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58059-900, João Pessoa - PB - Brazil
bUniversidad de Santiago de Chile

Casilla 307, Correo 2, Santiago - Chile

Abstract

We deal with a class of p–Laplacian Dirichlet boundary value problems where
the combined effects of “sublinear” and “superlinear” growths allow us to establish
the existence of at least two positive solutions.

1 Introduction

The objective of this paper is to establish the existence of two radial solutions for the
quasilinear boundary value problem

−∆pu = f(u) in Ω ,
u > 0 in Ω ,
u = 0 on ∂Ω

(1.1)

where Ω ⊂ RN is a ball of radius b, and where ∆pu = div(|∇u|p−2∇u) is the p–Laplacian
with 1 < p < N . We will assume that the function f : [0, +∞) → [0, +∞) is a given
continuous function satisfying f(0) = 0 and the following two conditions:

(H1) limt→0 f(t)/tp−1 = +∞ ,

(H2) limt→+∞ f(t)/tp−1 = +∞ .

It follows from the assumptions (H1) and (H2) that there exists R > 0 such that

f(R)

Rp−1
= min

t>0

f(t)

tp−1
·
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Let R be a point where f attains its maximum on the interval (0, R]. We will assume the
following two further conditions:

(H3) f(R)/R
p−1

< η = (p/(p− 1))p−1 N/bp .

(H4) There exist increasing functions g1, g2 ∈ C([0, +∞), [0, +∞)) and positive constants
δ, η, with δ ∈ (0, 1), such that for all t > 0

g2(t) ≤ ηg1(δt) and
g1(t) ≤ f(t) ≤ g2(t) .

Our main result is Theorem 1.1, which will be proved in Section 3 using fixed point
techniques.

Theorem 1.1 Under the assumptions (H1) through (H4), the problem (1.1) has at least
two radial solutions.

Our study was motivated by some recent work on elliptic problems with concave–
convex nonlinearities (see [1], [2],[3], [9], [11], [12]).

Ambrosetti et al.[1] study the second order elliptic problem

−∆u = λus + ur in Ω ,
u > 0 in Ω ,
u = 0 on ∂Ω

(1.2)

where Ω is a bounded domain in RN (for N ≥ 3) with smooth boundary ∂Ω, ∆ is the
Laplace operator, λ is a positive real parameter, and 0 < s < 1 < r. They prove that
there exists a positive real constant Λ such that, for all 0 < λ < Λ, the problem (1.2) has
a solution, which is found using sub as well as supersolution methods. Here the essential
term is us while the exponent r may be arbitrary. Using variational methods, a second
solution of (1.2) is found. In this case, the term ur plays a fundamental role, where r
must satisfy r ≤ (N + 2)/(N − 2) . Among others, the following question is left open:
Suppose that r > (N + 2)/(N − 2) and that Ω is a ball. Does the problem (1.2) have
two positive solutions for λ small enough? In [12], R. Ma proves that the assertion is
true.

Difficulties arise while extending the study of the problem (1.2) to the p–Laplacian
operator. Many known techniques and results for the Laplacian no longer apply for the
p–Laplacian due to its nonlinear nature. Using a radial setting, a priori estimates, and
topological arguments, Ambrosetti et al.[2] obtain a global multiplicity result for elliptic
problems of the form

−∆pu = λus + ur in Ω ,
u > 0 in Ω ,
u = 0 on ∂Ω .

(1.3)
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More precisely, they prove that there is Λ > 0 such that there exists at least two positive
solutions of the problem (1.3) in the interval (0, Λ), where Ω is a ball and the following
hypotheses are satisfied 0 < s < p − 1 < r < p∗ = Np/(N − p), with p < N . In [3]
the authors study the critical case considering the following restrictive assumptions on p :
2N/(N + 2) < p < 3 or p ≥ 3 and p− 1 > s > (p∗ + 1)− 2/(p− 1) . Related results may
be found in [4], [8]. For global multiplicity results on a general bounded domain, in the
subcritical case see [9]. When 1 ≤ s < p − 1 < r ≤ p∗ − 1, which includes the critical
case, see [11].

