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REMARKS ON LEAST ENERGY SOLUTIONS FOR
QUASILINEAR ELLIPTIC PROBLEMS IN RN

JOÃO MARCOS DO Ó & EVERALDO S. MEDEIROS

Abstract. In this work we establish some properties of the solutions to the
quasilinear second-order problem

−∆pw = g(w) in RN

where ∆pu = div(|∇u|p−2∇u) is the p-Laplacian operator and 1 < p ≤ N .

We study a mountain pass characterization of least energy solutions of this
problem. Without assuming the monotonicity of the function t1−pg(t), we
show that the Mountain-Pass value gives the least energy level. We also prove
the exponential decay of the derivatives of the solutions.

1. Introduction

In this paper, we consider the quasilinear elliptic problem

−∆pw = g(w) in RN , (1.1)

where ∆pu = div(|∇u|p−2∇u) is the p-Laplacian operator and 1 < p ≤ N . Using
variational methods, more precisely by a constrained minimization argument, we
show the existence of ground states solutions (or least energy solutions) for the
problem (1.1) in both cases, 1 < p < N and p = N . As it is well known, in the case
1 < p < N the nonlinearities are required to have polynomial growth at infinity in
order to define the associated functionals in Sobolev spaces. Coming to the case
p = N , much faster growth is allowed for the nonlinearity and the Trudinger-Moser
inequality in p = N replaces the Sobolev imbedding theorem used for 1 < p < N .

In our study, we prove also that the Mountain-Pass value gives the least energy
level and we obtain the exponential decay of the derivatives of the solutions of
problem (1.1).

The knowledge of ground states plays a role in several applications in elliptic
problems. For example in the study of various types of spike solutions, ground
state serves as scaled limit profile of the solution near the spike [13].

There has been recently a good amount of work on this class of problem (1.1)
in the semilinear case which corresponds to the case p = 2, see for example [2, 3,
11]. In these papers was investigated the existence of ground state solutions using
the minimization argument. The characterization of the least energy level was
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investigated by Ding Ni [9] and Rabinowitz [16], under the monotonicity condition
of the function g(t)/t. Recently, Jeanjean and Tanaka [11] have obtained this kind
of result without this monotonicity assumption.

The study of the exponential decay of the solutions, in the semilinear case,
was considered by Strauss [17], Berestycki and Lions [2], among others. Gongbao
and Shusen [12] have showed the exponential decay for weak solution of a class
of p-Laplacian equations. Under severe restrictions about the structure of the
operator and the nature of the solutions, some exponential decay results have been
obtained recently by Rabier and Stuart [15]. However, on these works the decay of
derivatives for the degenerate case was not shown. In the present paper we prove
the exponential decay of first derivatives for all radial solution of problem (1.1) by
using an appropriated test function.

The operator −∆p with p 6= 2 arises from a variety of physical phenomena. It
is used in non-Newtonian fluids, in some reaction-diffusion problems, as well as in
flow through porous media. It also appears in nonlinear elasticity, glaciology and
petroleum extraction [1].

Several papers have appeared recently about the p-Laplacian problems involving
unbounded domains, among others Serrin-Tang [18], Serrin-Zhou [19], Do Ó [10],
Hebey-Demengel [4] and Jianfu and Xi Ping [21]. We referred to their references
for other related results.

For easy reference we state now the assumptions that will be assumed through
this paper.

(G1) g ∈ C(I, R) and is odd;
(G2) when 1 < p < N we assume that

lim
u→+∞

g(u)
up∗−1

= 0 where p∗ =
Np

N − p
;

when p = N we assume that

|g(u)| ≤ C[exp(α0|u|
N

N−1 )− SN−2(α0, u)],

for some constants α0, C > 0, where

SN−2(α0, u) =
N−2∑
k=0

αk
0

k!
|u|

Nk
N−1 ;

(G3) when 1 < p < N we suppose that

−∞ < lim inf
u→0+

g(u)
up−1

≤ lim sup
u→0+

g(u)
up−1

= −ν < 0,

and for p = N

lim
u→0

g(u)
|u|N−1

= −ν < 0.

(G4) There exists ζ > 0 such that G(ζ) > 0, where G(u) =
∫ u

0
g(t)dt.

Example. Let 1 < p < N and consider the function

g(u) = λ|u|q−2u− µ|u|p−2u,

where λ, µ are positive constants and 1 < p < q < p∗ − 1. It is not difficult to see
that g satisfies the assumptions (G1)–(G4).
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Example Assume that p = N and. consider the function

g(u) = −µ|u|N−2u + |u|N−1ueβ|u|
N

N−1
,

where β > 0 and µ > 0. We can see that g satisfies the assumptions (G1)–(G4).
Notation. In this paper we make use of the following notation.

