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Abstract. We prove some existence results for the problem (1λ,µ) with 0 < q < 1 < p depending
on the range of parameters λ and µ. To establish the existence of solutions we use the method of
successive approximations and the monotone method of sub and supersolutions. The cases where
(i) a(x) is bounded from below by a positive constant and (ii) a(x) is bounded below by a positive
constant outside a ball are considered. We also discuss the case where µ = 0 and λ is replaced by a
positive or negative function. In this situation we use the variational method based on a constrained
minimization combined with concentration–compactness principle at infinity.

1. Introduction

The main purpose of this article is to construct solutions to the problem

(
1λ,µ

) {
−∆u+ a(x)u = λuq + µup in IRN ,

u(x) > 0 on IRN ,

where 0 < q < 1 < p and λ > 0, µ > 0 are parameters. The coefficient a(x) is positive,
locally Hölder continuous and bounded on IRN .
In the case of the Dirichlet problem in a bounded domain Ω ⊂ IRN

(D)

{
−∆u = λ |u|q−2u+ µ |u|p−2u in Ω ,

u(x) = 0 on ∂Ω ,

with 1 < q < 2 < p, there are a number of existence results. In particular, problem (D)
admits infinitely many solutions for some values of parameters λ and µ [ABC], [BW]
and at least two positive solutions for λ > 0 small and µ = 1 [RU] in the case where
Ω is a ball and exactly two solutions if 2 < p < 2N

N−2 [APY]. Some existence results
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(infinitely many) for problem
(
1λ,µ

)
can be found in the papers [CH3], [GM] and [ST].

However, in these papers the nonlinearity is replaced by h(x) |u|q−2u + k(x) |u|p−2u,
with k and h satisfying some integrability conditions.
In Sections 2 and 3 we present some existence results based on the method of suc-

cessive approximations with no restrictions on p.
Section 4 is devoted to a purely concave nonlinearity. Solutions obtained by the

method of successive approximations in Sections 3 and 4 are bounded from below
by positive constants. Section 5 contains some existence results for problem

(
1λ,µ

)
obtained by the use of the method of sub and supersolutions under less restrictive
conditions on λ and µ and we derive some estimates from below. In general solutions of
problem

(
1λ,µ

)
, whose existence have been established in Theorems 3.1 and 5.1 exhibit

the following behaviour when λ or µ tend to 0: (i) if λ → 0, then solutions converge
uniformly to 0 on IRN , (ii) however, if µ→ 0, then there exists a nonzero limit which is
a solution of problem (1λ,0). In Section 6 we relax some assumptions on the coefficient
a(x) and we allow the nonlinearity to interfere with the first eigenvalue λ1(a) of the
operator −∆u+a(x)u on IRN . We give some existence results in two cases: λ1(a) > 0
and λ1(a) < 0. In both cases we use the method of sub– and supersolutions. Finally,
in Section 6 we again consider the purely concave nonlinearity. Here we give some
existence results for λ = 1,−1 and µ = 0. Problems

(
1λ,µ

)
with λ = 1,−1 and µ = 0

stem from the problems in scalar curvature of warped products of semiriemannian
manifolds [DL]. In the case λ = −1, µ = 0 we offer a very simple proof of the existence
of a solution based on a constrained minimization. To obtain relative compactness of
a minimizing sequence we apply the concentration–compactness principle at infinity
[CH2], which generalizes slightly the result from the paper [LI].

2. Preliminaries

Let a0 = infx∈IRN a(x) and A = supx∈IRN a(x). We shall always assume, except in
Sections 6 and 7, that a0 > 0. Let 0 < a1 < a0 and set

H(x, δ) =
N∏

j=1

cosh δxj

for x ∈ IRN , where δ > 0 is a small parameter. By straightforward calculations we
check that there exists a number δ0 > 0 such that

−∆H + a(x)H ≥ a1H on IRN(2.1)

for all 0 ≤ δ ≤ δ0.
Using the function H it is easy to show the following version of the maximum

principle in IRN for the operator −∆u+ a(x)u [CH1].

Proposition 2.1. Suppose that u(x) ≤ Ceδ
∑N

i=1
|xi| on IRN for some constants

C > 0 and 0 ≤ δ ≤ δ0 and that

−∆u+ a(x)u ≤ 0 in IRN .
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Then u(x) ≤ 0 on IRN .

From this we easily derive the following lower and upper estimates:

Corollary 2.2. Suppose that |u(x)| ≤ Ceδ
∑N

i=1
|xi| on IRN for some constants

C > 0 and 0 ≤ δ ≤ δ0 and that

−∆u+ a(x)u = f on IRN ,

where f is a bounded function. Then

infx∈IRN f(x)
A

≤ u(x) ≤ supx∈IRN f(x)
a0

on IRN .