Observe that we improve those results for the p–Laplacian operator which involve
concave and convex nonlinearities because there are no restrictions on p ∈ (1, N) nor on
the growth of the nonlinearities which may have a subcritical, or critical, or supercritical
growth. Note that the nonlineartities we consider are sublinear at 0 and superlinear
at +∞, hence contain the concave and convex nonlinearities above. We point out that
our result is an improvement even in the case studied in [12] because we consider more
general nonlinearities. For instance, let g1(t) = a1t

s + b1t
r ≤ g2(t) = a2t

s + b2t
r, where

0 < s < p − 1 < r, and where a1, b1, a2 and b2 are positive constants. Assume that
g1(t) = a1t

s + b1t
r ≤ f(t) ≤ g2(t) = a2t

s + b2t
r . It is easy to see that f satisfies the

hypotheses of Theorem 1.1 . Finally, note that, in [7], D. De Figueiredo and P. L. Lions
studied the Laplacian operator with subcritical nonlinearities that satisfy a sublinearity
condition at zero and a superlinearity condition at infinity.

The paper is organized as follows: Section 2 contains preliminary results. Section 3 is
devoted to proving our main result, Theorem 1.1.

2 Preliminary Results

We will establish radial solutions of the problem (1.1). In fact, we will obtain solutions
u = u(r) of the ordinary equation

−(rN−1φ(u′))′ = rN−1f(u) in (0, b) ,
u > 0 in (0, b) ,

u(b) = u′(0) = 0 ,
(2.1)

where φ(t) = |t|p−2t . Performing the change of variable t = a(r), define z(t) = u(r(t))
where a : [0, b) → [0, +∞) is given by

a(r) =
p− 1

N − p

[
r(p−N)/(p−1) − b(p−N)/(N−1)

]
.

Thus (2.1) can be rewritten as

−(φ(z′(t)))′ = r(N−1)p/(p−1)(t)f(z(t)) in (0, +∞) ,
z > 0 in (0, +∞) ,

z(0) = z′(+∞) = 0 .
(2.2)
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Integrating the equation of (2.2) and using the boundary conditions we obtain

φ(z′(t)) =

∫ +∞

t

r(N−1)p/(p−1)(τ)f(z(τ))dτ ,

which is equivalent to

z′(t) =

[∫ +∞

t

r(N−1)p/(p−1)(τ)f(z(τ))dτ

]1/(p−1)

.

Integrating once again we obtain

z(t) =

∫ t

0

[∫ +∞

s

G(τ)f(z(τ))dτ

]1/(p−1)

ds (2.3)

where

G(τ) =

(
b(p−N)/(p−1) + τ

N − p

p− 1

)p(1−N)/(N−p)

. (2.4)

Consequently, we will solve (2.1) using fixed point techniques. For this, we state the
following well known abstract result without proof (compare [5], [6], [10]).

Lemma 2.1 Let X be a Banach space with norm | · | , and let K ⊂ X be a cone in X.
For r > 0, define Kr = K ∩ B[0, r] where B[0, r] = {x ∈ X : |x| ≤ r} is the closed ball
of radius r centered at origin of X . Assume that F : Kr → K is a compact map such
that Fx 6= x, for all x ∈ ∂Kr = {x ∈ K : |x| = r}.
Then:

1. If |x| ≤ |Fx| for all x ∈ ∂Kr, then ı(F, Kr, K) = 0.

2. If |x| ≥ |Fx| for all x ∈ ∂Kr, then ı(F, Kr, K) = 1.

Now we consider the space

X = {z : [0, +∞) → R : z is a bounded, continuous function}
endowed with the sup norm |z|∞ = sup{|z(t)| : t ∈ [0, +∞)}. Let A : K1 → X be the
operator defined by

(Az)(t) =

∫ t

0

[∫ +∞

s

G(τ)f(z(τ))dτ

]1/(p−1)

ds , (2.5)

where K1 is the cone defined by

K1 = {z ∈ X : z is nonnegative, concave and z(0)=0 } .

Note that the elements of K1 are increasing functions.
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Lemma 2.2 A is well defined, A(K1) ⊂ K1, and A is a completely continuous operator.

Proof. For all s ≥ 0, note that

∫ +∞

s

G(τ)dτ =
1

N
G(s)N(p−1)/p(N−1)

and that

∫ +∞

0

[∫ +∞

s

G(τ)dτ

]1/(p−1)

ds = η1/(1−p) .

Hence A is well defined.

