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Abstract

In this paper, we deal with a class of Schr"odinger equation in RN involving critical Sobolev
exponent and jump discontinuities. The basic tool employed here is an approximation technique
with periodic functions and variational arguments based on a linking theorem for locally Lipschitz
functionals.
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1. Introduction

The main purpose of this paper is to establish the existence of solution for the
Schr"odinger equation

−=u+ V (x)u= K(x)|u|2∗−2u+ f(x; u) in RN ; (1.1)

where 2∗ =2N=(N − 2); N¿ 3, is the critical Sobolev exponent and f : RN ×R→ R
is given by

f(x; t) = 
(x)tp−1H (t − a);
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where H is the Heaviside function, a¿ 0 and p∈ (2; 2∗). We assume that V; 
 and K
are continuous and 1-periodic functions in each variable. Furthermore, 
 is nonnegative
and K is positive in RN .
We notice that by a solution for (1.1) we mean a function u∈W 1; s

loc (RN ), for some
s¿ 1, verifying, in an appropriate weak sense, the following inequalities:

f(x; u(x)− 0)6−=u+ V (x)u− K(x)|u(x)|2∗−2u(x)6f(x; u(x) + 0); (1.2)

where

f(x; t + 0) = lim
s↓t

f(x; s) and f(x; t − 0) = lim
s↑t

f(x; s):

Throughout this paper we will be using the following assumptions:

(h1) 0 is in the spectral gap of the operator − �+ V;

(h2) 0¡maxB1(0) K = K(0) and K(x) = K(0) + O(|x|) for x∈B1(0):

The main result of this paper is stated as follows:

Theorem 1.1. Suppose (h1)–(h2) hold. Furthermore assume that there is 0¡r6 1
such that

(h3) 
(x)(|x|� + 1)¿ 1 for all x∈Br(0);

where � is a positive real number verifying

�¿

{
max{2; N − 1− p(N − 2)} if 2¡p¡ (N + 2)=(N − 2);

p(N − 2)− N if (N + 2)=(N − 2)¡p¡ 2N=(N − 2):

Then, for each a¿ 0 9xed, there is a solution u= ua of (1.1).

Remark 1.2. Assumptions like (h1)–(h2) are quite natural and have already appeared
in the papers [12,14,25].
Furthermore, it should be remarked that in the proof of Theorem 1.1, in place of

(h3) we use the technical assumption∫
B√

�(0)

(x)

(
�

|x|2 + �2

)p(N−2)=2

dx¿O(��);

where �¡min{(N − 2)=2; N − p(N − 2)=2}, which included the family of functions

 satisfying (h3).

Remark 1.3. The set de;ned by

�a(u) = {x∈RN ; u(x) = a}
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has a great importance relating to the regularity of the solution u. In fact, if the
Lebesgue measure of �a(u) is zero, then u is a solution in the almost everywhere
sense, that means, u satis;es

−=u(x) + V (x)u(x) = K(x)|u(x)|2∗−2u(x) + f(u(x)); (1.3)

almost everywhere in RN . Now, by applying Stampacchia theorem in the set �a(u)
(see [28]), we obtain the relation

K(x)a2
∗−26V (x)6K(x)a2

∗−2 + 
(x)ap−2; (1.4)

which represents a condition involving K; V; 
, and a. Therefore, if the set character-
ized by condition (1.4) has measure zero, then the set �a(u) also has measure zero.
We can deduce that u satis;es (1.3). Thus, a natural assumption to get a solution in
the almost everywhere sense is the following:

meas({x∈RN :K(x)a2
∗−26V (x)6K(x)a2

∗−2 + 
(x)ap−2}) = 0:

We notice that we can present a simple case where this hypothesis holds, for instance
in condition

sup
x∈RN

V (x)6 sup
x∈RN

K(x)a2
∗−2:

An equation of type (1.1) is related to the so-called Grad-Schafranov equation
of Plasma Physics and obstacle problems. For the background and related results
on some typical models involving discontinuous nonlinearities we refer the reader
to [3–5,10,11,15–17,20]. There is an extensive bibliography dealing with semilinear
Schr"odringer equations with periodic potential. At ;rst, let us recall the so-called def-
inite case, that is, when V is strictly positive. In [24], Pankov using the Nehari vari-
ational principle, proved the existence of ground states, i.e., solutions having smallest
energy among all nontrivial solutions. Rabinowitz in [26], under less restrictive assump-
tions on f(x; s), has obtained a result of existence but not necessarily a ground state.
Moreover, in [18], Coti Zelati and Rabinowitz have proved the existence of in;nitely
many solutions under some additional technical assumptions.
When it is the case that V is inde;nite and 0 lies in a gap of the spectrum, H 1(RN )

is the direct sum of two in;nite dimensional subspaces where the quadratic part of
the variational functional is negative and positive, respectively. Thus it is not possible
to use the Leray–Schauder degree like in the proof of the Benci–Rabinowitz mountain
pass theorem (see [6]). This class of problems, under the additional assumption that the
primitive F is strictly convex, has been explored by many authors including [1,9,19,22].
This assumption has allowed them to solve the problem via a reduction method by
applying the mountain-pass theorem.
In recent papers Troestler and Willem [30], and Kryszewski and Szulkin [21] have

proved a result of existence for this class based on the generalized linking theorem.
This linking theorem requires the construction of a new degree theory. This approach
has been simpli;ed by Pankov and PO"uger [25] by using the approximation technique
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with periodic functions. Later, Chabrowski and Jianfu [12], used this same approach in
dealing with a periodic semilinear Schr"odringer equation and critical Sobolev exponent.
In this paper, we also apply this technique to obtain an existence result for Eq. (1.1).
The crucial point in the approach presented here lies in the fact that the approximation
technique of [25] can be combined with the methods developed in [13] to determine the
range for level sets of the energy functional for which the Palais–Smale condition holds.
This allows us to obtain an approximating sequence by applying a linking theorem for
local Lipschitz functionals.
This paper is composed of three sections. In the next section we shall prove prelim-

inary results and the main result in the third section.