• For 1 ≤ p ≤ ∞, Lp(U), denotes Lebesgue spaces with the norm ‖u‖Lp(U)

• W 1,p(RN ) denote Sobolev spaces with the norm ‖u‖W 1,p(RN )

• W 1,p
r (RN ) denotes the subspace of W 1,p(RN ) formed by the radial functions

• Ck,α(U), with k a non-negative integer and 0 ≤ α < 1, denotes Hölder
spaces

• C, C0, C1, C2, . . . denote (possibly different) positive constants
• |A| denotes Lebesgue measure of the set A ⊂ RN

• ωN−1 is the (N − 1)-dimensional measure of the N − 1 unit sphere in RN .

Variational Formulation. We begin by recalling the following Trundiger-Moser
type inequality which is crucial for our variational argument. the Trudinger-Moser
inequality for p = N replaces the Sobolev imbedding theorem used for 1 < p < N .

Lemma 1.1. If N ≥ 2, α > 0 and u ∈ W 1,N (RN ), then∫
RN

[
exp

(
α|u|

N
N−1

)
− SN−2

(
α, u

)]
dx < ∞. (1.2)

Moreover, if ‖∇u‖N
LN (RN ) ≤ 1, ‖u‖LN (RN ) ≤ M < ∞, and α < αN = Nω

1
N−1
N−1, then

there exists a constant C, which depends only on N,M and α, such that∫
RN

[
exp

(
α|u|

N
N−1

)
− SN−2(α, u)

]
dx ≤ C(N,M,α). (1.3)

The proof of this lemma can be found in [10, Lemma 1].

Lemma 1.2. Suppose that g satisfies (G1)–(G3). Then the associated energy func-
tional of problem (1.1), I : W 1,p(RN ) → R, given by

I(u) =
1
p

∫
RN

|∇u|pdx−
∫

RN

G(u) dx

is well defined and of class C1 with

I ′(u)v =
∫

RN

|∇u|p−2∇u∇v dx−
∫

RN

g(u)v dx, ∀v ∈ W 1,p(RN ).

Consequently, critical points of the functional I are precisely the weak solutions of
problem (1.1).

Proof. Case: 1 < p < N . As a consequence of assumptions (G1)–(G3), with the
aid of the Holder and Sobolev inequalities, we see that I and I ′(u) are well defined
on W 1,p(RN ).
Case: p = N . From (G2) it follows that

|G(u)| ≤ C
[
exp

(
α1|u|

N
N−1

)
− SN−2(α1, u)

]
, (1.4)

for some constants α1, C > 0. Thus, by Lemma 1.1, we have G(u) ∈ L1(RN ) for
all u ∈ W 1,N (RN ).

Furthermore, using standard arguments [2, 8] as well as the fact that for any
given strong convergent sequence (un) in W 1,N (RN ) there is a subsequence (unk

)
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and there exists h ∈ W 1,N (RN ) such that |unk
(x)| ≤ h(x) almost everywhere in

RN , we see that I is a C1 functional on W 1,N (RN ). �

Remark 1.3. Recall that if g : R → R is a continuous function such that g(0) = 0,
and w is a solution of (1.1) with w ∈ L∞loc(RN ), |∇w| ∈ Lp(RN ) and G(w) ∈
L1(RN ). Then w satisfies the Pohozaev-Pucci-Serrin identity [14],

(N − p)
∫

RN

|∇w|p dx = Np

∫
RN

G(w) dx. (1.5)

Let

m := inf
{
I(u) : u ∈ W 1,p(RN )\{0} and u is a solution of (1.1)

}
. (1.6)

By a least energy solution (or ground state) of (1.1) we mean a minimizer of m.
Therefore, if w is a minimizer of (1.6) and w̄ is any solution of (1.1) then I(w) ≤
I(w̄).

In the case 1 < p < N , we consider the constrained minimization problem

M := inf
{∫

RN

|∇u|p dx : u ∈ W 1,p(RN ) and
∫

RN

G(u) dx = 1
}

, (1.7)

introduced by Coleman-Glazer and Martin [5].
Next, we establish the existence of a least energy solution for (1.1).

Theorem 1.4. Let 1 < p < N . Under the hypotheses (G1)–(G4), the minimization
problem (1.7) has a solution u ∈ W 1,p(RN ) which is positive.

The proof of this theorem follows the same pattern as the proof of Theorem 2
in Berestycki an Lions [2].

