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Abstract

This paper deals with the following class of singular biharmonic problems

- A2+ VOl u = u? ~2u, in2cRY,

ue D>2(2), N>5,

where 1< g < 2 —1, 2* =2N /(N —4) is the critical Sobolev exponerm2 denotes the biharmonic
operator 2 is open domain (not necessarily bounded, it may be equ&MpandV is a potential that
changes sign i2 with some points of singularities if2. Some results on the existence of solutions

are obtained by combining the Mountain Pass Theorem and Hardy inequality with some arguments
used by Brézis and Nirenberg.
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1. Introduction

In this paper we are concerned with a class of singular biharmonic problems involving
critical Sobolev exponents of the type

A2y + V) |uldtu=ul?2u, in2cRY,
(P) 22
ue DY), N =5,

where 1< g < 2* — 1, 2 = 2N /(N — 4) is the critical Sobolev exponen#? denotes the
biharmonic operators2 is open domain (not necessarily bounded, it may be equiip
andV : 2 — R is a potential that changes sign with some points of singulariti€s.in

When the potentiaV is a regular function, this kind of the problem has been studied
by several authors. We would like to mention the paper by Bernis et al. [4] and references
therein for problem (P) in a bounded domain withequal to a constant. For the other
references about this problem (P) in whole space with regular potential, we cite a recent
paper by Chabrowski and do O [9]. Some results of existence involving4haplacian
operator with potentidV, still being a regular function, were considered by several authors,
more precisely, for the following quasilinear elliptic problem

(P1) —Apu+ V@) |ul = ul""2u, inRY,
Y lueDlr(rY),

where A, denotesp-Laplacian operatory > p > 1, p <qg+ 1< p*=Np/(N — p),
DLP(RN) is the completion ofC°(RY) in the LP-norm of Vu and V is a continuous
function in RY. Related to the problem above with= p*, among others, we would
like to cite the papers of Benci and Cerami in [2] which treated the easel,
p=2andV =V~ e LN/2(R"), while Pan in [20] studied the case> 1, p=2 and
vV = vt e LN?®RN). In [3] Ben-Naoum et al. considered = V+ — v—, v* £0,
v e LP"/("=P)(RN) satisfying

(p*=p)/p
IVIP*/([?*—,D) = ( / |V|p*/(p'*l7) dx) < S,

RN

wheres is the best constant of the Sobolev embeddifig’ (RV) in to L?* (RY), and they
proved that problem ( has a positive solution provided

(N +1)p?—2Np
W-po-n PPYN

In the case when the potentiél has some singularity, for instané&x) = 1/|x|?, we
observe that by Pohozaev identity [21] (see also [13]) the problamh@&s no solution
wheng=p=g¢q, A <0,s=p*:=pN/(N — p) and£2 is a bounded starshaped with
respect to the origin. Still in a bounded domain, Garcia Azorero and Peral Alonso in [13]
have shown that problem above has at least one solution provided that one of the conditions
below hold

() B=p=g,s<p*, 0<—1<iy:=(N—-p)/p)?
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(i) B<p=gq,s=p*,0<—A<i, N>p?—(p—18B,

whereiy andii denote the best constant of the Hardy inequality and the first eigenvalue
of (—A,, WP (£2)), respectively.

In [14], Ghoussoub and Yuan not only extended the results of existence and nonexis-
tence mentioned above whéh has a singularity at the origin but also get multiplicity
results for problem (P on a bounded domain, considering a large class of possibilities
among the numbers, ¢, 8, s, p* andg* = (N — B)p/(N — p) (Hardy’s critical expo-
nent). Now when2 = R", Terraciniin [24], among others results, applying Pohozaev type
inequality concluded that gfPhas no solution wheh £ 0, 8 # 2, p = 2 ands = 2*. While,

Lions in [16] proved the existence of positive solutions for the case0, § =2 = p and
s = 2*, and Jannelli in [15] presented a explicit positive solution for this situation.

