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Abstract

We consider the equation −4u+ V (x)u= f(x; u) for x∈R2 where V : R2 →R is a positive
potential bounded away from zero, and the nonlinearity f : R2 ×R→R behaves like exp(�|u|2)
as |u|→∞. We also assume that the potential V (x) and the nonlinearity f(x; u) are asymp-
totically periodic at in;nity. We prove the existence of at least one weak positive solution
u∈H 1(R2) by combining the mountain-pass theorem with Trudinger–Moser inequality and a
version of a result due to Lions for critical growth in R2.
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1. Introduction

Coti-Zelati and Rabinowitz [5] studied a class of nonlinear SchrEodinger equation in
whole space RN ; N¿ 3, of the form

−4u+ V (x)u= f(x; u) in RN ; u∈H 1(RN ); u¿ 0; (1.1)
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where the potential V : RN →R and the nonlinearity f : RN ×R→R satis;ed the
following periodicity conditions

V (x + p) = V (x); f(x + p; s) = f(x; s); ∀x∈RN ; p∈ZN ; s∈R:
In their work, they obtained results of existence and multiplicity by applying the
mountain-pass Theorem [12] together with a sort of Concentration Compactness Princi-
ple of Lions (see book [11]), when in addition to the periodicity condition, f had sub-
critical growth, that is, the growth of f in s must be like |s|p−1s; p¡ (N+2)=(N−2) ≡
2∗−1. Later considering a small nonperiodic perturbations of V and f in the subcritical
case or treating situation where f is a pure power like |s|p−1s with p¿ 2∗ − 1 (crit-
ical and supercritical) their result were extended or complemented, for instance, by
Montechiari [13], Alves-Carrion and Miyagaki [3], Zhu and Yang [15], Noussair-
Swanson and Yang [14], and references therein. We recall that problem (1.1) in R
or R2 when f behaves such as a power |s|p−1s; p¡∞, it can be handled quite sim-
ply compared to the case RN ; N¿ 3. On the other hand, in Admurth and Yadava [2]
(see also [7]) motivated by Trudinger–Moser inequality, namely

exp(�|u|2)∈L1(�); ∀u∈H 1
0 (�); �¿ 0;

and

sup
|∇u|L2(�)61

∫
�
exp(�|u|2)6C26∞; �6 �2 = 4�;

where � is a bounded domain. They introduced the notion of criticality in R2: that is,
f(s) has a critical growth when it behaves like exp(�|s|2) as s→ +∞. More exactly,
there exists �0¿ 0 such that

lim
s→+∞

f(x; s)
exp(�s2)

= 0; ∀�¿�0; lim
s→+∞

f(x; s)
exp(�s2)

= +∞; ∀�¡�0:

We would like to mention, for instance, the papers by [1,2,6,7] which contain some
results of existence for problem (1.1) in a bounded domain making use of this inequal-
ity. Afterwards, Cao in [4] proved a version of Moser–Trudinger inequality in whole
space R2, which was improved by do ,O in [9];∫

R2
(exp(�|u|2)− 1) dx¡+∞; ∀u∈H 1(R2); �¿ 0:

Moreover, if �¡ 4� and |u|L2(R2)6C, there exists a constant C2 = C2(C; �) such that

sup
|∇u|L2(R2)61

∫
R2
(exp(�|u|2)− 1) dx6C2: (1.2)

By combining this inequality with mountain-pass theorem do ,O and Souto in [10]
studied problem (1.1) when the potential V satis;es some geometric condition. Same
way do ,O in [9] got some existence result for problem (1.1) involving N-Laplacian
operator but imposing a coercivity condition on the potential. On the other hand, Cao
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in [4] treated the situation where V and f are asymptotic to a constant function, without
any coercivity condition on the potential.
We point out that in all the works mentioned above they made use of the so-called

Ambrosetti–Rabinowitz condition, namely, there is a constant �¿ 2 such that 06
�F(x; s)¡sf(x; s) for all s¿ 0; x∈R2, where F is the primitive of f.

In this paper, by combining arguments used in [3,8–10] together with inequality
(1.2) we will discuss the existence of solution for the critical periodic and asymptotic
periodic problem (1.1) in R2, that is,

−4u+ V (x)u= f(x; u) in R2; u∈H 1(R2); u¿ 0; (1.3)

where V : R2 →R is a continuous function satisfying V (x)¿ Ṽ 0¿ 0 for all x in R2.
Next we shall describe the conditions on the functions V (x) and f(x; s) in a more

precise way.