Notation. In this paper we make use of the following notation:

• c; c1; c2; : : : denote (possibly diPerent) positive constants;
• BR(p) denotes the open ball with the radius R centered at point p of RN ;
• Lp(#); 16p6∞, denote Lebesgue spaces; the norm in Lp(#) is denoted by |u|p;
• S is the optimal constant to the Sobolev embedding, D1;2(RN ) ,→ L2

∗
(RN ), that is,

S = inf{|∇u|22: u∈D1;2(RN ) and |u|2∗ = 1};

where D1;2(RN ) is the completion of C∞
0 (RN ) in the norm ‖u‖ := (

∫
RN |∇u|2 dx)1=2.

It is known (see [29]) that the optimal constant S is attained by the functions

 �;xo(x) :=
(

cN �
(�2 + |x − xo|2)

)(N−2)=2

; where cN := (N (N − 2))1=2: (1.5)

2. Preliminary results

To prove Theorem 1.1 we will combine variational methods applied to locally lip-
schitzian functionals and an approximation technique as in [12,25]. As starting point,
we solve the problem{−=u+ V (x)u= K(x)|u|2∗−2u+ f(x; u) in Qk;

u∈H 1
per(Qk)

(1:1a;k)

where Qk is a cube in RN with length of edge k ∈N; L2per(Qk) is the space of k-periodic
functions of L2(Qk), and

H 1
per(Qk) = H 1(Qk) ∩ L2per(Qk).

The proof of the result of existence for problem (1:1)a;k will be based on the next
critical point theorem and its proof follows the same kind of ideas as those used in
the proof of an analogous result for diPerential functionals (see [2,7]).
In what follows let X be a Banach space, ,∈Liploc(X;R) means that the functional

, is locally lipschitzian from X to R and we denote by @, the generalized gradient
at the point u∈X of , (see [16]).
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Theorem 2.1. Let X = Y ⊕ Z with dimY ¡∞. Let R¿R1 ¿ 0 and z ∈Z such that
‖z‖= R1. De9ne

M = {u= y + tz; ‖u‖6R; t¿ 0; y∈Y};

5 = {6∈C(M;X ); 6|@M = id} and c = inf
6∈5

max
u∈M

I(6(u)); (2.1)

where I ∈Liploc(X ;R) verifying

inf
‖u‖=R1

u∈Z

I(u)¿ max
u∈@M

I(u): (2.2)

Then there exists a sequence un ∈X such that

I(un) → c and min
9∈@I(un)

‖9‖X ′ → 0; both of limits taken when n → ∞: (2.3)

The variational functional associated with (1:1)a;k is de;ned by

Ja;k(u) =
1
2

∫
Qk

(|∇u|2 + V (x)u2) dx − 1
2∗

>k(u)− ,a;k(u); u∈H 1
per(Qk);

where

,a;k(u) =
∫
Qk

∫ u

0
f(x; ?) d? dx and >k(u) =

∫
Qk

K(x)|u|2∗−1u(x) dx:

Using standard arguments (see [16]) we can ;nd that ,a;k ∈Liploc(Ls(Qk);R) for
26 s6 2∗ and ,a;k |H 1

per(Qk ) ∈Liploc(H 1
per(Qk);R). Furthermore, if 9∈ @,a;k(u) then

f(x; u(x)− 0)6 9(x)6f(x; u(x) + 0); (2.4)

in the weak sense.
We recall that the operator −� + V on L2per(Qk) has discrete spectrum with eigen-

values @k;16 · · · @k; i6 · · · → ∞ and there is a ;nite 6(k) minimum of {i: @k; i ¿ 0}.
Moreover, every eigenvalue @k; i is contained in the spectrum of −�+V on the whole
space and then if (�; A); �¿ 0 is the spectral gap around 0, we ;nd that @k; i �∈ (�; A)
for all k; i∈N. We denote by Bk; i the corresponding eigenfunctions. Since every func-
tion u∈H 1

per(Qk) is, by periodicity, also in H 1
per(Qmk) for every natural number m,

we claim that every eigenvalue of −� + V on L2per(Qk) is also an eigenvalue of this
operator on L2per(Qmk) (see [27]).
Furthermore, the space H 1

per(Qk) can be decomposed in the direct sum of the spaces
Yk , ;nite dimensional, and Zk both generated by the eigenfunctions corresponding to
negative and positive eigenvalues, respectively.
The quadratic part of Ja;k ,

‘k(u) =
∫
Qk

(|∇u|2 + V (x)u2) dx; u∈H 1
per(Qk)
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is positive on Zk and negative on Yk . We may de;ne a new scalar product (·; ·)k on
H 1
per(Qk) and a corresponding norm ‖ · ‖k such that∫

Qk

(|∇y|2 + V (x)y2) dx =−‖y‖2k for y∈Yk ;

∫
Qk

(|∇z|2 + V (x)z2) dx = ‖z‖2k for z ∈Zk :

Let Pk :H 1
per(Qk) → Yk and Tk :H 1

per(Qk) → Zk be the orthogonal projections of
H 1
per(Qk) onto Yk and Zk , respectively. Using these projections we can write the vari-

ational functional Ja;k by the formula

Ja;k(u) =
1
2
(‖Tku‖2k − ‖Pku‖2k)−

1
2∗

>k(u)− ,a;k(u); u∈H 1
per(Qk):

In order to prove our main result of this section, we begin stating some basic lemmas.
Set

Mk;R(z0) = {u= y + tz0; ‖u‖k 6R; t¿ 0; y∈Yk} (2.5)

for some ;xed z0 ∈Zk and R¿ 0, to be determined later, and

5k = {6∈C(Mk;R(z0); H 1
per(Qk)); 6|@Mk; R = id}: (2.6)

We notice that the set @Ja;k(u) is weakly* compact (see [16]) and, as a consequence,
the minimum of {‖9‖k ; 9∈ @Ja;k(u)} is attained by some 9k

n ∈ @Ja;k(uk
n). We will use

this fact in the next lemma.