This result will be frequently used in Sections 3 and 4 to construct a solution to
problem

(
1λ,µ

)
by a method of successive approximations.

3. Successive approximations

In this section we construct a sequence of successive approximations to problem(
1λ,µ

)
.

Let u0(x) =M , where 0 < M ≤ 1 is a constant. We define uj for j ≥ 1 by(
2j

) −∆uj + a(x)uj = λuq
j−1 + µup

j−1 in IRN .

Equations
(
2j

)
have unique bounded solutions on IRN .

Theorem 3.1. Suppose that λ + µ ≤ a0. Then problem
(
1λ,µ

)
admits a solution

satisfying (
λ

A

) 1
1−q

≤ u(x) ≤
(
λ+ µ

a0

) 1
1−q

on IRN .(3.1)

Proof . Since 0 < M ≤ 1, we have

−∆u1 + a(x)u1 ≤ (λ + µ)M q in IRN

and by Corollary 2.2 we have

u1(x) ≤ (λ + µ)M q

a0
on IRN .

Similarly, we have

−∆u2 + au2 ≤ λ(λ+ µ)qM q2

aq
0

+
µ(λ + µ)pMpq

ap
0

≤ (λ + µ)1+qM q2

aq
0

in IRN

and by Corollary 2.2

u2(x) ≤ (λ + µ)1+qM q2

a1+q
0

on IRN .
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Using mathematical induction we show that

un(x) ≤ (λ+ µ)1+q+...+qn−1

a1+q+...+qn−1

0

M qn

on IRN .(3.2)

We now derive lower bounds for the sequence {un}. First, we observe that

−∆u1 + au1 ≥ λM q in IRN .

Hence by Corollary 2.2 we have

u1(x) ≥ λM q

A
on IRN .

We easily show using mathematical induction that

un(x) ≥ λ1+q+...+qn−1

A1+q+...+qn−1 M
qn

on IRN .(3.3)

Let Ω1 ⊂ Ω2 ⊂ Ω3 be bounded domains in IRN , with Ω1 ⊂ Ω2 and Ω2 ⊂ Ω3. It follows
from Theorem 8.24 in [GT] that

‖un‖Cα(Ω2)
≤ K , n = 1 , 2 , . . .

where K = K
(
Ω3, A, a0, λ, µ,M

)
. Using this estimate we deduce from Theorem 6.2

in [GT] the following estimate

‖Dun‖Cα(Ω1)
,
∥∥D2un

∥∥
Cα(Ω1)

≤ K1

for some constant K1 > 0 independent of n. By standard arguments involving the
Ascoli–Arzela theorem, we can choose a subsequence of {un}, denoted again by {un},
such that

un −→ u , Dun −→ Du and D2un −→ D2u

uniformly on each bounded domain of IRN . Obviously, u(x) satisfies
(
1λ,µ

)
and the

estimate (3.1). ✷

As an immediate consequence of Theorem 3.1 we obtain the following existence
results:

Corollary 3.2. Suppose that a0 ≥ 2. Then problem

(11,1)

{
−∆u+ a(x)u = uq + up in IRN ,

u(x) > 0 on IRN

admits a solution u(x) satisfying

1

A
1

1−q

≤ u(x) ≤
(

2
a0

) 1
1−q

on IRN .
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Corollary 3.3. Suppose that 1 < a0 < 2. Then for each 0 < λ ≤ a0 − 1 problem

(1λ,1)

{
−∆u+ a(x)u = λuq + up in IRN ,

u(x) > 0 on IRN

admits a solution u(x) satisfying

(
λ

A

) 1
1−q

≤ u(x) ≤
(
λ + 1
a0

) 1
1−q

on IRN .

Corollary 3.4. Suppose that 1 < a0 < 2. Then for each 0 < µ ≤ a0 − 1 problem

(
11,µ

) {−∆u+ a(x)u = uq + µup in IRN ,

u(x) > 0 on IRN

admits a solution u satisfying(
1
A

) 1
1−q

≤ u(x) ≤
(
1 + µ

a0

) 1
1−q

.

If u is a bounded solution of problem
(
1λ,µ

)
with K = infx∈IRN u(x) > 0, then by

Corollary 2.2

u(x) ≥ λKq + µKp

A
on IRN

and hence

K ≥ λKq + µKp

A
.

This inequality will be used to derive some nonexistence results.