(H1) There exists a continuous 1-periodic function V0 : R2 →R such that
(1) V0(x)¿V (x) for all x∈R2,
(2) V0(x)− V (x)→ 0 as |x|→∞.
We assume that the nonlinearity f : R2 ×R→R is continuous and satis;es

the following conditions:
(H2) there exists a continuous 1-periodic function f0 : R2 ×R→R such that

(1) 06f0(x; s)6f(x; s) for all (x; s)∈R2 × [0;+∞),
(2) for all �¿ 0, there exists �¿ 0 such that for s¿ 0 and |x|¿ �,

|f(x; s)− f0(x; s)|6 �e4�s
2
;

(H3) f(x; s) = o1(s) near origin uniformly with respect to x∈R2;
(H4) f has critical growth at +∞, namely,

f(x; s)6Ce4�s
2
for all (x; s)∈R2 × [0;+∞);

(H5) there exist constants �¿ �¿ 2 such that

06 �F0(x; s)¡sf0(x; s) and 06 �F(x; s)¡sf(x; s); for all (x; s)∈R2

× (0;+∞);

where the functions F0 and F are the primitive of f0 and f respectively;
(H6) for each ;xed x∈R2, the functions s→f0(x; s)=s and s→f(x; s)=s are increasing;
(H7) there are constants p¿ 2 and Cp such that

f0(x; s)¿Cpsp−1; for all (x; s)∈R2 × [0;+∞);

where

Cp¿
[
�(p− 2)
p(�− 2)

](p−2)=2

Spp ; (1.4)

Sp = inf
u∈H 1(R2)\{0}

( ∫
R2 (|∇u|2 + V1u2) dz

)1=2
( ∫

R2 |u|p dz
)1=p



784 C.O. Alves et al. / Nonlinear Analysis 56 (2004) 781–791

and

V1
:=max
x∈R2

V0(x);

(H8) at least one of the nonnegative continuous functions

V0(x)− V (x) and f(x; u)− f0(x; u)

is positive on a set of positive measure.

Our ;rst result is concerned on the existence of solutions for the following periodic
critical problem:

−4u+ V0(x)u= f0(x; u) in R2; u∈H 1(R2); u¿ 0: (1.5)

Theorem 1.1. In addition to (H1−1) and (H2−1), suppose that (H3)–(H7) hold, then
(1.5) possesses a nontrivial weak solution u∈H 1(R2).

Then, using the above result we shall prove the existence of solutions for the asymptotic
periodic problem (1.3) and we have the main theorem of this paper.

Theorem 1.2. If (H1)–(H8) are satis>ed, then (1.3) possesses a nontrivial weak
solution u∈H 1(R2).

The above results complete the study made in [4] once that Cao considered the
case where the potential and the nonlinearities are asymptotic to the constant functions
with respect to x, and the behavior at in;nity between the perturbed and unperturbed
nonlinearities is near linear growth. Here we work with a general class of functions
which are asymptotic to a nonautonomous periodic function, the behavior at in;nity
between the perturbed and unperturbed nonlinearities is exponential. This work also
completes the study made in [9,10], in the sense that the potential V belongs to a class
diOerent from those treated by them.
To prove our main theorems we used variational methods. An important point is a

version of a Lions’ results for critical growth in R2. This results is crucial to establish
some properties involving the Palais–Smale sequence.

Remark 1.3. We notice that in the proof of Theorem 1.1 we shall use only parts of
assumptions (H1)–(H7) related with problem (1.5).

The organization of this paper is as follows: Section 2 contains preliminary results
and the proof of Theorem 2. In Section 3, we prove our main result, Theorem 1.
Notation. In this paper we make use of the following notations:
Lp; Lploc; H

1; H1
0 will be used to denote standard Lebesgue, or Sobolev spaces.