Also, note that the function (Az)(t) is of class C2 whose derivatives are given by

d

dt
(Az)(t) =

[∫ +∞

t

G(τ)f(z(τ)dτ

]1/(p−1)

d2

dt2
(Az)(t) =

1

1− p
G(t)[

d

dt
(Az)(t)]p−2f(z(t)) .

Thus (Az)(t) is increasing and concave. Therefore, A(K1) ⊂ K1 .

It remains to prove that A is a completely continuous operator. Let | zn |∞≤ C0, and
let M1 = max{f(t) : t ∈ [0, C0]}. It follows that

| (Azn)(t) | ≤ M
1/(p−1)
1

∫ +∞

0

[∫ +∞

s

G(τ)dτ

]1/(p−1)

ds

| d

dt
(Azn)(t) | ≤

[
M1

∫ +∞

0

G(τ)dτ

]1/(p−1)

.

By the Arzelá–Ascoli compactness criterion for uniform convergence, there exists a
uniformly convergent subsequence (Aznk

) ⊂ (Azn) on compact subsets of [0, +∞). To
prove that there exists uniformly convergent subsequence of (Azn) it suffices to recall that
given ε > 0, there is T = T (ε) such that

∫ +∞

T

[∫ +∞

s

G(τ)dτ

]1/(p−1)

ds < ε.

We now verify that A is continuous. Let (zn) ∈ X such that | zn − z0 |∞→ 0 as n →∞.
Thus

| (Azn)(t)− (Az0)(t) |≤
∫ +∞

0

| Γn(s)− Γ0(s) | ds

where

Γn(s) =

∫ +∞

s

G(τ)f(zn(τ))dτ and Γ0(s) =

∫ +∞

s

G(τ)f(z0(τ))dτ.
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It follows from | zn−z0 |∞→ 0 that Γn(s) → Γ0(s) and that Γn(s) ≤ C/NG(s)N(p−1)/p(N−1)

for all s ∈ [0, +∞). By the Lebesgue dominated convergence theorem,

| Azn − Az0 |∞→ 0,

which implies that A is continuous.

Given ω ∈ K1 , there clearly exists a unique τ = τ(ω) such that 2ω(τ) =| ω |∞ .

Define
τ∗ = sup{τ(A(z)) : z ∈ K1}

and

K = {z ∈ K1 : 2 inf
t≥τ∗

z(t) ≥| z |∞} .

Lemma 2.3 τ∗ is a positive real number and K is a cone invariant by A.

The proof is based on the following Assertion.

Assertion 1 {ω/ | ω |∞ : ω ∈ A(K1) \ {0}} is a relatively compact subset of X.

Proof. Since {Az/ | Az |∞ : z ∈ K1 and Az 6= 0} is a bounded subset of X, it suffices
to prove that

{[Az]′/ | Az |∞ : z ∈ K1 and Az 6= 0}
is also a bounded subset of X.

Integrating by parts we have
[
[Az]′(t)
| Az |∞

]p−1

=

∫ +∞
t

G(τ)f(z(τ)dτ
[∫ +∞

0

[∫ +∞
s

G(τ)f(z(τ))dτ

]1/(p−1)

ds

]p−1

=
(p− 1)p−1

∫ +∞
t

G(τ)f(z(τ))dτ
[∫ +∞

0

[∫ +∞
s

G(τ)f(z(τ))dτ

](2−p)/(p−1)

sG(s)f(z(s))ds

]p−1
· (2.6)

We consider two cases.

Case 1. 1 < p < 2. In this case, it follows from condition (H4) that
[
[Az]′(t)
| Az |∞

]p−1

≤ (p− 1)p−1
∫ +∞
0

G(τ)g2(z(τ))dτ
[∫ +∞

0

[∫ +∞
s

G(τ)g1(z(τ))dτ

](2−p)/(p−1)

sG(s)g1(z(s))ds

]p−1

≤ (p− 1)p−1
∫ +∞
0

G(τ)g2(z(τ))dτ
[∫ +∞

0

[∫ +∞
s

G(τ)dτ

](2−p)/(p−1)

sG(s)g1(z(s))1/(p−1)ds

]p−1

≤ I1 + I2 ,
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where I1 and I2 are given by

I1 =
(p− 1)p−1

∫ 1

0
G(τ)g2(z(τ))dτ

[∫ 1

0

[∫ +∞
s

G(τ)dτ

](2−p)/(p−1)

sG(s)g1(z(s))1/(p−1)ds

]p−1

and

I2 =
(p− 1)p−1

∫ +∞
1

G(s)g2(z(s))ds
[∫ +∞

1

[∫ +∞
s

G(τ)dτ

](2−p)/(p−1)

sG(s)g1(z(s))1/(p−1)ds

]p−1
·

We estimate each integral separately.