Proposition 3.5. (a) If λ ≥ A and µ ≥ A, then problem
(
1λ,µ

)
does not have a

bounded solution which is bounded from below by a positive constant on IRN .
(b) Let µ > 0 be fixed. Then for λ > µ−

1−q
p−1A

p−q
p−1 problem

(
1λ,µ

)
does not have a

bounded solution which is bounded from below by a positive constant. Similarly, for
λ > 0 fixed and µ > λ−

p−1
1−q A

p−q
1−q problem

(
1λ,µ

)
does not have a bounded solution

which is bounded from below by a positive constant.
(c) Let a0 = A. If the equation At = λtq + µtp does not have a positive solution in

t, then problem
(
1λ,µ

)
does not have a bounded solution which is bounded from below

by a positive constant.

Proof . (a) If K ≥ 1, then

K ≥ λKq + µKp

A
>

µKp

A

which implies that µ < AK1−p ≤ A. On the other hand, if 0 < K < 1, then K > λKq

A
and hence λ < A.
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(b) Assuming that u is a bounded solution which is bounded from below by a positive

constant on IRN we have K >
(

λ
A

) 1
1−q . Then

−∆u+ a(x)u = λuq + µup > µup > µ

(
λ

A

) p
1−q

in IRN

and by Corollary 2.2 we have

u(x) ≥ µ

A

(
λ

A

) p
1−q

=
µλ

p
1−q

A
1−q+p
1−q

on IRN .

These inequalities can now be iterated in the following way. Since

−∆u+ a(x)u ≥ µup ≥ µp+1A
p2

1−q

A
(1−q)p+p2

1−q

in IRN ,

we deduce from Corollary 2.2 that

u(x) ≥ µ1+pλ
p2

1−q

A
1−q+(1−q)p+p2

1−q

on IRN .

By induction we check that

u(x) ≥ µ1+p+...+pn−1
λ

pn

1−q

A
(1−q)(1+p+...+pn−1 )+pn

1−q

=
µ−

1
p−1

(
µ

1
p−1 λ

1
1−q

)pn

A− 1
p−1Apn

(
1

1−q +
1

p−1

)
on IRN for each n ≥ 1. This shows that if µ

1
p−1 λ

1
1−q > A

1
p−1+

1
1−q , then u(x) = ∞ on

IRN , which is impossible. The last inequality justifies the assertion (b).
(c) This is a direct consequence of the inequality AK ≥ λKq + µKp. ✷

The choice of M satisfying 0 < M ≤ 1 in the proof of Theorem 3.1 ensures that the
sequences of upper and lower bounds are bounded. If M > 1 and λ + µ ≤ a0, then
using the above method we can show that

un(x) ≤ (λ + µ)1+q+...+qn−1

a1+q+...+qn−1

0

Mpn

on IRN .

Similarly, if a0 < λ+ µ and 0 < M ≤ 1, then

un(x) ≤
(
λ + µ

a0

)1+p+...+pn−1

M qn

on IRN .

Both sequences are unbounded.
It is worth pointing out that if a0 = A, that is, a is a constant function, by Theo-

rem 3.1 each successive approximation must be a constant function. Therefore in this
case this method leads to a constant solution. We can also start successive approxima-
tions from u0 = f(x), where f is a locally Hölder continuous function on IRN such that
δ ≤ f(x) ≤ 1 on IRN for some constant 0 < δ. Inspection of the proof of Theorem 3.1
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shows that we also obtain a solution satisfying the estimate (3.1). However, it is not
clear whether different first approximations lead to distinct solutions. It is easy to see
that if f1(x) ≤ f2(x) on IRN and u1 and u2 are solutions corresponding to f1 and f2,
respectively, then u1(x) ≤ u2(x) on IRN .
Theorem 3.1 can be easily extended to the problem

(1Λ,M )

{−∆u+ a(x)u =
∑k

j=1 λju
qj +

∑l
j=1 µju

pj in IRN ,

u(x) > 0 on IRN ,

where 0 < q1 < q2 < . . . < qk < 1 < p1 < p2 < . . . < pl and λj and µj are positive
parameters.

Proposition 3.6. Suppose that
∑k

j=1 λj +
∑l

j=1 µj ≤ a0. Then problem (1Λ,M)
admits a positive solution u satisfying

(
λ1
A

) 1
1−q1 ≤ u(x) ≤

(∑k
j=1 λj +

∑l
j=1 µj

a0

) 1
1−q1

on IRN .