With respect to the problems involving the biharmonic operators with potetitial
having singularities, more exactly, the problem of the type (P), we remark firstly that with
some changes the nonexistence result obtained in [24] also holds for problem (P) with
B # 4. Still related to problem (P), Noussair et al. in [19], applying a compactness result
due to Egnell [11, Lemma 10], treated the situation when the potevitialnonpositive
and verifies the condition:

O(|x|°) as|x|— oo,
H) V(x)=
(H) V) {0(|x|u) as|x| — 0,
where
2(N +v) 2(N + )
—4 — 1< ——.
<v<p and N4 <g+1< N—a

Notice that this condition implies that should cross the critical hyperbdle =4

In this work, motivated by the papers mentioned above, we study problem (P), mainly
in a domain not necessarily bounded,when the potelitial V* — vV~ changes sign and
the positive par¥* either cross the hyperbole|~* likes above or it remains below of the
critical hyperbole near of the origin and at the infinity, thatis; —4 < . More exactly,

we will impose the following condition:
VeLL (2), V=VI—-V - =Vi+V-V", VE£0,

VL VT eL%(@2)NLY(R). oo = y—rrry;.

(H2) —
Vy e $2, I|mx%y, xee|x —y|*Va(x)=0
and limy—co [x]|*Va(x) =0,
where
4 ifg=1,
o= {N — 7(1\/_4)2@4_1) if g >1,

and
VE@) :=max{£V (x),0}.

Example 1.1. Consider the potential = Vi1 + Vo — V™ := Vi 4+ €|x|7* =V~ on RV
whereVy, V™ e L% (£2) N L™(£2), V* # 0 ande is sufficiently small.
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Example 1.2. Consider the potentidl = V1 + Vo — V=, VE £0, Vi, V™ € L% (2) N
L>®(£2) andV, behaves likex|~**€ and|x|~*~¢ at the origin and the infinity, respectively.

Remark 1.1. The number defined above, it exactly the exponent where the Hardy type
inequality hold (see, e.g., Lions [17]), that is,

uq+l

(q+1)/2
e dx < ( /IAulzdx) , q>1 ueD**RY), (1.1)
RN

RN
wherea := N — (N —4) (¢ +1)/2, N > 5, and wherw =4 andg = 1 thenn < Ay :=
((N — 4)/4)? is the optimal constant, whose the proof can be found in [10]. Fhe
Laplacian version of this inequality is proved in [7].

We shall state our first result.

Theorem 1.1. Assume eithefH>) or that V* =£ 0 with V* verifying(H1). Then, problem
(P) has at least one nontrivial solution provided that

() 1<g<2*—1,iff N>8,
(i) v25<q<2"—1if N=56andN =7,
(i) 1 <g < ﬁ, if |V~ | is sufficiently large.

Here, we also study the same kind of results when the poténtgbelow of the critical
hyperbole x| ~* at the origin and2 a bounded domain, that is, we consider the following
problem:

) A2u+Vu=plul?u+ u¥2u, in2cRV,
weD¥%(2), N=5 un>0 1<g<p*—1

In this case we shall state the following result.

Theorem 1.2. Suppose that? is a bounded smooth domain. Assume that eitfier
Mlx|*, A <Ay or V:=21/|x|P, A <0, B <4 Then, the problenfP,) has at least one
nontrivial solution provided

() 1<qg<2*—1if N>8,
(i) v23<g<2"—1if N=56andN =7,
(i) 1 <gq < 54, if |V | is sufficiently large.

In order to conclude, we like to say that our main theorems extend or complement the
results obtained in [3] for the fourth order operattras well as results get in [19], consid-
ering the potential more general having some singularities. In addition, when the domain
is bounded, we also complement some results proved in [14].