The usual norm in Lp(�) will be denoted by | · |Lp(�).
C denotes (possibly diOerent) positive constants;
B(p; R) denote the open ball with the radius R centered at point p of R2;
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2. The periodic problem

The main objective of this section is to study the existence of solutions for the
following periodic critical problem (1.5). Since we are interested in obtaining positive
solutions, it is convenient to set

f0(x; s) = f(x; s) ≡ 0 for all (x; s)∈R2 × (−∞; 0]:

Let E0 denote the Sobolev space H 1(R2) endowed with the equivalent norm

‖u‖0 =
{∫

R2
[|∇u|2 + V0(x)|u|2] dx

}1=2

:

From assumptions (H2) and (H4), given �¿ 0 there exist positive constants C� and
�¿ 1 such that

F0(x; s)6 �
s2

2
+ C�(e��s

2 − 1) for all (x; s)∈R2 ×R:

Thus, by a Trudinger–Moser inequality (see Lemma 1 in [9]), we have F0(x; u)∈
L1(R2) for all u∈H 1(R2). Therefore, the functional

J0(u) =
1
2

∫
R2

[|∇u|2 + V0(x)|u|2] dx −
∫
R2
F0(x; u) dx

is well de;ned. Furthermore, using standard arguments we see that J0 is C1 functional
on E0 with

J ′0(u) =
∫
R2

[∇u∇ ++V0(x)u ] dx −
∫
R2
f0(x; u) dx; for all  ∈E0:

Consequently, critical points of J0 are precisely the weak solutions of problem (1.5).
The next result concerns the mountain-pass geometry of J0. Its proof is a consequence

of our assumptions (H3)–(H4), and it can be found in [9].

Lemma 2.1 (Mountain-pass geometry). The functional J0 satis>es the following
conditions:

(i) there exist !; �¿ 0, such that J0(u)¿ �, if ‖u‖0 = ! and
(ii) for any u∈H 1(R2)\{0} with u¿ 0 we have J0(tu)→ +∞ as t→ +∞.

Now, in view of Lemma 2.1, we can apply a version of Ambrosetti–Rabinowitz
mountain-pass theorem without a compactness condition such as the one of
Palais–Smale (see [12]), to get a Palais–Smale sequence of the functional J0, that
is, (un) ⊂ E0 such that

J0(un)→ c0 and J ′0(un)→ 0; as n→∞;

where the mountain-pass level c0 is characterized by

c0 = inf
%∈&0

max
06t61

J0(%(t)) (2.1)
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and

&0 = {%∈C([0; 1]; H 1(R2)) : J0(%(0))6 0 and J0(%(1))6 0}:
Lemma 2.2. The mountain-pass level c0 satis>es c0 ∈ [�; (� − 2)=2�). Moreover, the
(PS)c0 sequence (un) is bounded and its weak limit denoted by u0 satis>es J ′0(u0)=0.

Proof. In view of Lemma 2.1 we see that c0¿ �. In order to prove the other inequality,
we ;x a positive radial function vp ∈H 1(R2) such that

Sp =
[
∫
R2 [|∇vp|2 + V1v2p] dx]

1=2

[
∫
R2 |vp|p dx]1=p

:

Notice that

c06max
t¿0

J0(tvp)

6max
t¿0

[
t2

2

∫
R2

[|∇vp|2 + V1v2p] dx − tpCp

∫
R2
vpp dx

]

=
(p− 2)

2p
S2p=(p−2)
p

C2=(p−2)
p

:

On the other hand by (H7),

(p− 2)
2p

S2p=(p−2)
p

C2=(p−2)
p

¡
(�− 2)

2�
:

So c0¡ ((�− 2)=2�).
Using well-known arguments it is not diRcult to check that {un} is a bounded

sequence. Thus for a subsequence still denoted by (un) there is u0 ∈E0 such that
un→ u0 in E0, un→ u0 in Lsloc(R2) for all s¿ 1 and un(x)→ u0(x) almost everywhere
in R2. Now, from (H5),

c0 = lim J0(un)

= lim
[
J0(un)− 1

�
J ′0(un)un

]

¿
�− 2
2�

lim sup
n→+∞

‖un‖20;

which implies

lim sup
n→+∞

‖un‖20 = m6
2�c0
�− 2

¡ 1: (2.2)

From Trudinger–Moser inequality, (see Lemma 1 in [9]) that there exists %; q¿ 1
suRciently close to 1 such that sequence

hn(x) = e4�%u
2
n(x) − 1
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belongs to Lq(R2) and there exists C¿ 0 such that |hn|q6C for all n∈N. These
informations above imply the following limit:∫

R2
f(x; un)v dx→

∫
R2
f(x; u0)v dx ∀v∈E0:

From these and keeping in mind that J ′0(un)v = on(1) for all v∈E0, taking the limit
we prove that J ′0(u0)v= 0 for all v∈E0.

The next proposition is a version of a Lions’ results to critical growth in R2.