Remark 1.5. Let u be given by Theorem 1.4. By Lagrange Multipliers Theorem
there exists a multiplier µ such that (in the weak sense)

−∆pu = µg(u) in RN .

Then after some appropriated scaling w(x) = u(µ1/(1−p)x) is a weak solution of
(1.1).

In the case p = N , we consider the minimization problem

N := inf
{∫

RN

|∇u|p dx : u ∈ W 1,p(RN ) and
∫

RN

G(u) dx = 0
}

, (1.8)

which is motivated by the fact that if p = N , from the Pohozaev-Pucci-Serrin
identity, ∫

RN

G(u) dx = 0.

Now we state a result about the existence of least energy solution for (1.1). Its
The proof follows the same method as in Theorem 1 by Berestycki-Gallouet-Kavian
[3].

Theorem 1.6. Let p = N . Under the hypotheses (G1)–(G4) the minimization
problem (1.8) has a solution u ∈ W 1,N (RN ) which is positive.

In Section 2, we show that under the assumptions (G1)–(G3), the functional I
has the Mountain Pass Geometry (see Lemma 2.1 below). In particular, we can
conclude that the set

Γ =
{
γ ∈ C([0, 1],W 1,p(RN )) : γ(0) = 0 and I(γ(1)) < 0

}
,
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is not empty and the mountain pass level

c := inf
g∈Γ

max
0≤t≤1

J(γ(t)), (1.9)

is positive.

Remark 1.7. Under the hypotheses that the function

s 7→ g(s)/s (1.10)

is increasing for s > 0, Ding and Ni [9] obtained the characterization

c = m = inf
v∈W 1,p(RN )\{0}

max
t>0

I(tv). (1.11)

Without the monotonicity assumption (1.10), we prove that the level of the
mountain pass is a critical value and the corresponding critical points are least
energy solutions.

Theorem 1.8. Let 1 < p ≤ N and assume that (G1)–(G3). Then c = m. Fur-
thermore, for each least energy solution w of (1.1), there exists a path γ ∈ Γ such
that w ∈ γ([0, 1]) and

max
t∈[0,1]

I(γ(t)) = I(w).

It has been established in [6, 19] that for 1 < p < 2, positive solutions of problems
like (1.1) are radially symmetric around some point. In the next result, we obtain
the exponential decay of positive radial solutions of (1.1) and their derivatives.

Theorem 1.9. Problem (1.1) has a positive radial solution w ∈ C1,α(RN ) ∩
W 1,p

r (RN ) such that
(i) There exists ro > 0 such that w′(r) ≤ 0 for r ≥ ro and w ∈ C2(ro,∞)
(ii) w and its first derivatives decay exponentially, i.e., there exist C > 0, δ > 0

such that
|Dαw(x)| ≤ Ce−δ|x|, if |α| ≤ 1 (1.12)

(iii) Moreover, w is a solution with minimal energy, i.e., 0 < I(w) ≤ I(v) for
any positive solution v of (1.1).

In the classical case, when p = 2, Problem (1.1) reduces to

−∆u = g(u) in RN

which has been treated by several authors [2, 3, 5, 17]. Our result can be considered
as an extension of the classical case.

2. Characterization of Mountain Pass Level

The main goal of this section is to present the proof of Theorem 1.8. For this
end we use arguments similar in spirit to those addressed in [11]. We divide the
prove in two steps.

First, we prove the Mountain Pass Geometry for the energy functional I. More
precisely, we have the following lemma.

Lemma 2.1 (Geometrical Mountain-Pass structure). The functional I satisfies the
following three conditions:

(i) I(0) = 0.
(ii) There exist ρ, α > 0, such that I(u) ≥ α if ‖u‖W 1,p(RN ) = ρ.
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(iii) There is uo ∈ W 1,p(RN ) such that ‖u0‖W 1,p(RN ) > ρ and I(u0) < 0.

Proof. Statement (i) is trivial. To show (ii), we consider two cases:
Case : 1 < p < N . By our assumptions (G1)–(G3), for any ε > 0 there exists
Cε > 0 such that

g(s) ≤ (ε− ν)sp−1 + Cεs
p∗−1, for s ≥ 0. (2.1)

Since g is an odd function, we have

G(s) ≤ 1
p
(ε− ν)|s|p + C ′

ε|s|p
∗
, for all s ∈ R.