This paper is organized as follows. Section 2 contains the statements and the proofs of
two crucial lemmas related with the proof of Theorem 1.1. Section 3 and Section 4 deal
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with the proof of Theorems 1.1 and 1.2, respectively. Finally in Section 5 we have some
generalization and concluding remarks.

Notation. In this paper we make use of the following notation.

C, C1, Co, ... denote (possibly different) positive constants;

B[p, R] and B(p, R) denote the closed and open ball with the radRusentered at
point p of RV, respectively;

LP(£2),1< p < oo, denote Lebesgue spaces; the normfnis denoted byu|,;

DE’Z(Q) denotes the completion of the spac&°(£2) in the norm |ju| :=
(Jq 1Aul?dx)V2.

In this work we are denoting by the best constant to the Sobolev embedding,
D2%(2) — L? (), that s,
S:=inf{|Aul3: u € D>%(£2) and|ulp = 1}.

It is known (see [19]) that for2 = R" the best constant is attained by the functions

CneN=472
Sex, (¥) 1= 5 2\(N—4)/2
(€24 |x — xo|2) (N =9/
Cn = (N(N —4)(N? — 4)) V978 (1.2)

2. Preliminary results
We begin this section stating the following crucial result:

Lemma 2.1. Suppose eitheH>) or that V* £ 0 with V* verifying(H1). Then the function
v :D2%(2) — R, given by
Y(u) = / Vi uitldx, 1<qg<2*—1,
2
is weakly continuous.

Proof. If V* £ 0 with VT satisfying (H), this case is exactly one of results in [11,
Lemma 10]. If () holds, the casg = 1 was proved in [22, Lemma 2.1] (see also [23,25]
for related results). For the cage- 1, the proof is done adapting arguments by [22], thus,
we are going to give only a sketch of the proof. Singes L% (£2), from a result by Brezis
and Lieb [5] it follows that

un—)/V1|u|q+1dx
2

is weakly continuous. Hence it remains to show that

ur—)/V2|u|q+ldx
I?)
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is weakly continuous. Let,, — u (weakly) ande > 0. By (H>), there existsR > 0 such
that

x[*Vo(x) <e, x€8£2, |x|>R. (2.1)
Define

£21: =2\ B[O, R], £22:=£2NB(0,R).
From (2.1) and by using the Hardy type inequality (see [17]) we infer that

(g+1)/2
+1 Jun |41 2 !
Voluy |7 dx <e | ———dx <eC |Auy|*dx ,

21

|x]*
21 21
so that
/ Volun|9ttdx < Ce, Vn, C > 0. (2.2)
21

By compactness of2», there is a finite covering of2, by closed ballB[x, r¢],
k=12,...,m,suchthat

x — x| Vo(x)<e, |x—xkl<r, k=1,2 ....,m. (2.3)
Takingr :=min{ry, k=1,2, ..., m} we obtain
lx —x¢|*Vo(x) <€, |x—xkl<r, k=1,2,...,m. (2.4)
Define
m
A= Blxerl,
k=1

then invoking again the Hardy inequality we get

1 (g+1)/2
+1 MK 2
Voluy |7 dx <e | ———dx <eC |Auy|©dx ,
A A

lx — xp|*
A
thus
/ Volun|9ttdx < Ce, Vn, C > 0. (2.5)
A

On the other hand, since from (2.2) we hagee L>°(£22 \ A), and sinces2; \ A is
bounded, we can assume thate L* (22 \ A). Then, by a result by Brezis and Lieb [5],
we infer that

/ Valun |9t dx — / Volul?tdx, asn — oo. (2.6)
22\ A 22\ A
This inequality together with (2.2), (2.4) and (2.5) we conclude

/Vglun|q+ldx—>/V2|u|q+ldx, asn — oo.
2 2
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This completes the proof of Lemma 2.10
Next result will be used in order to get a weak solution.

Lemma 2.2. Suppose either thgH>) or that V* £ 0 with V+ satisfying(H1). Then the
functiong : D2(2) — R, given by

o) = / Vil tuvdx, 1<g<2*—1 ve DE’Z(Q) fixed
2

is weakly continuous.