Lemma 2.2. If un ∈H 1
per(Qk) is a sequence verifying

Ja;k(uk
n) → ck with 0¡ck ¡

SN=2

N |K |(N−2)=2
∞

(2.7)

and

9k
n → 0 as n → ∞; (2.8)

then uk
n is relatively compact in H 1

per(Qk).

Proof. First we prove that the sequence uk
n is bounded in H 1

per(Qk). Let 9k
n and

?k
n ∈ @,a;k(uk

n) such that

9k
n = ‘′k(u

k
n)−>′

k(u
k
n)− ?k

n: (2.9)

We have for ‖v‖k = 1 that |〈9k
n; v〉|6 ‖9k

n‖k , as n → ∞, so that we can write

|〈9k
n; u

k
n〉|= �n‖uk

n‖k with �n → 0:
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Using (2.4) with u−(x) = max{−u(x); 0} as a function test we get

0 =
∫
uk
n¿a


(x)(uk
n)

p−1
uk
n− dx6

∫
Qk

?k
nu

k
n− dx6

∫
uk
n¿a


(x)(uk
n)

p−1
uk
n− dx = 0

and then

〈9k
n; u

k
n−〉= 0:

Consequently, using again (2.4) with u+(x)=max{u(x); 0} as a test function, we obtain

Ja;k(uk
n)−

1
2
〈9k

n; u
k
n〉

=
1
N

∫
Qk

K(x)|u|2∗ dx + 1
2
〈?k

n; u
k
n〉 − ,a;k(uk

n)

=
1
N

∫
Qk

K(x)|u|2∗ dx + 1
2
〈?k

n; u
k
n+〉

− 1
p

∫
Qk


(x)((uk
n)

p − ap)H (uk
n − a) dx

¿
1
N

∫
Qk

K(x)|u|2∗ dx +
(
1
2
− 1

p

)∫
Qk


(x)(uk
n)

pH (uk
n − a) dx:

This fact combined with (2.7) infer the following crucial inequalities:

1
N

∫
Qk

K(x)|u|2∗ dx6 ck + on(1) +
�n
2
‖uk

n‖k (2.10)

and

p− 2
2p

∫
Qk


(x)(uk
n)

pH (uk
n − a) dx6 ck + on(1) +

�n
2
‖uk

n‖k : (2.11)

On the other hand, we have

Ja;k(uk
n)−

1
2∗

〈9k
n; u

k
n〉¿

1
N
(‖Tkuk

n‖2k − ‖Pkuk
n‖2k)

+
(
1
2∗

− 1
p

)∫
Qk


(x)(uk
n)

pH (uk
n − a) dx:

Denoting Tk(uk
n) = zn and Pk(uk

n) = yn one obtains

1
N

‖zn‖2k 6
1
N

‖yn‖2k +
(
1
p

− 1
2∗

)∫
Qk


(x)(uk
n)

pH (uk
n − a) dx

+ ck +
�n
2∗

‖uk
n‖k + on(1);
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so that from (2.11) follows

1
N

‖zn‖2k 6
1
N

‖yn‖2k +
(2∗ − p)2p
2∗p(p− 2)

(
ck +

�n
2
‖uk

n‖k
)
+ ck +

�n
2∗

‖uk
n‖k + on(1):

Now, since ‖uk
n‖2k =‖zn‖2k +‖yn‖2k and ‖yn‖2k 6 c1|uk

n|22 holds, and using (2.7), one gets

1
N

‖uk
n‖2k − c2‖uk

n‖k − c36 c4|uk
n|22 (2.12)

for large n. We notice that, from (2.12), it is suScient to prove that the L2 norm of
uk
n on Qk is bounded to obtain the same result for ‖uk

n‖k , for each ;xed k. Suppose,
by contradiction, taking a subsequence if necessary, that |uk

n|22 → ∞ as n → ∞ and
de;ne vn = uk

n=|uk
n|2. Thus, one has |vn|2 = 1 and ‖vn‖k 6 c. In fact, by letting n1 such

that |uk
n|2¿ 1 for n¿ n1, and from (2.12), it follows

1
N

‖vn‖2k − c2‖vn‖k − c36
1

|uk
n|22

(
1
N

‖uk
n‖2k − c2‖uk

n‖k − c3

)
6 c4;

which implies that ‖vn‖k is bounded.
Now, we take B∈C∞

0 (Qk) and use (2.9) to obtain∫
Qk

(∇uk
n∇B+ V (x)uk

nB) dx =
∫
Qk

K(x)|uk
n|2

∗−1B dx + 〈?k
n; B〉+ on(1): (2.13)

To proceed further, we shall estimate the two terms on the right-hand side using
inequalities (2.10) and (2.11) as follows:∫

Qk

K(x)|uk
n|2

∗−1|B| dx

6
(∫

Qk

(K(x)|uk
n|2

∗−1 dx)2
∗=(2∗−1)

)(2∗−1)=2∗

|B|2∗

6 |B|2∗ |K |1=2∗∞ N (2∗−1)=2∗(ck + on(1) + �n‖uk
n‖k)(2

∗−1)=2∗ : (2.14)