4. Purely concave nonlinearity

In the case where µ = 0 the successive approximations

w0(x) = M , M > 0 ,
−∆wj + a(x)wj = λwq

j−1 in IRN , j = 1 , 2 , . . .

satisfy the estimates

wn(x) ≤ λ1+q+...+qn−1
M qn

a1+q+...+qn−1

0

on IRN

and

wn(x) ≥ λ1+q+...+qn−1
M qn

A1+q+...+qn−1 on IRN .

Therefore we can formulate the following result

Theorem 4.1. Suppose that 0 < a0 = infx∈IRN a(x) and supx∈IRN a(x) = A < ∞.
Then for each λ > 0 problem (1λ,0) has a solution w(x) satisfying(

λ

A

) 1
1−q

≤ w(x) ≤
(
λ

a0

) 1
1−q

.

In Proposition 4.2 below we show that a solution of problem (1λ,0) provides a lower
estimate for a solution of problem

(
1λ,µ

)
.

Proposition 4.2. Suppose that λ + µ ≤ a0. Let u be a solution of problem
(
1λ,µ

)
from Theorem 3.1 and w a solution of problem (1λ,0) from Theorem 4.1. Then w(x) ≤
u(x) on IRN .



62 Math. Nachr. 233-234 (2002)

Proof . For a fixed 0 < M ≤ 1 we compare successive approximations for problems(
1λ,µ

)
and (1λ,0). As in the proof of Theorem 3.1 we can establish the inequality

un(x) ≥
(
µ

A

)1+p+...+pn−1

Mpn

on IRN

for each n. This inequality will be used to estimate uj −wj. Since

−∆(u1 −w1) + a(u1 − w1) = λM q + µMp − λM q = µMp in IRN ,

by Corollary 2.2 we have u1 −w1 ≥ µMp

A on IRN . Similarly,

−∆(u2 −w2) + a(u2 − w2) = λuq
1 + µup

1 − λwq
1 ≥ µup

1 ≥ µ1+pMp2

Ap
in IRN

and by Corollary 2.2 we get

u2 −w2 ≥
(
µ

A

)1+p

Mp2
on IRN .

It easy to see that

un −wn ≥
(
µ

A

)1+p+...+pn−1

Mpn

on IRN

for each n. Letting n→ ∞ the result readily follows. ✷

For a fixed λ > 0 and µ > 0 satisfying λ + µ ≤ a0 we denote by uλ,µ a solution of(
1λ,µ

)
from Theorem 3.1. As an immediate consequence of the estimate (3.1) and the

interior Schauder estimates we get

Proposition 4.3. Suppose that λ + µ ≤ a0. Then for a fixed λ > 0

lim
µ→0

uλ,µ(x) = wλ(x) on IRN ,

where wλ is a solution of problem (1λ,0) satisfying
(
λ

A

) 1
1−q

≤ wλ(x) ≤
(
λ

a0

) 1
1−q

on IRN .

Proposition 4.4. Suppose that λ + µ ≤ a0. Then for each fixed 0 < µ < a0 we
have limλ→0 uλ,µ(x) = 0 uniformly on IRN .

Proof . Let Sλ,µ = supx∈IRN uλ,µ(x). Since λ + µ ≤ a0, it follows from the estimate
(3.1) that Sλ,µ ≤ 1. By virtue of Corollary 2.2 we have

uλ,µ(x) ≤ λSq
λ,µ + µSp

λ,µ

a0
on IRN .

Hence

a0Sλ,µ ≤ λSq
λ,µ + µSp

λ,µ .

Letting λ→ 0, we get
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a0 lim sup
λ→0

Sλ,µ ≤ µ

(
lim sup

λ→0
Sλ,µ

)p

.

If lim supλ→0 Sλ,µ > 0, then we must have lim supλ→0 Sλ,µ > 1, which is impossible.
✷

It should be emphasized that problem
(
1λ,µ

)
may have a solution uλ,µ for which

limλ→0 uλ,µ(x) �≡ 0. Here we give an example of problem
(
1λ,µ

)
having a solution uλ,µ

with limλ→0 uλ,µ(x) = uµ(x), where uµ is a solution of problem
(
10,µ

)
. However, we

were unable to establish this fact in a general case. As an example we consider the
problem 

−∆u+ u = λu
1
2 +

1
2
u

3
2 in IRN ,

u(x) > 0 on IRN ,

with 0 < λ < 1
2 . Successive approximations are given by u0 ≡ 1 and

−∆uj + uj = λu
1
2
j−1 +

1
2
u

3
2
j−1 in IRN .