To estimate I1, we use condition (H4) to obtain

I1 =
(p− 1)p−1

∫ 1

0
G(τ)g2(z(τ))dτ

[∫ 1

0

[∫ +∞
s

G(τ)dτ

](2−p)/(p−1)

sG(s)g1(z(s))1/(p−1)ds

]p−1

≤ (p− 1)p−1
∫ 1

0
G(τ)g2(z(τ))dτ

[∫ 1

δ

[∫ +∞
s

G(τ)dτ

](2−p)/(p−1)

sG(s)g1(z(δ))1/(p−1)ds

]p−1

≤ (p− 1)p−1
∫ 1

0
G(τ)g2(z(1))dτ

[∫ 1

δ

[∫ +∞
s

G(τ)dτ

](2−p)/(p−1)

sG(s)g1(δz(1))1/(p−1)ds

]p−1

≤ η(p− 1)p−1
∫ 1

0
G(τ)dτ

[∫ 1

δ

[∫ +∞
s

G(τ)dτ

](2−p)/(p−1)

sG(s)ds

]p−1
·

To estimate I2, we use again condition (H4) to get

[∫ +∞

s

G(τ)dτ

](2−p)/(p−1)

sG(s)(g1(z(s)))1/(p−1) ≥ N (p−2)/(p−1)[sG(s)g1(z(s))]1/(p−1)

≥ N (p−2)/(p−1)[sG(s)g1(δz(s))]1/(p−1)

≥ N (p−2)/(p−1)

η1/(p−1)
[sG(s)g2(z(s))]1/(p−1)
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which implies

I2 =
(p− 1)p−1

∫ +∞
1

G(s)g2(z(s))ds
[∫ +∞

1

[∫ +∞
s

G(τ)dτ

](2−p)/(p−1)

sG(s)g1(z(s))1/(p−1)ds

]p−1

≤ η(p− 1)p−1
∫ +∞

1
G(s)g2(z(s))ds

Np−2

[∫ +∞
1

[sG(s)g2(z(s))]1/(p−1)ds

]p−1

≤ η(p− 1)p−1
∫ +∞

1
s1

s
G(s)g2(z(s))ds

Np−2

[∫ +∞
1

[sG(s)g2(z(s))]1/(p−1)ds

]p−1

≤ η(p− 1)p−1‖1/s‖L1/(2−p)[1,+∞)

Np−2
·

Case 2. p ≥ 2. In this case, in accordance to conditions (2.6) and (H4)

[Az]′(t)
| Az |∞ ≤ (p− 1)

∫ +∞
0

G(s)f(z(s))ds∫ +∞
0

G(s)sf(z(s))ds

≤ (p− 1)

[ ∫ 1

0
G(s)f(z(s))ds∫ 1

0
G(s)sf(z(s))ds

+ 1

]

≤ (p− 1)

[ ∫ 1

0
G(s)g2(z(s))ds∫ 1

0
G(s)sg1(z(s))ds

+ 1

]

≤ (p− 1)

[ ∫ 1

0
G(s)g2(z(sM))ds∫ 1

δ
sG(s)g1(z(sm))ds

+ 1

]

where z(sM) = max{z(s) : s ∈ [0, 1]} and z(sm) = min{z(s) : s ∈ [δ, 1]}. It now follows
from the fact that z(sm) ≥ δz(sM) and condition (H4) that

[Az]′(t)
| Az |∞ ≤ (p− 1)

[
η

∫ 1

0
G(s)ds∫ 1

δ
sG(s)ds

+ 1

]
.

The result follows by the Arzelá–Ascoli compactness criterion.