On the other hand, from (2.4) we have

|〈?k
n; B〉|6

∫
uk
n¿a


(x)(uk
n)

p−1|B| dx

6
∫
uk
n¿a


(x)(uk
n)

p−1|B|+ ap−1
∫
Qk


(x)|B| dx: (2.15)

Besides, using (2.11) we get∫
uk
n¿a


(x)(uk
n)

p−1|B|

6 |
|1=p∞ |B|p
(

2p
p− 2

)(p−1)=p (
ck + on(1) +

�n
2
‖uk

n‖k
)(p−1)=p

: (2.16)
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Consequently from (2.13)–(2.16) follow that∣∣∣∣∫
Qk

(∇vn∇B+ V (x)vnB) dx
∣∣∣∣

6
1

|uk
n|2

(∫
Qk

K(x)|uk
n|2

∗ |B| dx + |〈?k
n; B〉|+ on(1)

)
6

c
|uk

n|2
(c(k) + on(1) + �̃n‖uk

n‖(2
∗−1)=2∗

k + �̂n‖uk
n‖(p−1)=p

k );

where �̃n; �̂n → 0 and c(k) is a constant which depends on k. This implies that∣∣∣∣∫
Qk

(∇vn∇B+ V (x)vnB) dx
∣∣∣∣

6 on(1) + �̃n|uk
n|−1=2∗
2 ‖vn‖(2

∗−1)=2∗

k + �̂n|uk
n|−1=p
2 ‖vn‖(p−1)=p

k

= on(1); (2.17)

where here we use that ‖vn‖k is bounded. Therefore, there exists vk ∈H 1
per(Qk) such

that vn * vk in H 1
per(Qk) and vn → vk in L2(Qk). Since |vn|2 = 1 one has |vk |2 = 1.

Consequently, vk �≡ 0. But, from (2.17) it would hold∫
Qk

(∇vk∇B+ V (x)vkB) dx = 0; ∀B∈C∞
0 (Qk);

which contradicts assumption (h1). This proved that |uk
n|2 is bounded. As a consequence,

the norm ‖uk
n‖k is as well bounded.

Now, taking subsequence if necessary, we have a function uk ∈H 1
per(Qk); uk

n * uk

in H 1
per(Qk) and uk

n → uk in Ls(Qk); 26 s¡ 2∗.
Next, we will prove that the convergence of uk

n to uk is a strong one. Indeed, let

wk
n = uk

n − uk and 06 l= lim
n→∞

∫
Qk

|∇wk
n |2 dx:

Then, we have wk
n * 0 in H 1

per(Qk); wk
n → 0 in Ls(Qk) for all 26 s¡ 2∗, and

〈9k
n; w

k
n〉¿

∫
Qk

|∇wk
n |2 +

∫
Qk

∇uk∇wk
n dx − |V |∞|uk

n|2|wk
n |2

− |K |∞
∫
Qk

|uk
n|2

∗−1wk
n −

∫
uk
n¿a


(x)|uk
n|p−1wk

n+ dx:

Thus,

l+ on(1)

6 |K |∞
∫
Qk

|uk
n|2

∗−1wk
n dx +

∫
uk
n¿u


(x)(uk
n − uk) dx
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6 |K |∞
∫
Qk

|uk
n|2

∗−1wk
n dx +

∫
uk
n¿u


(x)(uk
n)

p dx −
∫
uk
n¿u


(x)(uk
n)

p−1uk dx

= on(1) + |K |∞
(∫

Qk

|uk
n|2

∗
dx −

∫
Qk

|uk
n|2

∗−1uk dx
)

= on(1) + |K |∞
(∫

Qk

|uk |2∗ dx +
∫
Qk

|wk
n |2

∗
dx + on(1)−

∫
Qk

|uk
n|2

∗−1uk dx
)

= on(1) + |K |∞
∫
Qk

|wk
n |2

∗
dx

6 on(1) + |K |∞
(
S−1

∫
Qk

|∇wk
n |2 dx

)2∗=2
;

where here we used the Br,ezis–Lieb lemma (see [8], Theorem 1). As a consequence,
taking limit

SN=2

|K |(N−2)=2
∞

6 l: (2.18)

On the other hand, since we have

|〈?k
n; B〉| =

∣∣∣∣−〈9k
n; B〉+

∫
Qk

(∇uk
n∇B+ V (x)uk

nB) dx −
∫
Qk

K(x)|uk
n|2

∗−1B dx
∣∣∣∣

6 �n‖B‖k + c|(uk
n; B)|+ |K |∞|uk

n|L2∗ |B|L2∗
6 c‖B‖k

for each test function B, there is ?k
0 ∈H 1

per(Qk) such that ?k
n * ?k

0 in H 1
per(Qk), and

?k
n → ?k

0 in Ls for all 26 s¡ 2∗.
Now, we will show that the following estimate holds to be true:

Ja;k(uk
n)¿

1
2

∫
Qk

|∇wk
n |2 +

1
2

∫
Qk

K(x)|wk
n |2

∗−1|uk |

− 1
p
〈?k

n; wk
n〉 −

1
2

∫
Qk

K(x)|wk
n |2

∗
+ on(1): (2.19)

In fact,

Ja;k(uk
n)¿

1
2

∫
Qk

|∇wk
n |2 dx −

1
2

∫
Qk

|∇uk |2 dx +
∫
Qk

∇uk
n∇uk dx

+
1
2

∫
Qk

V (x)w2
nk dx −

1
2

∫
Qk

V (x)u2k +
∫
Qk

V (x)uk
nuk dx
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− 1
p

∫
uk
n¿a


(x)(uk
n)

p dx − 1
2∗

∫
Qk

K(x)|uk
n|2

∗
dx

¿
1
2

∫
Qk

|∇wk
n |2 dx +

1
2

∫
Qk

|∇uk |2 dx + 1
2

∫
Qk

V (x)u2k dx

− 1
p
〈?k

n; uk
n〉 −

1
2∗

∫
Qk

K(x)|uk
n|2

∗
dx + on(1)

