that there is r > 0 such that

lim inf sup/ [tn|? dz | = 0. (3.56)
nee € JK.(§)

Then
lim ”un”Lq(Qn) =0,V qc (2a OO)

n—-+o0o

Proof of Proposition 3.1: Suppose that (3.54) does not hold. Thus by virtue
of Lemma 3.2 we have that

i flunlzag,) =0,V q € (2,00). (3.57)

From assumptions (A4) and (Ag), we have that for every e > 0, § > ap and
q > 2 there exists a constant Cy; = Cy (e, 5, q) > 0 such that

f(s)s < es® 4+ C1ls|%exp(Bs?) —1], VseER, (3.58)
which together with assumption (As) implies that
pF(s) < es® + Cy|s|exp(Bs?) —1], Vs €R. (3.59)

Claim 3.3 The following limits hold:

lim V(z)uidr =0 (3.60)
k—oo Qr
and
lim F(ug)dx = 0. (3.61)
k=0 Jqy

From Claim 3.3 and the fact that Jy(ug) = cx — ¢ < 47/, we conclude
that for large k

4
/ |Vug 2dz < -
Qk @0

From this, taking 5 > «p sufficiently close to g and 1/r + 1/s = 1 with s > 1
sufficiently close to 1, we see that

IN

[ uds < el + Il /Q fexp(rud) — 1]da
k k

elluelZiqu) + Cllurlas g,

IA
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Thus, taking the limit as k — oo, using (3.57), and then taking the limit as e — 0
we have

flug)ugdz — 0 as k — oo. (3.62)
Qk

On the other hand we see that

| T2 — | P2 / f (g )ugdzz = 0,
Qk

and
Tl ~ 1Pl =2 | Fun)ds = 26,
Qk
then
flug)updr — 2 F(ug)dx = 2c¢y, (3.63)
Qk Qk

which together with Claim 3.3 and (3.62) implies that ¢, — 0, which is a contra-
diction with the fact that ¢ = limg_, o cp > o > 0.

Verification of Claim 3.3: The proof of (3.60) is the same as that of (24) of
[5]. We proceed to prove (3.61). Using the same kind of argument and notations
as in the proof of Claim 2.5, we have

/ Flu) de = | F((u)") da
Qk

BRk

Ro<|z|<Ry

/ () de / F((u)") da
<[ () do+ [ Fe)) i

Ro<|z|

where Ry > 0 is a number to be determined later. From Lemma 2.1 in [9] we see
that for all fixed Rg > 0,

F((ug)*) dx — 0.
Br,

On the other hand, from (3.59)

| PPl < clul+ 1 [Py 7 fexp(3 | Pl )~ 1)ds
Ro<|=|

Ro<|z|
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5o, using the Radial Lemma (2.9) and proceeding as in the estimate following (2.9)

(choosing Ry such that Réfl/m > supy, ||uk|lp2/v/7 ¥V k> 1) we get

/ F(P(ur)*) de < eug]Z2 + Callug ]|
Ro<|z|

Finally, taking the limit as k& — oo, using (3.57), and then taking the limit as
¢ — 0 we obtain (3.61).
This completes the proof of Theorem 1.2.

We end the paper with the Example 1.1 mentioned in the introduction

Proposition 3.4 The function f(s) = sign(s) (652 — 1) satisfies conditions
(Ag)—(Ag), with Qo = 1.

Proof. Conditions (A4) — (Ag) are trivially satisfied.
Condition (As): Consider F(s) = ﬁ(esz — 5% —1). One checks, using Taylor
series, that

F'(s) > =f(s), VseR",

N W

and hence by integration F(s) > 3F(s), VseR.
Again using Taylor series one shows that

—~

s f(s) > 2F(s), Vs € R,

and then we get
s f(s) > 3F(s), VseR.

Hence, the first part of condition (Ajs) is satisfied with u = 3. The second part of
condition (As) follows now easily: indeed, one has trivially

lf(s)| > ﬁ'(s)7 for |s| > 1,

and hence by the above

§|f(s)| > F(s), for |s| > 1.
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