Proof. If V* =0 with V™ satisfying (H), the proof is similar to those given above (see
[11]). Suppose that (b)) holds and let(x,) be a sequence such thagt — u (weakly),
U,u, € DE’Z(Q) ande > 0. We are using the same notations of the proof of Lemma 2.1.
SinceVy € L% (£2) by a result due to Brezis and Lieb [5], we have

/Vllunlq_lunvdxe/Vllulq_luvdx, asn — 0o.

2 Q

Hence it remains to show that
/Vglunqulunvdxa/Vgluquluvdx, asn — oo.
2 Q

Once more, by the Hardy type inequality and (2.1), we have

1/2* 1/
/Vzlunlq_lunvdxg (/U *dx) (/V”’uﬁp dx)
2

21 21
1/2*

1/
§e</vz*dx) (/|x|“pluzp/dx)
21 21
1/2* qp’/(2p")
<6C</v2*dx> </|Au|2dx)
21

21

where in the last inequality we used the Hardy inequality, sigge= N — (gp'(N — 4)/2
becausee =N — (¢ + 1)(n — 4)/2 andp’ = 2N /(N + 4). Then,

/ Volun |9 tu,vdx < Ce. (2.7)

21
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Similarly, we have the following estimates

/V2|u|q71uvdx < Ce, /V2|un|q71unvdx < Ce,
21 A
/v2|u|q*1uudx < Ce,
A
whereC does not depend on Combining these inequalities with (2.7) we obtain

/Vglunqulunvdxa / Volul? tuvdx, asn— oo,
2:\A 2:\A

thus, the Lemma 2.2 is provedO

3. Proof of Theorem 1.1

The proof of the theorem is done adapting some ideas from [3] and arguments by [6].
The associated energy functional to problem (Fl):ing’z(.Q) — R, defined by

. 1 2, 1 IER Y
I(w) .:/(?Aul +mV|u|q — §|u| dx,
2

which is aC? functional and its Fréchet derivative is given by

I'(wyv:= /(AuAv + Vi§ul? tuy — |v|2*72uv) dx.
2

We shall prove that the functional verifies the mountain pass geometry conditions,
namely

Lemma 3.1. Suppose eithefHy) or that V* £ 0 with V+ verifying (H1). ThenI verifies
the following conditions

(a) There exist constanis, 8 > 0, such that/ (u) > B, |u|| = p.
(b) There existg € D2?(£2) with ||e|| > p, such that/ (e) < 0.

Proof. (a) SinceVs, u‘fl >0andVy, V™ e L% (£2) N L*®(£2), we have
1 "
1) > §||u||2 — Clu| 7t~ Clul® =B, lull=p, C>0.

(b) Letw € D2?%(£2) — {O}; thus

12 » ra+1 1 % -
I(tw) :=§/|Aw| dx—i—q_'_l/VIuﬂqu dx—§/|w| dx.
2 2 2
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Since 2< g + 1 < 2* we have that
I(tw) - —o0, ast — +oo.
This proves Lemma 3.1.0
From Lemma 3.1, applying the Mountain Pass Theorem [1], there exists a sequence
{un} C D2?(£2) such that
I(u,)—c and I'(u,) — 0, asn— oo,
where

(%) c:=inf sup I(h(2)),
hefze[og] ( )

I:={heC([0,1], D??(2)): h(0) =0, h(1) =e}.

It is standard to prove that the sequence above is boundb@ f1is2), so that passing
to the subsequence if necessary, we can assume that

u, —u, weaklyin D?2(2), asn — oo.

By using Lemmas 2.1, 2.2 and a result by Brezis and Lieb, we conclude:timat
weak solution. Finally, by virtue of next result, Lemma 3.2, and arguing as in Brezis and
Nirenberg [6] we reach that is nontrivial.