In view of embedding W 1,p(RN ) ↪→ Lp∗(RN ) we have

I(u) ≥ 1
p

∫
RN

|∇u|p dx +
ν − ε

p

∫
RN

|u|p dx− 1
p∗

C ′
ε

∫
RN

|u|p
∗
dx

≥ 1
p

min{1, ν − ε}‖u‖p
W 1,p(RN )

− 1
p∗

C ′
ε‖u‖

p∗

Lp∗ (RN )

≥ 1
p

min{1, ν − ε}‖u‖p
W 1,p(RN )

− C ′′
ε ‖u‖

p∗

W 1,p(RN )
,

for all u ∈ W 1,p(RN ). This implies (ii).
Case: p = N . From (G3), given ε > 0 there is δ > 0 such that

G(u) ≤ ε− ν

N
|u|N , if |u| ≤ δ.

On the other hand, for q > N , by (G2), there is a constant C = C(q, δ) such that

G(u) ≤ C|u|q
[
exp(β|u|

N
N−1 )− SN−2(β, u)

]
, if |u| ≥ δ.

These two estimates yield

G(u) ≤ ε− ν

N
|u|N + C|u|q

[
exp

(
β|u|

N
N−1

)
− SN−2(β, u)

]
.

In what follows we make use of the inequality (to be proved later)∫
RN

|u|q
[
exp(β|u|

N
N−1 )− SN−2(β, u)

]
dx ≤ C(β, N)‖u‖q

W 1,N (RN )
, (2.2)

provided that ‖u‖W 1,N (RN ) ≤ M , where M is sufficiently small. Under this assump-
tion, we have

I(u) ≥ 1
N

∫
RN

|∇u|N dx− (ε− ν

N
)‖u‖N

LN (RN ) − C‖u‖q
W 1,N (RN )

≥ C1‖u‖N
W 1,N (RN ) − C‖u‖q

W 1,N (RN )
.

Thus, since ε > 0 and q > N , we may choose α, ρ > 0 such that I(u) ≥ α if
‖u‖W 1,N (RN ) = ρ. Hence (ii) holds.

Now, we prove inequality (2.2). We may assume u ≥ 0, since we can replace
u by |u| without causing any increase in the integral of the gradient. Here, we
make use of Schwarz symmetrization method. We begin by recalling some basic
properties: let 1 ≤ p ≤ ∞ and u ∈ Lp(RN ) such that u ≥ 0. Thus, there is a
unique nonnegative function u∗ ∈ Lp(RN ), called the Schwarz symmetrization of
u, such that it depends only on |x|, u∗ is a decreasing function of |x|; for all λ > 0

| {x : u∗(x) ≥ λ} | = | {x : u(x) ≥ λ} |
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and there exists Rλ > 0 such that {x : u∗ ≥ λ} is the ball B[0, Rλ] of radius Rλ cen-
tered at origin. Moreover, if G : [0,+∞) → [0,+∞) is a continuous and increasing
function such that G(0) = 0. Then, we have∫

RN

G(u∗(x))dx =
∫

RN

G(u(x)) dx.

Moreover, if u ∈ W 1,p(RN ) then u∗ ∈ W 1,p(RN ) and∫
RN

|∇u∗|p(x) dx ≤
∫

RN

|∇u|p(x) dx.

Thus, we can write∫
RN

[
exp(α|u|

N
N−1 )− SN−2(α, u)

]
dx =

∫
RN

[
exp(α|u∗|

N
N−1 )− SN−2(α, u∗)

]
dx,

Letting R(β, u) = exp(β|u|
N

N−1 )− SN−2(β, u), we have∫
RN

R(β, u)|u|q dx =
∫

RN

R(β, u∗)|u∗|q dx

and∫
RN

R(β, u∗)|u∗|q dx =
∫
|x|≤σ

R(β, u∗)|u∗|q dx +
∫
|x|≥σ

R(β, u∗)|u∗|q dx, (2.3)

where σ is a number to be determined later.
Let us recall two elementary inequalities. Using the fact that the function h :

(0,+∞) → R given by h(t) = [(t + 1)
N

N−1 − t
N

N−1 − 1]/t
1

N−1 is bounded, we have a
positive constant A = A(N) such that

(u + v)
N

N−1 ≤ u
N

N−1 + Au
1

N−1 v + v
N

N−1 , ∀u, v ≥ 0. (2.4)