By the uniqueness of bounded solutions for the corresponding equations on IRN we
get the following relation

uj = λu
1
2
j−1 +

1
2
u

3
2
j−1

and all successive approximations are constant functions. It is easy to check that
{
uj

}
is a decreasing sequence for λ > 0 small enough and limj→∞ uj =

(
1−√

1− 2λ
)2 =

uλ, 1
2
. The constant function

(
1 − √

1− 2λ
)2 is a solution of our problem satisfying

estimate (3.1) of Theorem 3.1. We now notice that this problem has a second solution
uλ, 1

2
(x) =

(
1 +

√
1− 2λ

)2, which has a property limλ→0 uλ,12
= 4 and a constant

function 4 is a solution of the limit equation

−∆u+ u =
1
2
u

3
2 in IRN .

We observe here that a solution
(
1 +

√
1− 2λ

)2 does not satisfy the corresponding
estimate (3.1), that is, it is not determined by the method of successive approximations
from Section 3.
Theorem 4.1 continues to hold if λ is replaced by a function b(x) which is locally

Hölder continuous and satisfies

0 < b0 ≤ b(x) ≤ B on IRN

for some constants b0 and B. In this case we can show the existence of a solution u(x)
satisfying (

b0
A

) 1
1−q

≤ u(x) ≤
(
B

a0

) 1
1−q

.
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The maximum principle given by Proposition 2.1 is also valid for the operator
−∆u +

∑N
i=1 bi(x)uxi + a(x)u, where bi are bounded functions on IRN . Therefore

Theorems 3.1 and 4.1 can be extended to this more general operator. Obviously in
order to obtain C2–solutions we need to assume that bi are bounded and locally Hölder
continuous. These observations will be used to show the existence of a solution of the
problem

(1b)

{
−∆u+ a(x)u = b(x)uq in IRN ,

u(x) > 0 on IRN ,

with b(x) satisfying suitable growth or decay conditions for large |x|.
Let H(x, δ) be a function defined in the Introduction, which for a given a1 < a0

satisfies (2.1) for 0 ≤ δ ≤ δ0. Similarly, given 0 < a1 < a0 there exists δ1 > 0 such
that

a(x) +
∆H(x, δ)
H(x, δ)

− 2
|∇H(x, δ)|2
H(x, δ)2

≥ a1 in IRN(4.1)

for each 0 ≤ δ ≤ δ1.

Theorem 4.5. Suppose that b(x) is locally Hölder continuous on IRN and such that

b0e
−(1−q)δ1

∑
N

i=1
|xi| ≤ b(x) ≤ Be−(1−q)δ1

∑
N

i=1
|xi| on IRN(4.2)

for some constants b0 > 0 and B > 0. Then problem (1b) admits a solution u(x)
satisfying

c1H(x, δ1)−1 ≤ u(x) ≤ C1H(x, δ1)−1 on IRN

for some constants c1 > 0 and C1 > 0.

Proof . We introduce a new unknown function w by

u(x) =
w(x)

H(x, δ1)
.

Then w satisfies the equation

−∆w +
2
H

∇H∇w+
(
a+

∆H
H

− 2
|∇H |2
H2

)
w = b(x)H1−qwq in IRN .

It follows from (4.2) that

b0
2N(1−q)

≤ b(x)H(x, δ1)1−q ≤ B on IRN .

The assertion follows from Theorem 4.1. ✷

In a similar manner we can establish the following existence result

Theorem 4.6. Suppose that b(x) is locally Hölder continuous on IRN and such that

b0e
(1−q)δ0

∑N

i=1
|xi| ≤ b(x) ≤ Be(1−q)δ0

∑N

i=1
|xi| on IRN
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for some constants b0 > 0 and B > 0. Then problem (1b) admits a solution satisfying

c1H(x, δ0) ≤ u(x) ≤ C1H(x, δ0) on IRN

for some constant c1 > 0 and C1 > 0.

5. Method of sub and supersolutions

In this section we construct a solution of the problem
(
1λ,µ

)
by a monotone method

based on the use of sub and supersolutions. Applying this method we obtain the
existence of a solution in the case where λ+ µ > a0 may not be satisfied.
We recall that a positive C2–function U on IRN is a supersolution for

(
1λ,µ

)
if

−∆U + a(x)U ≥ λU q + µUp in IRN .

A positive subsolution is obtained by reversing this inquality. In the next section we
shall use the definition of sub– and supersolution in a weak sense. Throughout this
section we assume that a0 = infx∈IRN a(x) > 0 and A = supx∈IRN a(x) > 0.