Lemma 3.2. The mountain pass levelgiven in(x) verifies the inequality

2
0<,3<c<—SN/4.
N

Proof. Let x € C5°(£2) be a positive function satisfying
A=int{xe2: x(x)=1}#¢ and supy~ NA#Q.
Notice that the functions ,, defined in (1.2) satisfies
Sex, =0, weaklyinD?%($2), ase — 0
and then
XSex, — 0, weakly in D>2(2), ase — 0.
From Lemma 2.1, we infer that
/ V*H(xser,)?ttdx -0, ase— 0. (3.1)

2
We now claim that

q+1 1N i 4
siom € LH(RY), |fq>N_4.

Indeed,
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[s7EL] = CTH Vi +D/2 dx
0 1=Cn (€2 + [xP)(N-Dg+D/2
RN

rN-1qr
|2)(N=4(a+1)/2

o0
_ Cq+16—(N—4)(q+l)/2+N/
N (1+1r
0

oo, if .
< q>N—4

Next, define
Ue xo(X) := X (X)Se,x, = X (X)Se,0(x — X0),

then (see [4]) we have

|Aucsl3=1Aucold +o(e¥ ™). |uesld =lucol3 +o(e"),
KeWN=9r/2 1 o(c(N=41/2) if r <25,

Jeoly = | KeN=N-9r72)loge| + (N~ /2) loge| if r = .
KeN=(N=9r/2 1 o(eN-(N=4r/2) if r > ﬁ.

f 1 1 . . . .
Now we considerf; := sfg /|sZJ5 |1 as an approximation of identity, then

/ Vul o dx = f VX slo x - s) dx

Q Q
g+1
sTaT(x)
_ +1 €,0 g+1
—/((qu ) (x) * =) )sego | dx
P |S€,0 l1

= |Sg,gl‘1(v(xo)xq+l(xo) +0(1))

CLHLe~(N=(g+D/24N

00
erldr q+1
§ 1+ |r|2)(N_4)(q+l)/2(V(x0)X (x0) + 0(1))
0
= C}‘{J+16_(N—4)(q+1)/2+NC(V(xo)xq+1(x0) . 0(1))’

C>0, aexpe RV,
From the assumption on the functignthat is, choosingo such that
x(xo) =1, V(xp)=-V"(x0) <0
and that the convergence holds, we obtain

/ Vultldx = e=N=9@+D/2N ¢ (v~ (x0) + o(1)). (3.2)
2
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Define
u
e Iu:);:(l)z*’
then (as in [6]) we have
Xe:=|Av|3< S+ 0(eX), L:=min{N —4,4}. (3.3)

On the other hand, notice that
I(tve) > —o0, ast — oo,

where
2 t2* 1a+1

t
) =g Xt 1

/Vvé”ldx,
Q

thus there exists > 0 such that

Ye :=supl (tve) = I (tcve).

t>0
In addition,
12 %
g(t) = EXe o

achieves its unique positive maximum)éi/(z*’z), so that

q+1

2 e 13
Ye < NXS /(&2 ﬁ / Vultldx.
q
2

From (3.3), we have
g+1

2 Nya Ly, L 1
Ye< S M4+ 0(e )+q€+1/Vug+ dx.

2

Now since|uc |2+ is bounded away from zero by a const&htindependent ok, we
obtain

< 2 onya Ly, ciét g+1
Ye\NS +0(6 )+m Vue,dex.

Observing that, — $¥@~2 ase — 0 (see [8]), inserting (3.2) in to the inequality above
we have

2 N4 L SYETD _ (naygins2en
Ye< =S O(e C e VT -V 1
e<y +0(eh) + p— (=V~(x0) + 0(1))
< 2oV, N A(C = |V e (V@ HD/24N-(N-4)

N
+o(l)e N-Ha+D/2+4)
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Sinceq > 575, we get

Y < %SN/“ +eNHC = (IVT |0 — 0(1)) e N DlatD/214)

2
< —SN/4, ase — 0.
N

This completes the proof of Lemma 3.2 as well as the proof of Theorem 11.