If γ and γ′ are positive real numbers such that γ + γ′ = 1, then for all ε > 0, we
have

uγvγ′ ≤ εu + ε
− γ

γ′ v, ∀u, v ≥ 0, (2.5)

because g : [0,+∞) → R, given by g(t) = tγ − εt, is bounded.
Let v(x) = u∗(x) − u∗(rx0) where x0 is some fixed unit vector in RN . Notice

that v ∈ W 1,N
0 (B(0, r)). Here, B(0, r) denotes the ball of radius r centered at the

origin of RN . Now, from (2.4) and (2.5), we have, respectively,

|u∗|
N

N−1 = |v + u∗(rx0)|
N

N−1 ≤ v
N

N−1 + Av
1

N−1 u∗(rx0) + u∗(rx0)
N

N−1 ,

v
1

N−1 u∗(rx0) = (v
N

N−1 )1/N (u∗(rx0)
N

N−1 )
N−1

N ≤ ε

A
v

N
N−1 + (

ε

A
)

1
1−N u∗(rx0)

N
N−1 ,

and hence,
|u∗|

N
N−1 ≤ (1 + ε)v

N
N−1 + K(ε, N)u∗(rx0)

N
N−1 ,

where K(ε, N) = A
N

N−1 ε
1

1−N + 1. Therefore,∫
|x|≤r

exp(α|u∗|
N

N−1 ) ≤ exp
(
K(ε, N)u∗(rx0)

N
N−1

) ∫
|x|≤r

exp
(
α|(1 + ε)v|

N
N−1

)
,

which, in view of Trudinger-Moser inequality, implies,∫
|x|≤r

exp
(
α|u∗|

N
N−1

)
< ∞, ∀u ∈ W 1,N (RN ), ∀α > 0. (2.6)
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Furthermore, taking ε > 0 such that (1 + ε)α < αN , we obtain∫
|x|≤r

exp(α|u∗|
N

N−1 ) ≤ C(N)
ωN−1

N
rN exp(K(ε,N)u∗(rx0)

N
N−1 )

≤ C(N)
ωN−1

N
rN exp((

NMN

ωN−1
)

1
N−1

K(ε,N)

r
N

N−1
),

(2.7)

for all u ∈ W 1,N (RN ) such that ‖∇u‖N
LN (RN ) ≤ 1 and ‖u‖LN (RN ) ≤ M , where in

the last inequality we have used Radial Lemma A.IV in [2]:

|u∗(x)| ≤ |x|−1
( N

ωN−1

)1/N‖u∗‖LN (RN ), ∀x 6= 0.

Now, we estimate (2.3). Using the Hölder inequality we obtain∫
|x|≤σ

R(β, u∗)|u∗|q dx ≤
∫
|x|≤σ

[exp(β|u∗|
N

N−1 )]|u∗|q dx

≤
( ∫

|x|≤σ

exp(βr|u∗|
N

N−1 ) dx
)1/r( ∫

|x|≤σ

|u∗|qs dx
)1/s

,

where 1/r + 1/s = 1. In view, of (2.7) we get∫
|x|≤σ

exp(βr|u∗|
N

N−1 ) dx ≤ C(β, N)

if ‖u‖W 1,N (RN ) ≤ M , where M is such that βrM
N

N−1 < αN . Thus, using the
continuous imbedding W 1,N (RN ) ↪→ Lqs(RN ), we have∫

|x|≤σ

R(β, u∗)|u∗|q dx ≤ C(β, N)‖u‖q
W 1,N (RN )

. (2.8)

On the other hand, the Radial Lemma leads to∫
|x|≥σ

|u∗|
N

N−1 k|u∗|q dx

≤
(( N

ωN−1

)1/N‖u∗‖LN (RN )

) N
N−1 k

∫
|x|≥σ

|u∗|q

|x|
N

N−1 k
dx

≤
(( N

ωN−1

)1/N‖u∗‖LN (RN )

) N
N−1 k( ∫

|x|≥σ

dx

|x|
N

N−1 kr

) 1
r
( ∫

|x|≥σ

|u∗|qs dx
)1/s

≤ ωN−1σ
N

( ( N
wN−1

)1/N‖u∗‖LN (RN )

σr

) N
N−1 k

‖u‖q
Lsq(RN )

≤ C(N,M)‖u‖q
W 1,N (RN )

,

for all k ≥ N , where σr = M0( N
ωN−1

)1/N and ‖u‖LN (RN ) ≤ M0 = λ1(N)1/NM . We
also have that if ‖u∗‖q

W 1,N (RN )
≤ M ,∫

|x|≥σ

|u∗|N |u∗|q dx ≤
( ∫

|x|≥σ

|u∗|Nr dx
)1/r( ∫

|x|≥σ

|u∗|qs dx
)1/s

≤ ‖u∗‖LNr(RN )‖u∗‖q

Lqs(RN )

≤ C(N,M)‖u∗‖q
W 1,N (RN )

,
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which is shown via the continuous imbedding W 1,N (RN ) ↪→ LNr(RN ). Therefore,∫
|x|≥σ

RN (β, u∗)|u∗|q dx ≤ C(N,M) exp(β)‖u‖q
W 1,N (RN )

. (2.9)

Finally, the combination of estimates (2.8)-(2.9) and (2.3) implies that (2.2) is holds.