Theorem 5.1. (i) For each µ0 > 0 there exist λ0 > 0 and M > 0 such that for
each 0 < λ ≤ λ0 and 0 < µ ≤ µ0 problem

(
1λ,µ

)
admits a minimal solution u and a

maximal solution v satisfying

C1e
−δ1

∑N

i=1
|xi| ≤ u(x) ≤ v(x) ≤ M on IRN

for some constants δ1 > 0 and C1 > 0.
(ii) For each λ0 > 0 there exist µ0 > 0 and M > 0 such that for each 0 < λ ≤ λ0

and 0 < µ ≤ µ0 the assertion from part (i) remains valid.

Proof . (i) Given µ0 > 0 we can findM =M(µ0, a0) > 0 such thatMa(x) ≥Ma0 >
µ0M

p on IRN . Then we choose λ0 = λ0(M,µ0) such that

Ma(x) ≥ Ma0 ≥ µ0M
p + λ0M

q ≥ µMp + λM q on IRN

for all 0 < λ ≤ λ0 and 0 < µ ≤ µ0. This means that U(x) ≡M is a supersolution. We
now proceed to the construction of a subsolution V such that V (x) ≤ U(x) on IRN .
We set V (x) = 1

H(x,δ)+K , and H(x, δ) is a function defined in Section 2, where δ > 0
and K > 0 are constants to be determined. Let A1 > A. We choose δ1 > 0 so that

−∆V + aV = V

(
a− 2δ2H2V 2

N∑
i=1

tanh2 δxi + δ2HV

)
≤ A1V on IRN

for all 0 < δ ≤ δ1 and K > 0. We now select K > 0 large enough so that A1V (x) ≤
λV (x)q on IRN , which means that V is a subsolution for

(
1λ,µ

)
. Taking K > 0 larger,

if necessary, we may assume that V (x) ≤M on IRN for all 0 < δ ≤ δ1. We now follow
a standard method [DL] to construct minimal and maximal solutions. Let u0 = V
and define uj, j ≥ 1, to be a unique bounded positive solution of the equation

−∆uj + a(x)uj = λuq
j−1 + µup

j−1 in IRN .

Since
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−∆(u1 − V
)
+ a
(
u1 − V

) ≥ 0 in IRN ,

we derive from Proposition 2.1 that u1(x) ≥ V (x) on IRN . In a similar manner we
check that u1(x) ≤ U(x) on IRN and that

V (x) ≤ uj−1(x) ≤ uj(x) ≤ U(x) on IRN

for each j ≥ 1. Using the interior Schauder estimates we show that

lim
j→∞

uj(x) = u(x)

on IRN and u is a solution of
(
1λ,µ

)
. It remains to prove that u is minimal among all

solutions in the order interval [V, U ]. This follows from the fact that if w is any such
solution then, repeating the above argument, we get uj(x) ≤ w(x) on IRN for each
j. Letting j → ∞, the claim readily follows. To construct a maximal solution in the
order interval [V, U ] we set v0(x) = U(x) on IRN and define vj for j ≥ 1 to be a unique
positive and bounded solution of the equation

−∆vj + avj = λvq
j−1 + µvp

j−1 in IRN .

Applying Proposition 2.1 we demonstrate that

V (x) ≤ uj(x) ≤ vj(x) ≤ vj−1(x) ≤ U(x) on IRN

for each j and that v(x) = limj→∞ vj(x) is a maximal solution of
(
1λ,µ

)
in the order

interval [V, U ]. Obviously the maximal and minimal solutions may well coincide. We
point out here that since we can take µ0 > 0 large the condition λ + µ ≤ a0, used in
the proof of Theorem 3.1, may not be satisfied for all 0 < λ ≤ λ0 and 0 < µ ≤ µ0.
(ii) We construct a supersolution by starting with λ0 > 0 and selecting M =

M(a0, λ0) > 0 so that

a(x)M1−q ≥ a0M
1−q > λ0 on IRN .

In the next step we choose µ0 = µ0(M,λ0) such that a0M1−q ≥ λ0 + µ0M
p−q. This

implies that U(x) ≡M is a supersolution for
(
1λ,µ

)
for all 0 < λ ≤ λ0 and 0 < µ ≤ µ0.

The construction of a subsolution and the remaining part of the proof are the same
as in the case (i). ✷

Let us denote for each 0 < λ ≤ λ0 and 0 < µ ≤ µ0 by uλ,µ and vλ,µ minimal and
maximal solutions, respectively. The next proposition contains asymptotic properties
and estimates of minimal and maximal solutions which are similar to those obtained
in Section 4.