=
1
2

∫
Qk

|∇wk
n |2 dx +

1
2∗

∫
Qk

K(x)|uk
n|2

∗−1|uk | dx

− 1
p
〈?k

n; wk
n〉 −

1
2∗

∫
Qk

K(x)|uk
n|2

∗
dx + on(1);

where here we have used that the equality

〈9k
n; |uk |〉=

∫
Qk

(∇uk
n∇|uk | dx + V (x)uk

n|uk |) dx

−
∫
Qk

K(x)|uk
n|2

∗−1|uk | dx − 〈?k
n; |uk |〉

holds. Consequently,

lim
n→∞

∫
Qk

K(x)|uk
n|2

∗−1|uk | dx =
∫
Qk

(∇|uk | dx + V (x)|uk |2) dx − 〈?k
0 ; |uk |〉:

Hence, from this and (2.19), we conclude

Ja;k(uk
n)−

1
2∗

〈9k
n; w

k
n〉¿

1
N

∫
Qk

|∇wk
n |2 dx +

1
2

∫
Qk

K(x)|uk
n|2

∗ |uk | dx

+
(
1
2∗

− 1
p

)
〈?k

n; w
k
n〉+ on(1)

=
1
N

∫
Qk

|∇wk
n |2 dx + on(1): (2.20)

Finally, taking limit when n → ∞ in (2.20) it would be seen, from (2.18), that

ck ¿
l
N
¿

SN=2

N |K |(N−2)=2
∞

;

which contradicts that 0¡ck ¡SN=2=N |K |(N−2)=2
∞ . This proved the lemma.

In the next lemma we shall check the linking condition (2.2) of Theorem 2.1.
Take r0 ¿ 0 such that B2r0 (x0) ⊂ Q1, where x0 is a center of the cube Q1. Let

H∈C∞
0 (RN ; [0; 1]) be a cut-oP function such that H ≡ 1 in Br0 (x0) and H ≡ 0
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in RN\B2r0 (x0). For each �¿ 0 we set B�(x) = H(x) �;0(x) (see (1.5)) and extending
as a periodic function we have B� ∈H 1

per(Qk). Let ’�
:= B�=kN and denote Mk;R(�) the

set {y + tTk’�: ‖y + tTk’�‖k 6R; t¿ 0; y∈Yk}, de;ned in (2.5).

Lemma 2.3. There exist R¿R1 ¿ 0, independent of k, such that

inf
‖u‖k=R1

u∈Zk

Ja;k(u)¿ sup
u∈@Mk; R(�)

Ja;k(u):

Proof. Since 
 is continuous and periodic we have, for z ∈Zk , that

|,a;k(z)|6 c
∫
Qk

|z(x)|p dx6 c‖z‖pk ;

where c depends only on |
|∞. Thus,

Ja;k(z)¿
1
2
‖z‖2k −

|K |∞
2∗

‖z‖2∗k − c‖z; ‖pk

and since p¿ 2, we obtain R1 ¿ 0, independent of k, such that if ‖z‖k = R1 then
Ja;k(z)¿ �¿ 0.
On the other hand, notice that if u∈ @Mk;R(�) and t=0, then Ja;k(u)6 0. Hence, let

R= ‖y + tTk’�‖k with t ¿ 0. Therefore,

Ja;k(y + tTk’�)

=− 1
2
‖y‖2k +

t2

2
‖tTk’�‖2k −

1
2∗

∫
Qk

K(x)|y + tTk’�|2∗ dx − ,a;k(u)

6− 1
2
‖y‖2k +

t2

2
‖tTk’�‖2k −

1
2∗

inf
x∈RN

K(x)
∫
Qk

|y + tTk’�|2∗ dx;

where here we used (h2). In accordance with (see [14])

|tTk’�|L2∗ 6 c|y + tTk’�|L2∗

we obtain

Ja;k(y + tTk’�)6− 1
2
‖y‖2k +

t2

2
‖tTk’�‖2k − ct2

∗ |tTk’�|2∗L2∗ :

Moreover, since ‖y + tTk’�‖2k = ‖y‖2k + t‖Tk’�‖2k we infer ‖y + tTk’�‖k → ∞ if
‖y‖2k → ∞ or t → ∞. Therefore, Ja;k(y+ tTk’�) → −∞ when ‖y‖2k → ∞ or t → ∞,
which proved the lemma.

In the next step we will be using assumption (h3) to get appropriate estimates for
the minimax levels.
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Lemma 2.4. For each a¿ 0 we have uk critical point of Ja;k at minimax level ck

given by

ck = inf
6∈5k

max
u∈Mk; R(�)

Ja;k(6(u)):

Furthermore, 0¡ck ¡SN=2=N |K |(N−2)=2
∞ :

Proof. Here we will use some ideas from [13]. From Lemma 5 in [13] there exists �0
such that Tk’� �≡ 0 for each 0¡�6 �0. Now, let

M̃ k(�) = {x = y + tTk’�; y∈Yk and t¿ 0}:
We are going to prove that for each a¿ 0 and 
 verifying (h3) it holds

sup
u∈M̃ k (�)

Jk;a ¡
SN=2

N |K |(N−2)=N
∞

:

In fact, let s¿ 0; u �≡ 0 and de;ne

I(u) =
1
2

∫
Qk

(|∇u|2 + V (x)u2) dx − 1
2∗

∫
Qk

K(x)|u|2∗ dx:

Then, we have

I(u)¿ Ja;k(u) (2.21)

and

max
s¿0

I(su)6
1
N

(
∫
Qk
(|∇u|2 + V (x)u2) dx)N=2

(
∫
Qk

K(x)|u|2∗ dx)(N−2)=2 : (2.22)

Next we will be using the following estimates with respect to ’� (see [13]):

|∇’�|22 = SN=2 + O(�N−2);

|∇’�|1 = O(�(N−2)=2);

|’�|2∗2∗ = SN=2 + O(�N );

|’�|2
∗−1
2∗−1 = O(�(N−2)=2);

|’�|1 = O(�(N−2)=2):

Set ‖u‖2∗2∗ ;K =
∫
Qk

K(x)|u|2∗ dx, and u= u− + tTk’�, with Pku= u−; t¿ 0. Thus

‖Tk’�‖22∗ ;K = (‖’�‖22∗ ;K + O(�N−2))(N−2)=N

6 |K |(N−2)=N
∞ S(N−2)=2 + O(�(N−2)2=N ) (2.23)
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and ∣∣∣∣∫
Qk

|∇’�|2 dx −
∫
Qk

|∇(Tk’�)|2 dx
∣∣∣∣+ ∫

Qk

|∇’�|2 dx

=O(�N−2) + SN=2 + O(�N ): (2.24)

Now, by using (h2) and the previous estimates we obtain

‖Tk’�‖22∗ ;K = (‖Tk’�‖2∗2∗ ;K)2=2
∗

= (‖’�‖22∗ ;K + O(�N−2))(N−2)=N

6 (K(0)SN=2 + O(�) + O(�N−2))(N−2)=N

= |K |(N−2)=N
∞ S(N−2)=2 + O(�(N−2)2=N ): (2.25)

Thus, setting ‖u‖2∗2∗ ;K = 1 and taking into account (2.21)–(2.25) in the equation∫
Qk

(|∇u|2 + V (x)u2) dx=−‖u−‖2k +
|∇(tTk’�)|22
|tTk’�|22∗

|tTk’�|22∗

+ t2
∫
Qk

V (x)(tTk’�)2 dx;

we deduce∫
Qk

(∇u|2 + V (x)u2) dx =
SN=2

N |K |(N−2)=2
∞

‖Tk’�‖N2∗ ;K + t2c�N (N−2)=2: (2.26)

Now, we have that t is bounded and if

‖u−‖2∗2∗ ;K 6 2c1t2
∗
�N (N−2)=(N+2)

then

‖tTk’�‖2∗2∗ ;K 6 1 + c�N−2;

since it holds that

1 = ‖u‖2∗2∗ ;K ¿ ‖tTk’�‖2∗2∗ ;K +
1
2
‖u−‖2∗2∗ ;K − c1t2

∗
�N (N−2)(N+2)

¿ t2
∗‖’�‖2∗2∗ ;K +

1
2
‖u−‖2∗2∗ ;K − c2t2

∗
�N−2 − c1t2

∗
�N (N−2)=(N+2):

Otherwise we get

‖tTk’�‖2∗2∗ ;K 6 1:
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Hence, in any case, we have

‖tTk’�‖2∗2∗ ;K 6 1 + O(�N−2): (2.27)

Now we estimate the part related to the discontinuity f, namely, the expression
involving the primitive F(x; v) = 
(x)H (v− a)vp:∣∣∣∣∫

Qk

F(x; u− + tTk’�) dx −
∫
Qk

F(x; u−) dx −
∫
Qk

F(x; tTk’�) dx
∣∣∣∣

=
∣∣∣∣∫

Qk

∫ tTk’�

0

(x)H (u− + ? − a)(u− + ?)p−1 dx

−
∫
Qk

∫ tTk’�

0

(x)H (? − a)?p−1 dx

∣∣∣∣
6 c

(∫
Qk

|tTk’�‖u−|p−1 dx + 2
∫
Qk

|tTk’�|p dx
)

6 c
(
t|u−|∞|Tk’�|L1 + 2tp

∣∣∣∣∫
Qk

|tTk’�|p − |’�|p dx
∣∣∣∣+ 2tp

∫
Qk

|’�|p dx
)

6 c(�(N−2)=2 + �N−p(N−2)=2);

where c is independent of � since (2.27) holds. Analogously one gets∣∣∣∣∫
Qk

F(x; tTk’�) dx −
∫
Qk

F(x; ’�) dx
∣∣∣∣6 c�(N−2)=2:

Consequently, going back to (2.26) and joint up the previous facts, we get

Ja;k(su)6
SN=2

N |K |−(N−2)=2
∞

+ c(�(N−2)=2 + �N−p(N−2)=2)−
∫
Qk

F(x; ’�) dx: (2.28)

Let �16 �0 such that the inequality a¡cN =�
(N−2)=2
1 holds for a¿ 0 ;xed. Hence, for

all �6 �1 we get a¡cN =�(N−2)=2. Thus the positive radius r(�) de;ned by

r(�) =
( cN �
a2=(N−2) − �2

)1=2
is well de;ned and less than r given by (h3). Furthermore, the following inclusion
holds:

Br(�)(0) ⊂ {x∈Qk; ’� ¿a}:
Hence, by using (h3), we can conclude∫

’�¿a

(x)(’p

� (x)− ap) dx
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¿
∫
Br(�)(0)

(

(x)

(
cN �

|x|2 + �2

)p(N−2)=2
)
dx − ap‖
‖∞r(�)N9N

=O(��)− O(�N=2);

where 9N is the volume of the unit ball in RN . Now, using this estimate together with
(2.28) and taking � small enough, the conclusion of the lemma readily follows.

Lemma 2.5. Any critical point uk of Ja;k satis9es ‖uk‖k 6 c (independent of k).