Now we prove (iii). Since I(0) = 0, by (ii) we have I(u) > 0 for all 0 <
‖u‖W 1,p(RN ) ≤ ρ0. Thus, ir suffices to show that Γ 6= ∅. This will be done in the
next Lemma. �

Lemma 2.2. There exists γ in the set

Γ =
{
γ ∈ C([0, 1],W 1,p(RN ) : γ(0) = 0 and I(γ(1)) < 0

}
,

such that
w ∈ γ([0, 1]) and max

t∈[0,1]
I(γ(t)) = m, (2.10)

where w is a given least energy.

Proof. Let w be a given least energy solution of (1.1. In the case 1 < p < N , we
consider the curve γ : [0,∞) → W 1,p(RN ) defined by

γ(t)(x) =

{
w(x/t) if t > 0,

0 if t = 0.

It is not difficult to see that
(i) ‖γ(t)‖p

W 1,p(RN )
= tN−p‖∇w‖p

Lp(RN )
+ tN‖w‖p

Lp(RN )

(ii) I(γ(t)) = tN−p

p ‖∇w‖p
Lp(RN )

−tN
∫

RN G(w)dx = tN

p ‖∇w‖p
Lp(RN )

(
1
tp − N−p

N

)
,

where in the above term we have used the Pohozaev-Pucci-Serrin identity.
Using (i), we have

lim
t→0

‖γ(t)‖W 1,p(RN ) = 0,

which implies that γ is continuous. From (ii) and 1 < p < N , we obtain a value
L > 0 such that I(γ(L)) < 0. These facts together with a suitable scale change in
t, imply that there exists the desired path γ ∈ Γ.

In the case p = N , we choose real numbers 0 < t0 < 1 < t1 < θ1 so that a curve
γ, constituted of three pieces defined below, gives a desired path:

γ(θ) =


θωt0 if θ ∈ [0, t0],
θωθ if θ ∈ [t0, t1],
θωt1 if θ ∈ [t1, θ1],

where wt(x) = w(x/t). Since w is a weak solution we have∫
RN

g(w)w dx = ‖∇w‖N
LN (RN ) > 0.

Thus we can find θ1 > 1 such that∫
RN

g(θw)w dx > 0 for all θ ∈ [1, θ1].

Next we set ϕ(s) = g(s)/sN−1. By assumption (G3) we have ϕ ∈ C(R, R). There-
fore, ∫

RN

ϕ(θw)wN dx > 0 for all θ ∈ [1, θ1]. (2.11)
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Now note that
d

dθ
I(θwt) = I ′(θwt)wt

= θN−1
(
‖∇wt‖N

LN (RN ) −
∫

RN

ϕ(θwt)wN
t dx

)
= θN−1

(
‖∇w‖N

LN (RN ) − tN
∫

RN

ϕ(θw)wN dx
)
.

Choosing t0 ∈ (0, 1) sufficiently small, we have

‖∇wt‖N
LN (RN ) − tN0

∫
RN

ϕ(θw)wN dx > 0 for all θ ∈ [1, θ1]. (2.12)

By (2.11), we can also choose t1 > 1 such that for all θ ∈ [1, θ1],

‖∇w‖N
LN (RN ) − tN1

∫
RN

ϕ(θw)w2 dx ≤ − 1
θ1 − 1

‖∇w‖N
LN (RN ) . (2.13)

Thus we can see by (2.12) that the function I(γ(θ)) is increasing on the interval
[0, t0] and takes its maximal at θ = 1. By Pohozaev-Pucci-Serrin identity we have∫

RN G(w) = 0. Consequently

I(wt1) = I(w) =
1
N
‖∇w‖N

LN (RN ).

Now note that

I(θ1wt1) = I(wt1) +
∫ θ1

1

d

dt
I(θwt1)dθ

≤ 1
N
‖∇w‖N

LN (RN ) −
1

θ1 − 1

∫ θ1

1

‖∇w‖N
LN (RN )dθ

< (
1
N
− 1)‖∇w‖N

LN (RN ) < 0.

Thus, we have obtained the desired curve. �

As consequence of Lemma 2.2 we have the following important step of the proof
of Theorem 1.8.