Proposition 2.3. Let (un) ⊂ H 1(R2) be a sequence with un * 0 and

lim sup
n→∞

‖un‖26m¡ 1:

If there exists R¿ 0 such that

lim inf
n→∞ sup

y∈R2

∫
BR(y)

|un|2 dx = 0;

and (H4)–(H5) hold, we have∫
R2
F(x; un) dx;

∫
R2
unf(x; un) dx→ 0 as n→∞:

Proof. By hypothesis

lim inf
n→+∞ sup

y∈R2

∫
BR(y)

|un|2 dx = 0: (2.3)

Thus, by Lemma 8.4 in [11], we get

un→ 0 in Lq(R2) for all q∈ (2;+∞): (2.4)

This fact together with Trudinger–Moser inequality (see Lemma 1 in [9]) imply that∫
R2
(e4�%u

2
n − 1) dx6C;

if we choose %¿ 1 suRciently close to 1. Therefore, by assumptions (H2) and (H4),
given �¿ 0 there exist positive constants C� and q; %¿ 1 suRciently close to 1
such that∫

R2
unf0(x; un) dx6 �

∫
R2
u2n dx + C�

∫
R2
un(e4�%u

2
n − 1) dx

6C
{∫

R2
|un|q′ dx

}1=q′ {∫
R2
(e4�%qu

2
n − 1) dx

}1=q

+ �C

= C
{∫

R2
|un|q′ dx

}1=q′

+ �C;
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which together with (2.4) leads to

lim
n→+∞

∫
R2
unf0(x; un) = 0:

Thus, in view of assumption (H5) we conclude that

lim
n→∞

∫
R2
F0(x; un) dx = 0:

Thus, the proof of Proposition 2.3 is complete.

2.1. Proof of Theorem 1.1

Using Lemma 2.2 we have that the weak limit u0 of the (PS)c0 sequence satis;es
J ′0(u0) = 0, thus if u0 is nontrivial the theorems is proved. If u0 = 0, we have the
following claim:

Claim 1. There is a sequence (yn) ⊂ R2, and R; a¿ 0 such that

lim inf
n→+∞ sup

y∈R2

∫
BR(yn)

|un|2 dx¿a: (2.5)

This claim is true, because for the contrary case, using the version of Lions’ proved
at Proposition 2.3, we have∫

R2
unf(x; un) dx→ 0;

which implies that {un} converges strongly to zero. This limit is absurd, because it
implies c0 = 0. Thus the claim is proved.
It is clear that we may assume, without loss of generality, that (yn) ⊂ ZN . Now,

letting ũ n(x) = un(x − yn), since V; f(·; s) and F(·; s) are 1-periodic functions, by a
routine calculus we obtain

‖un‖0 = ‖ũ n‖0; J0(un) = J0(ũ n) and J ′0(ũ n)→ 0:

Then, there exists ũ 0 ∈E0 such that ũ n * ũ 0 weakly in E0 and as before it follows
that J ′0(ũ 0)v = 0 for all v∈E0. Now, by (2.5), taking a subsequence and R bigger
we get

a1=26 |ũ n|L2(BR(0))6 |ũ 0|L2(BR(0)) + |ũ n − ũ 0|L2(BR(0)): (2.6)

Thus, from the Rellich imbedding theorem we conclude that ũ 0 is nontrivial.
Since f0(x; s)=0 for all s6 0 and J ′0(u0)v for all v∈E0, choosing the teste function

v = u−0 = max{−u0; 0}∈E0, we conclude that ‖u−0 ‖0 = 0. Thus, u0 is a nonnegative
function. Now using that u0¿ 0 is nontrivial and the maximum principle we conclude
that u0¿ 0.
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3. The nonperiodic problem: Proof of Theorem 1.2

Let E denote the Sobolev space H 1(R2) endowed with the equivalent norm

‖u‖=
{∫

R2
[|∇u|2 + V (x)|u|2] dx

}1=2

:

In this section, we are going to prove the existence of solutions of problem (1.3) as
critical point of the associated C1 functional on E given by

J (u) =
1
2

∫
R2

[|∇u|2 + V (x)|u|2] dx −
∫
R2
F(x; u) dx:

As in the last section, we may check that the functional energy J has the geometry
of the mountain-pass theorem. Therefore applying the mountain-pass theorem without
Palais–Smale condition together with the arguments from the last section, we obtain a
bounded sequence (vn) ⊂ E such that