Proposition 5.2. (i) Let µ0 ≥ a0 and λ0 be chosen as in the part (i) of Theorem 5.1.
Then for each fixed 0 < µ ≤ µ0

lim
λ→0

uλ,µ(x) = lim
λ→0

vλ,µ(x) = 0

uniformly on IRN .
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(ii) Let λ0 > 0 and µ0 > 0 be chosen as in the part (ii) of Theorem 5.1. Then for
each 0 < λ ≤ λ0 and 0 < µ ≤ µ0 the maximal solution vλ,µ satisfies

vλ,µ(x) ≥
(
λ

A

) 1
1−q

on IRN .

If λ0 > A and µ0 be chosen as in the part (ii) of Theorem 5.1, then for each 0 < λ ≤ λ0
and 0 < µ ≤ µ0 satisfying λ+ µ > A the maximal solution vλ,µ satisfies the estimate

vλ,µ(x) ≥
(
λ+ µ

A

) 1
1−q

on IRN .

Moreover if λ > A, then

lim
µ→0

vλ,µ(x) = vλ(x) on IRN ,

where vλ is a solution of problem (1λ,0). For each fixed 0 < µ < µ0 we also have

lim
λ→0

uλ,µ(x) = lim
λ→0

vλ,µ(x) = 0

uniformly on IRN .

Proof . (i) Since µ0 ≥ a0, then a supersolution U(x) ≡ M from the part (i) of

Theorem 5.1 satisfies Ma(x) ≥ Ma0 > µ0M
p, that is, M <

(
a0
µ0

) 1
p−1 ≤ 1. Hence

uλ,µ(x) ≤ vλ,µ(x) < 1 on IRN . Repeating the argument from the proof of Proposi-
tion 4.4, we obtain the assertion.
(ii) The first estimate can be established as in the proof of Theorem 3.1. To establish

the second estimate, let
{
vj

}
be a decreasing sequence converging to vλ,µ from the

proof of part (ii) of Theorem 5.1. It also follows from the proof of Theorem 5.1 that

M >

(
λ0
a0

) 1
1−q

≥
(
λ0
A

) 1
1−q

> 1 .

Therefore

−∆v1 + av1 = λM q + µMp > (λ+ µ)M q in IRN

and from Corollary 2.2 we have

v1(x) ≥ (λ + µ)M q

A
on IRN .

If λ+ µ > A, then by induction we show that

vn(x) ≥
(
λ + µ

A

)1+q+...+qn−1

M qn

on IRN .

Letting n→ ∞ the estimate readily follows. According to the choice of λ0 and µ0 we
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have a(x) ≥ a0M > µMp on IRN . Hence M <
(

a0
µ

) 1
p−1 . If Sλ,µ = supx∈IRN vλ,µ(x),

then

a0Sλ,µ ≤ λSq
λ,µ + µSp

λ,µ .

Letting λ→ 0 we get

a0 lim sup
λ→0

Sλ,µ ≤ µ

(
lim sup

λ→0
Sλ,µ

)p

.

If lim supλ→0 Sλ,µ > 0, then(
a0
µ

) 1
p−1

≤ lim sup
λ→0

Sλ,µ ≤ M <

(
a0
µ

) 1
p−1

,

which is impossible. ✷

6. Resonance case

In this section we relax the assumptions on the coefficient a(x). We assume that a
is bounded and locally Hölder continuous on IRN and that

(a) a(x) ≥ δ > 0 for all x ∈ IRN − B(0, R)

for some constants δ and R > 0.
The first eigenvalue of the operator −∆u+ a(x)u in IRN is defined by (see [BD])

λ1(a) = inf
{∫

IRN

(|∇u|2+ a(x)u2
)
dx ; u ∈ C∞

0

(
IRN

)
,

∫
IRN

u2 dx = 1
}
.

Let
{
Rj

}
be an increasing sequence of numbers such that Rj → ∞, as j → ∞ and

Rj > R for each j. For a given bounded domain Ω ⊂ IRN we denote by H1
0(Ω) a

Sobolev space on Ω equipped with the norm

‖u‖2H1
0(Ω)

=
∫
Ω

|∇u|2 dx .

By H1
(
IRN

)
we denote a Sobolev space on IRN with norm

‖u‖2H1(IRN) =
∫
IRN

(|∇u|2+ u2
)
dx .

Let λRj be the first eigenvalue of the operator −∆u + a(x)u in B
(
0, Rj

)
with the

Dirichlet boundary conditions, that is,

λRj = inf

{∫
B(0,Rj)

(|∇u|2+ a(x)u2
)
dx ; u ∈ H1

0

(
B(0, R)

)
,

∫
B(0,Rj)

u2 dx = 1

}
.