Corollary 2.3. With c and m as defined in (1.11) and (1.6), we have c ≤ m.

In view of the Pohozaev-Pucci-Serrin identity we have

Lemma 2.4. For 1 < p ≤ N , we obtain

m = inf
u∈P

I(u), (2.14)

where

P =
{

u ∈ W 1,p(RN ) \ {0} : (N − p)
∫

RN

|∇u|p dx = Np

∫
RN

G(u) dx
}

.

Proof. For the case 1 < p < N , we introduce the set

S =
{

u ∈ W 1,p(RN ) :
∫

RN

G(u) dx = 1
}

,

which is in one-to-one correspondence with the set P via the map Φ : S → P:
Φ(u)(x) = u(x/tu) with tu =

(
N−p
Np

)1/p‖∇u‖Lp(RN ). Thus,

inf
u∈P

I(u) = inf
u∈S

I(Φ(u)).
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Next we prove that infu∈S I(Φ(u)) = m. From Theorem 1.4, there exists u0 ∈
W 1,p(RN ) such that

M = inf
u∈S

∫
RN

|∇u|p dx =
∫

RN

|∇u0|p dx.

After a suitable scale change, Φ(u0) becomes a least energy solution; that is,
I(Φ(u0)) = m. By the Pohozaev-Pucci-Serrin identity,

I(Φ(u0)) =
1
p
tN−p
u0

‖∇u0‖p
Lp(RN )

− tNu0

∫
RN

G(u0) dx

=
1
N

(N − p

Np

)(N−p)/p

‖∇u0‖N
Lp(RN )

= inf
u∈S

1
N

(N − p

Np

)N−p
p ‖∇u‖N

Lp(RN ).

Thus we have (2.14) in the case 1 < p < N .
For the case p = N , we have

P =
{

u ∈ W 1,p(RN ) \ {0} :
∫

RN

G(u) dx = 0
}

.

Thus

inf
u∈P

I(u) =
1
N

inf
{∫

RN

|∇u|N dx : u ∈ W 1,p(RN ) and
∫

RN

G(u) dx = 0
}

=
1
N

∫
RN

|∇u0|N dx ,

where in the last equality we have used Theorem 1.6. On the other hand∫
RN

|∇u0|N dx = NI(u0) = Nm.

Thus we have (2.14) in the case p = N . Therefore the proof of Lemma 2.14 is
complete. �

To complete the proof of Theorem 1.8, in view of Corollary 2.3 and Lemma 2.4,
it only remains to prove that m ≤ c, which is a consequence of the following result.

Lemma 2.5. For all γ ∈ Γ, γ([0, 1]) ∩ P 6= ∅.

Proof. Case: 1 < p < N . We consider the functional

P (u) =
N − p

p
‖∇u‖p

Lp(RN )
−

∫
RN

G(u) dx = NI(u)− ‖∇u‖p
Lp(RN )

,

defined in W 1,p(RN ). Using (2.1), it is not difficult to see that there exists ρ0 > 0
such that

P (u) > 0 for 0 < ‖u‖W 1,p(RN ) ≤ ρ0.

For each γ ∈ Γ we have P (γ(1)) = NI(γ(1))−‖∇γ(1)‖p
Lp(RN )

≤ NI(γ(1)) < 0 and
γ(0) = 0. Thus there exists t0 ∈ [0, 1] such that

‖γ(t0)‖W 1,p(RN ) > ρ0, and P (γ(t0)) = 0.

Therefore, γ(t0) ∈ γ([0, 1]) ∩ P.
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Case: p = N . We consider ρ ∈ C∞
0 (RN , [0,∞)) such that

∫
RN ρ(x) dx = 1. For

γ ∈ Γ and ε > 0, we define γε : [0, 1] → W 1,N (RN ) given by

γε(t)(x) =
∫

RN

ρ
(x− y

ε

)
γ(t)(y)dy.

It is easy to see that the function γε satisfies the following three properties:
(i) γε(t) ∈ L∞(RN ), for all t ∈ [0, 1]
(ii) γε ∈ C([0, 1], L∞(RN ))
(iii) maxt∈[0,1] ‖γε(t)− γ(t)‖W 1,N (RN ) → 0 as ε → 0.

Now, using assumption (G3) there exists ρ0 > 0 such that

P (u) > 0 if 0 < ‖u‖∞ ≤ ρ0. (2.15)

By (iii), we have P (γ(1)) ≤ NI(γε(1)) < 0 and γ(0) = 0 for all ε > 0. Thus, using
(2.15) and (ii) we obtain that P (γε(t)) > 0 for t > 0 sufficiently small. Therefore,
we can find tε ∈ [0, 1] such that

‖γε(tε)‖∞ > ρ0, P (γε(tε)) = 0.