Proof of Lemma 2.3 We first show that τ∗ is a positive real number. Suppose to the
contrary that τ∗ = +∞. Then there must exist a sequence (zn) ⊂ K1 \ {0} such that
(τ(zn/ | zn |∞)) is a strictly increasing sequence of positive real numbers converging to
+∞. By assertion 1, there exists a subsequence of (zn/ | zn |∞) which we denote the
same way, such that (zn/ | zn |∞) converges to some ω0 in X. Hence | ω0 |∞= 1 and,
for large n , we must have

τ(zn/ | zn |) > τ(ω0) .
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Note that ω0(t) ≤ 1/2 , for all t ∈ [0, τ(ω0)] . On the other hand, given t > τ(ω0) , we
have t < τ(zn/ | zn |) for large n. It follows that ω0(t) = limn→+∞ zn(t)/ | zn |∞≤ 1/2 ,
for t > τ(ω0) . We conclude that ω0(t) ≤ 1/2, for all t ≥ 0. But this is impossible, since
| ω0 |∞= 1.

That K is a cone invariant by A is clear. The proof of the lemma is now complete.

Lemma 2.4 We have ı(A,KR, K) = 1.

Proof. According to condition (H3) , for u ∈ ∂KR,

|Az|∞ = max
t≥0

∫ t

0

[∫ +∞

s

G(τ)f(z(τ))dτ

]1/(p−1)

ds

≤
∫ +∞

0

[∫ +∞

s

G(τ)f(R)dτ

]1/(p−1)

ds

=
f(R)1/(p−1)(p− 1)bp/(p−1))

pN1/(p−1)

< R .

Since R ≤ R , we have |Az|∞ < R = |z|∞ . The result now follows from part 2. of Lemma
2.1.

Lemma 2.5 There is r1 ∈ (0, R) such that ı(A,Kr1 , K) = 0.

Proof. According to condition (H1), given M > 0 there exists r1 ∈ (0, R) such that

f(t) ≥ Mtp−1, for all t ∈ [0, r1] .

Thus for z ∈ ∂Kr1 ,

(Az)(τ ∗) =

∫ τ∗

0

[∫ +∞

s

G(τ)f(z(τ))dτ

]1/(p−1)

ds

≥
∫ τ∗

0

[∫ +∞

s

G(τ)Mz(τ)p−1dτ

]1/(p−1)

ds

≥
∫ τ∗

0

[∫ +∞

τ∗
G(τ)Mz(τ)p−1dτ

]1/(p−1)

ds

≥
[∫ +∞

τ∗
G(τ)dτ

]1/(p−1)
τ ∗M1/(p−1)

2
| z |∞ .

Choosing M > 0 such that

τ ∗G(τ ∗)N/p(N−1)

[
M

N

]1/(p−1)

> 2, (2.7)
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we have that | Az |∞>| z |∞, for all z ∈ ∂Kr1 . The result now follows from part 1. of
Lemma 2.1.

Lemma 2.6 There is r2 > R such that ı(A,Kr2 , K) = 0.

Proof. It follows from condition (H2) that there exists r3 > R such that

f(t) ≥ Mtp−1, for all t ≥ r3 .

Note that for z ∈ ∂K2r3 we have

2 min
t≥τ∗

z(t) ≥| z |∞= 2r3 ,

which implies
f(z(t)) ≥ Mz(t)p−1, for all t ≥ τ ∗ .

Thus

(Az)(τ ∗) =

∫ τ∗

0

[∫ +∞

s

G(τ)f(z(τ)dτ

]1/(p−1)

≥
∫ τ∗

0

[∫ +∞

τ∗
G(τ)f(z(τ))dτ

]1/(p−1)

ds

≥
∫ τ∗

0

[∫ +∞

τ∗
G(τ)Mz(τ)p−1dτ

]1/(p−1)

≥ τ ∗G(τ ∗)N/p(N−1)

[
M

N

]1/(p−1) | z |∞
2

·

Define the number r2 = 2r3 . By (2.7), we have | Az |∞>| z |∞, for z ∈ ∂Kr2 , and the
result now follows from part 1. of Lemma 2.1.

3 Proof of the Main Result

Proof of theorem 1.1 It follows from Lemmas 2.4 through 2.6 and the additivity of the
fixed point index that

ı(A,KR \Kr1 , Kr1) = 1

and that
ı(A,Kr2 \KR, KR) = −1 .

Consequently, the operator A has two fixed points, namely z1 in KR \ Kr1 and z2 in
Kr2 \KR .

Acknowledgement. The second author wants to thank the Departamento de
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