J (vn)→ c1 and J ′(vn)→ 0 as n→ +∞;

where c1 is the minimax level of the functional J given by

c1 = inf
v∈E\{0}

max
t¿0

J (tv):

Furthermore, from (H7) we see that c1 ∈ (�′; [� − 2)=2�) for positive constant �′ and
vn *v0 in E (see the proof of Lemma 2.2). Therefore, v0 is a critical point of functional
J and v0¿ 0.
Using the same argument of Section 2, we get that

lim sup
n→+∞

‖vn‖2¡ 1;

which implies, for all n,∫
R2
(e4�%v

2
n − 1) dx6C; (3.7)

if we take %¿ 1 suRciently close to 1. From now on, we shall be working in order
to prove that v0 is nontrivial.

Assertion 1. v0 is nontrivial.

Proof. Assume for the sake of contradiction that v0 is trivial. Thus, from (H1) and the
Sobolev compact embedding theorem,∫

R2
[V0(x)− V (x)]v2n dx→ 0; as n→ +∞: (3.8)
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Next, we assume the following result, which will be proved later.

lim
n→+∞

∫
R2

|F0(x; vn)− F(x; vn)| dx

= lim
n→+∞

∫
R2

|[f0(x; vn)− f(x; vn)]vn| dx = 0 (3.9)

From (3.8)–(3.9) we conclude that

|J0(vn)− J (vn)|→ 0 and ‖J ′0(vn)− J (vn)′‖→ 0 as n→ +∞:

Therefore,

J0(vn)→ c1 and J ′0(vn)→ 0 as n→ +∞:

As in Proposition 2.3, there is a sequence (yn) ⊂ Z2, and R; a¿ 0 such that

lim inf
n→+∞ sup

y∈R2

∫
BR(yn)

|vn|2 dx¿a

and letting ṽn(x) = vn(x − yn), since V; f0(·; s) and F0(·; s) are 1-periodic functions,

‖vn‖0 = ‖ṽn‖0; J0(vn) = J0(ṽn) and J ′0(ṽn)→ 0:

Then, there exists ṽ0 ∈E0 such that ṽn * ṽ0 weakly in E0 and J ′0(ṽ0) = 0. Moreover,
J0(ṽ0)6 c1 since by Fatou’s lemma,

J0(ṽ0) = J0(ṽ0)− 1
2 J

′
0(ṽ0)ṽ0

=
1
2

∫
R2

[f0(x; ṽ0)ṽ0 − 2F(x; ṽ0)]

6 lim inf n→+∞
1
2

∫
R2

[f0(x; ṽn)ṽn − 2F(x; ṽn)]

= lim
n→+∞

[
J0(ṽn)− 1

2 J
′
0(ṽn)ṽn

]
= c1:

Arguing as in (2.6) we conclude that ṽ0 is nontrivial and

c1¿ J0(ṽ0) = max
t¿0

J0(tṽ0)¿ c0: (3.10)

On the other hand, from (H1); (H2), and (H8),

c16max
t¿0

J (tu0) = J (t1u0)¡J0(t1u0)6max
t¿0

J0(tu0) = J0(u0) = c0;

that is, c1¡c0, which is a contradiction with (3.10). Therefore, v0 is nontrivial.
Next we prove (3.9). Using condition (H2), given �¿ 0 there exists �¿ 0 such that∫

|x|¿�
|f(x; vn)− f0(x; vn)‖vn| dx6 �

∫
|x|¿�

|(e4�%v2n − 1)vn| dx

6 �
{∫

R2
|(e4�%v2n−1)|q dx

}1=q{∫
R2
|vn|q′

}1=q′

6C�;

where we have used that hn(x) = e4�%v
2
n(x) − 1 belongs to Lq(R2) with %; q¿ 1; 1=q +

1=q′ = 1, and |hn|q6C; ∀n∈N.



C.O. Alves et al. / Nonlinear Analysis 56 (2004) 781–791 791

On the other hand, using the Sobolev compact embedding theorem and (3.7),∫
|x|6�

|f(x; vn)−f0(x; vn)‖vn| dx6
{∫

R2
|(e4�%v2n−1)|q dx

}1=q

{∫
|x|6�

|vn|q′
}1=q′

+ �
∫
R2
|vn|2:

Thus ∫
|x|6�

|f(x; vn)− f0(x; vn)‖vn| dx→ 0 as n→∞:

Finally, these facts together with assumptions (H2)–(H5) conclude our proof.
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