4. Proof of Theorem 1.2
For that matter we start by proving the following crucial result.

Lemma 4.1. Suppose < 4 and thats2 is a bounded domain. Then
f:DF(2)~ R
given by

2
u
2

is weakly continuous.

Proof. Notice that

1 6 pN-1
B(0,¢) 0
then V|x|? € LN/4(£2) and sinca:? € LN/(N =4 (£2) using a result by Brezis and Lieb we
conclude the proof of Lemma 4.1.0

Now, from the Hardy inequality it is easy to see that

12
2, A >
lull« = |[Au|®+ —5u” ) dx ,  A<An,
x4
2

define an equivalent norm in’z(.Q). Thus, in both cases, arguing as in [6] (or [8,19])
and combining the remarks above with the arguments used in the proof of Theorem 1.1 we
complete the proof of Theorem 1.20

5. Further resultsand concluding remarks
Finally, we point out that the same argument done to prove the Theorem 1.1 can also be

used without difficulty in order to get similar results involving theLaplacian operator.
In this case, the main tool is the Hardy type inequality (see, e.g., [17] or [7]) given by
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Lt @+D)/p
n/ dx < ( / |vu|de) , g=p-1 ueD"(RY), (5.1)

x|
RN RN
wherea :=N — (N —p)(g+1/p, N = p.
Thus assume that either the conditions (H3) or (H4) below hold, whkdne is a
nonpositive function which is locally boundedR¥ \ {0} and

_[o(xI") as|x| > oo,
(Ha) VQj_{oaﬂﬂ as|x| — 0,

where—p <v <pandp(N +v)/(N —p)<qg+1<p(N+wn)/(N — p)and
VeLt (), V=VI—-V =Vi+V,—-V", V*#£0,

*

(Ha) WJV:GL%%Q)OLWGD, Ao = oy
Vy e, Iimx%y, xee|x —y|*Va(x)=0
and limy—c [x]|*Va(x) =0,
where
p ifg=p—1,
Ol::{N—W ifg>p—1

Theorem 5.1. Suppose eitheH4) or V* =£ 0 and VT verifying(Hz). Then problen{Py)
has at least one nontrivial solution provided

() N>p?, p<qg+1l<s=p andu >0,
(i) p<N<p2,p*—pL+1<q+1<s=p* andp > 0.

We remark that the proof of Theorem 5.1 follows the same line to those made in the
proof of Theorem 1.1, because the conditiog)fér p-Laplacian, which was used by [18],
is equivalent to the condition ()l for the biharmonic operator. In addition, this theorem
complement the results in [3] for problems{Fn the sense that it is true for a class of
potentials changing sign with singularities.

Finally we shall state the similar results to Theorem 1.2 forpHeaplacian operator,
whose the proof follows as in the proof of Theorem 1.2, that is, when the pot&higal
below of the critical hyperbolgc|~7 at the origin and2 a bounded domain for the problem
below

P3) —Apu+V(x)u”_1=u|u|q_lu+|u|”*_2u, in 2 cRY,

3
ueDg’p(.Q), uw>0, p—-1<qg<p*—1

Theorem 5.2. Suppose that? is a bounded smooth domain. Assume that eitfier

A/1x|P, —h < Ay or V:=A/|x|?, . <0, B < p. Then, the problenfPs) has at least
one nontrivial solution provided

() N>p% p<qg+1<p*andu >0,
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(i) p<N<p2,p*—pL+1<q+1<p*andu>0.

This theorem is related to some results found in [13] and [14], because in our case we
studied situation not considered by them, for example, in [13] the authors worked with
the caseu = 0 andV = —V~, while in [14] is analyzed the situation where= 0 and
A€ (—An,0).
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