Proof. We have Mk;R(�) ⊂ Mk+1(�). In fact, since we can write

Tk’�(x) =
∞∑

j=k+1

��
jej(x)

with ��
j =
∫
RN ’�(x)ej(x) dx then

Tk+1’�(x) = Tk’�(x)−
(∫

RN
’�(x)ek(x) dx

)
ek(x)

so that, if y∈Yk and t ¿ 0 one gets

y + tTk+1’�(x) = y + tTk’�(x)− t
(∫

RN
’�(x)ek(x) dx

)
ek(x):

Hence, if u= y + tTk’� ∈Mk;R(�), then

u=y+t
(∫

RN
’�(x)ek(x)dx

)
ek(x)+tTk+1’�(x)=ỹ+tTk+1’�(x); with ỹ∈Yk+1:

Therefore, for h∈5k (de;ned in (2.6)) we have

sup
u∈Mk+1(�)

Ja;k+1(h(u))¿ sup
u∈Mk;R(�)

Ja;k+1(h(u))

On the other hand, if u∈Mk;R(�), one has

Ja;k(h(u))¿ Ja;k+1(h(u)) and 5k ⊂ 5k+1;

then

inf
h∈5k+1

sup
u∈Mk+1(�)

Ja;k+1(h(u))6 inf
h∈5k

sup
u∈Mk;R(�)

Ja;k(h(u));

which proved

ck+16 ck 6 · · ·6 c1 ¡
SN=2

N |K |(N−2)=2
∞

:

Finally, using the same arguments of the proof of Lemma 2.4, we can establish a
uniform bound for ‖uk‖k .
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Remark 2.6. As a consequence of these lemmas and from Theorem 1.2, we have
already proved, up to this moment, that for each k the functional Ja;k associated to
(1; 1)a;k has a critical point uk at level ck ∈ (0; SN=2=N |K |(N−2)=2

∞ ) and ‖uk‖k 6 c, for all
k ∈N.

Proposition 2.7. There is a sequence Kk ∈RN and s; L¿ 0 such that

lim sup
k→∞

|uk |2L2(Qs(Kk ))¿ L;

where Qs(Kk)) is a cube with edge length s and centered at Kk .

The proof of this proposition follows immediately from the next auxiliary lemmas.

Lemma 2.8. There exists �¿ 0 independent of k such that ‖uk‖k ¿ � and Ja;k(uk)¿ �
hold for each nontrivial critical point uk of Ja;k .

Proof. Since (�; A) is in the spectral gap, there exists c = c(�; A)¿ 0 such that

|‘k(u)|¿ c|u|2L2(Qk ); u∈H 1
per(Qk):

Therefore for �¡ 1 we get

|‘k(uk)| = �
∣∣∣∣∫

Qk

(|∇u|2 + V (x)u2) dx
∣∣∣∣+ (1− �)

∣∣∣∣∫
Qk

(|∇u|2 + V (x)u2) dx
∣∣∣∣

¿ �
∫
Qk

(
|∇u|2 − �max

x∈Qk

V (x)
)
|u|L2(Qk ) dx + (1− �)c|u|L2(Qk )

= �‖u‖2k +
(
(1− �)c − �max

x∈Qk

V (x)
)
|u|2L2(Qk ):

Thus, taking � small enough, we obtain

|‘k(u)|¿ c1‖u‖2k ; u∈H 1
per(Qk): (2.29)

Let uk be a nontrivial critical point of Ja;k . Then, by using (2.29), one gets

c1‖u‖2k 6 |‘k(u)|6 c2‖uk‖2∗k + c3‖uk‖p:
So that, since the polinomium p(t) = c2tk2

∗−2 + c3tp−2 − c1 is nonnegative for t¿ �1
for some �1 ¿ 0, the conclusion readily follows.
Finally, using the fact uk is a critical point of Ja;k , we have ?k ∈ @,a;k(uk) such that

0 = ‘′k(uk)−>′
k(uk)− ?k . Therefore

Ja;k(uk)¿
1
2
‘k(uk)− 1

2∗

∫
Qk

K(x)|uk |2∗ dx − 1
p
〈?k ; |uk |〉

=
1
2

(
‘k(uk)−

∫
Qk

K(x)|uk |2∗ dx − 〈?k ; |uk |〉
)
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+
(
1
2
− 1

2∗

)∫
Qk

K(x)|uk |2∗ dx +
(
1
2
− 1

p

)
〈?k ; |uk |〉

¿min{1=N; (p− 2)=2p}|‘k(uk)|¿ ‖uk‖2k ;

and the proof is completed.

Remark 2.9. The same arguments could be used to prove the result above for J the
functional associated with (1.1).

Next we shall use a modi;cation of the well-known concentration-compactness lemma
of Lions [23].

Lemma 2.10. Let Qn be the cube of edge length ln → ∞ as n → ∞ centered at the
origin, and Kr(K) be the closed cube with the edge length r centered at the point K.
Let un ∈H 1

loc(RN ) of ln-periodic functions such that ‖uk‖H 1(Qn)6 c for some constant
independent of n. Suppose that there is r ¿ 0 such that

lim inf
n→∞

(
sup
K

∫
Kr(K)

|un|2 dx
)
= 0:

Then ‖un‖Lq(Qn) → 0 as n → ∞ for q∈ (2; 2∗).

Proof. For the proof see [25].