That is, γε(tε) ∈ P. We extract a subsequence εn → 0 such that tεn
→ t0. From

(ii)-(iii) it follows that

‖γε(tεn)− γ(t0)‖W 1,N (RN ) → 0, P (γ(t0)) = 0 .

Now we claim that γ(t0) 6= 0. Indeed, by Theorem 1.6,

inf
u∈P

‖∇u‖N
LN (RN ) = 2m > 0.

Therefore, ‖u‖W 1,N (RN ) ≥ (Nm)1/N for all u ∈ P. In particular,

‖γε(tεn
)‖W 1,N (RN ) ≥ (Nm)1/N .

Consequently, ‖γ(t0)‖W 1,N (RN ) ≥ (Nm)1/N > 0. Thus γ(t0) ∈ γ([0, 1]) ∩ P and
γ([0, 1]) ∩ P 6= ∅. This, show the Lemma in the case p = N . �

Proof of Theorem 1.8. By Corollary 2.3 we have c ≤ m. On the outer hand, Lem-
mas 2.4 and 2.5 imply

m = inf
u∈P

I(u) ≤ c.

Thus, the proof of Theorem is complete. �

3. Asymptotic Behavior

In this section we show the decay at infinity of the weak solution and its deriva-
tives.

Proof of Theorem 1.9. The exponential decay of w at infinity is already known [12,
Theorem 2.3]. We show first that there exists ro > 0 such that w′(r) ≤ 0 for r ≥ ro.
Indeed, since w has exponential decay at infinity, it follows form (G1) that there
exists r1 > 0 such that∫ ∞

r1

rN−1|w′|p−2w′ϕ′ dr =
∫ ∞

r1

rN−1g(u(r))ϕ dr < 0 (3.1)

for all 0 ≤ ϕ ∈ W 1,p
r (0,+∞) with suppϕ ⊂ (r1,∞). The result then follows

by contradiction. Take ro > r1 + 1 and suppose that exists r′ ≥ ro such that,
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w′(r′) > 0. Since w′ is continuous, there exists δ > 0 such that w′(r) > 0 for
r ∈ (r′ − δ, r′ + δ). Choosing the test function

ϕ(r) =


0 if 0 ≤ r ≤ r′ − δ,
w(r′+δ)

2δ (r − r′ + δ) if r′ − δ < r ≤ r′ + δ,

w(r) if r ≥ r′ + δ

in (3.1) we have ∫ r′+δ

r′−δ

rN−1|w′|p−2w′(r) dr < 0.

This is a contradiction. Therefore, there exists ro > 0 such that w′(r) ≤ 0 for
r ≥ ro. Next, we show that w′ has exponential decay. Since w is radial,∫ ∞

0

rN−1|w′|p−2w′ϕ′ dr =
∫ ∞

0

h(r)ϕ dr ∀ϕ ∈ W 1,p
r (RN ), (3.2)

where h(r) = rN−1g(w(r)). If u(r) =
∫∞

r
h(s)ds we have u′(r) = −h(r). Conse-

quently, if v(r) = rN−1|w′(r)|p−2w′ − u(r) we have∫ ∞

0

v(s)ϕ′(s)ds = 0 ∀ ϕ ∈ W 1,p
r (0,∞).

Therefore, by [4, Lemma VIII.1], there exists a constant C such that

rN−1|w′|p−2w′ = C + u(r) . (3.3)

We claim that C = 0. Indeed, suppose that C 6= 0. By the exponential decay of u
and (3.3), there exists a constant C1 > 0 such that for r sufficiently large

rN−1|w′(r)|p−1 ≥ C − ce−θr ≥ C1/r,

that is,

|w′(r)| ≥ C1

rα
, (3.4)

where α = N
p−1 . Since p ≤ N we have α > 1. Integrating (3.4) from R to r and

using the fact of that w′(r) ≤ 0 for r ≥ ro, we obtain

−w(r) + w(R) ≥ C1

1− α
(

1
rα−1

− 1
Rα−1

). (3.5)

Letting r →∞ in (3.5) we have

w(R) ≥ C1

(α− 1)
1

Rα−1
,

for R sufficiently large. This contradicts the exponential decay of w. Therefore,

rN−1|w′|p−2w′ = u(r). (3.6)

It follows from (3.6) that w′ has exponential decay. Moreover, w ∈ C2(ro,∞). This
completes the proof of Theorem 1.9. �
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