Lemma 2.11. Let uk be a sequence verifying

Ja;k(uk) = ck ¡
SN=2

N |K |(N−2)=2
∞

and min
9∈@Ja; k (uk )

‖9‖ → 0 as k → ∞:

Then either

(1) ‖uk‖k → 0 when k → ∞, or
(2) there is a sequence Kk ∈RN , and s; L¿ 0 such that

lim
k→∞

|uk |2L2(Qs(Kk ))¿ L:

Proof. Suppose that (ii) does not hold. By concentration-compactness arguments (see
Lemma 2.10) one has

|uk |Lq → 0 for 2¡q¡ 2∗:

Following [13] we have∫
Qk

V (x)u2k → 0:
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On the other hand, it holds

|〈?k ; uk〉|6 c
∫
Qk

|uk | dx → 0

and

|,a;k(uk)|6 c
∫
Qk

|uk |p dx → 0:

Thus

Ja;k(uk) =
1
2

∫
Qk

|∇uk |2 dx − 1
2∗

∫
Qk

K(x)|uk |2∗ dx + ok(1)

and

0 =
∫
Qk

|∇uk |2 dx −
∫
Qk

K(x)|uk |2∗ dx + ok(1):

Consequently,

ck =
1
N

∫
Qk

K(x)|uk |2∗ dx

and ∫
Qk

|∇uk |2 dx + ok(1)¿ S‖uk‖22∗ + ok(1)

¿ S|K |2=2∗∞

(∫
Qk

K(x)|uk |2∗ dx
)2=2∗

+ ok(1): (2.30)

Therefore,

l¿ SN=2|K |−(N−2)=2
∞ :

This and (2.30) imply that

lim
k→∞

ck ¿
SN=2

N |K |(N−2)=2
∞

;

which is a contradiction.
Finally, since uk veri;es 0 = l′k(uk)−>′

k(uk)− ?k , we obtain

0 =−‖zk‖2 −
∫
Qk

K(x)|uk |2∗−2ukzk dx − 〈?k ; zk〉

and

0 = ‖yk‖2 −
∫
Qk

K(x)|uk |2∗−2ukyk dx − 〈?k ; yk〉;
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where zk = Tkuk and yk = Pkuk . So that, since

|〈?k ; zk〉|6
∫
uk¿a


(x)up−1
k |zk | dx

6
∫
Qk


(x)up−1
k |zk | dx

6 c|uk |p−1
Lp |zk |Lp → 0;

it follows ‖uk‖k → 0 and (i) holds.

3. Proof of the main result

As a consequence of the results of the previous section, we have a bounded sequence
of solutions uk of (1:1)a;k which veri;es

|uk |2L2(Qs(Kk ))¿ L¿ 0;

for all k and for some s∈ (0; 1).
Now, we denote by Ki the ith component of vector Ki

k , the center of cube Qs(Ki
k)

given in Proposition 2.7 and bi
k =[Ki

k ]; i=1; : : : ; N is the greatest integer equal or less
than Ki

k . Next, de;ning a new sequence û k as

û k(x) = uk(x + bk)

we ;nd that

|û k |2L2(Qs+1(0))¿ L: (3.1)

On the other hand, since K; V and 
 are 1-periodics we get, by taking Qk centered at
the origin,

Ja;k(uk) =
1
2

∫
Qk

(|∇uk(x)|2 + V (x)uk(x)2) dx

− 1
2∗

∫
Qk

K(x)|u(x)|2∗ dx −
∫
Qk


(x)H (u(x)− a)(up(x)− ap) dx

=
1
2

∫
Q̂k

(|∇û k(x)|2 + V (x)û k(x)2) dx − 1
2∗

∫
Q̂k

K(x)|û k(x)|2∗ dx

−
∫
Q̂k


(x)H (û k(x)− a)(ûp
k(x)− ap) dx

≡ Ĵ a; k(û k);

where Q̂k is the cube in RN with length k and centered in −bk .
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Now using that uk is a critical point of Ja;k , we have ?k ∈ @,a;k(uk) verifying∫
Qk

f(x; uk(x)− 0)B(x) dx6
∫
Qk

?k(x)B(x) dx6
∫
Qk

f(x; u(x) + 0)B(x) dx

for B∈C∞
0 (Qk); B¿ 0. Then

0 =
∫
Qk

(∇uk(x)∇B(x) + V (x)uk(x)B(x)) dx

−
∫
Q̂k

K(x)|u2∗−1
k |u(x)B(x) dx −

∫
Qk

?k(x)B(x) dx

=
∫
Q̂k

(∇û k(x)∇B̂(x) + V (x)û k(x)B̂(x)) dx

−
∫
Q̂k

K(x)|û2∗−1
k |û(x)B̂(x) dx −

∫
Q̂k

?̂k(x)B̂(x) dx (3.2)

and ∫
Q̂k

f(x; û k(x)− 0)B̂(x) dx6
∫
Q̂k

?̂k(x)B̂(x) dx

6
∫
Q̂k

f(x; û(x) + 0)B̂(x) dx; (3.3)

where here ?̂k(x) = ?k(x + bk) and B̂(x) = B(x + bk).
Thus from (3.2) and (3.3), we have û k as a critical point of Ĵ a; k . Now, by using

the same arguments as before, we can conclude that û k is bounded in H 1
loc(RN ) and,

taking subsequence if necessary, we obtain u∈H 1
loc(RN ) such that û k * u.

Furthermore, from the assumption on the growth of the function f it follows that
‖?̂k‖k 6 c, where c is independent of k. Hence, taking a subsequence we have ?̂k * ?0
and ?̂k(x) → ?0(x) almost everywhere x∈RN for some ?0 ∈H 1

loc(RN ). Therefore, by
taking limit in (3.3), we get

?0(x)∈ [f(u(x)− 0); f(u(x) + 0)];

almost everywhere in RN . Then passing to the limit in (3.2) and from the interior
elliptic estimates one gets u∈W 2;2∗

loc (RN ) and

−=u(x) + V (x)u(x) + K(x)u(x)2
∗−1 ∈ [f(u(x)− 0); f(u(x) + 0)];

almost everywhere in RN , which proved that u is a solution of (1.1). Finally we observe
that, by (3.1), u �= 0.
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