It follows from these variational definitions of λ1(a) and λRj that

λ1(a) ≤ λRj+1 ≤ λRj for all j .(6.1)
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In this section we establish the existence of a solution of problem
(
1λ,µ

)
. We shall

use the method of sub– and supersolutions,
We recall that a function u ∈ H1

loc

(
IRN

)
is a supersolution (in a weak sense) for

problem
(
1λ,µ

)
if for every φ ∈ C∞

0

(
IRN

)
, φ ≥ 0 on IRN , we have∫

IRN

(∇u∇φ+ a(x)uφ
)
dx ≥

∫
IRN

(
λuq + µup

)
φ dx .

The definition of a subsolution is obtained by reversing the above inequality.

Theorem 6.1. Suppose that (a) holds and that λ1(a) > 0. Then
(i) for each λ0 > 0 there exists µ0 > 0 such that for 0 < λ ≤ λ0 and 0 < µ ≤ µ0

problem
(
1λ,µ

)
has a solution;

(ii) for each µ0 > 0 there exists λ0 > 0 such that for 0 < λ ≤ λ0 and 0 < µ ≤ µ0
problem

(
1λ,µ

)
has a solution.

Proof . We start by constructing a supersolution. For each j ≥ 1 we consider the
Dirichlet problem

(
7j

) {−∆uj + a(x)uj = 1 in B
(
0, Rj

)
,

uj(x) = 0 on ∂B
(
0, Rj

)
.

For each j problem
(
7j

)
has a solution uj in C2

(
B
(
0, Rj

))
which is Hölder continuous

up to the boundary of B
(
0, Rj

)
. Let φj be the eigenfunction corresponding to λRj .

We assume that φj are normalized so that 0 ≤ φj(x) ≤ 1 on B
(
0, Rj

)
. It follows from

the Harnack inequality that there exists a constant k > 0 such that φj(x) ≥ k for all
x ∈ B(0, R) and for each j. Next we choose a constant C > 0 such that

1− CλRjφj(x) − a(x)
δ

≤ 0(6.2)

for all x ∈ B(0, R) and each j. We obviously have

1−CλRjφj(x)− a(x)
δ

≤ 1− a(x)
δ

≤ 0(6.3)

for all x ∈ B(0, Rj

)− B(0, R). It follows from (6.2) and (6.3) that

−∆
(
uj − Cφj − 1

δ

)
+ a

(
uj − Cφj − 1

δ

)
= 1−CλRjφj − a

δ
≤ 0

in B
(
0, Rj

)
. Since (5.1) holds and λ1(a) > 0 we can apply the maximum principle to

obtain

uj(x) ≤ Cφj(x) +
1
δ

≤ C +
1
δ

for x ∈ B
(
0, Rj

)
. We now extend each uj by 0 outside B

(
0, Rj

)
and this modified

sequence is denoted again by
{
uj

}
. Since the sequence {uj} is uniformly bounded we
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can apply the interior Schauder estimates to obtain a subsequence, denoted again by{
uj

}
, such that

uj −→ u , Duj −→ Du and D2uj −→ D2u

as j → ∞ uniformly on each bounded subset of IRN . By the Harnack inequality we
can assume that u > 0 on IRN . As in in the proof of Theorem 5.1 given µ0 > 0 we
can find λ0 > 0 and M such that for each 0 < λ ≤ λ0 and 0 < µ ≤ µ0 we have

M ≥ λM q ‖u‖q
∞ + µMp ‖u‖p

∞ .

Consequently, letting U =Mu, we see that

M = −∆(uM) + a(Mu) ≥ λM quq +Mpup in IRN ,

which means that U is a supersolution for (1λ,1). We now proceed to the construction
of a subsolution. Here we follow the method from the paper [BD]. We fix λ ∈ (0, λ0]
and let w be a solution of the problem{

−∆u+ a(x)u = λuq in B(0, 1) ,

u(x) = 0 on ∂B(0, 1) .

According to [BO] this problem has a solution w ∈ C2(B(0, 1) ∩ C1,β
(
B(0, 1)

)
for

some β ∈ (0, 1) and du
dν
< 0 on ∂B(0, 1), where ν is an outward normal on ∂B(0, 1).

We now define

v(x) =

{
w(x) for x ∈ B(0, 1) ,
0 for x ∈ IRN − B(0, 1) .

We now check that v is a subsolution. Indeed, let φ ∈ C∞
0

(
IRN

)
, φ ≥ 0 on IRN . Then∫

IRN

(∇v∇φ+ avφ − λvqφ
)
dx =

∫
B(0,1)

(∇w∇φ+ awφ− λwqφ
)
dx

=
∫

B(0,1)

(−∆w + aw − λwq
)
φ dx+

∫
∂B(0,1)

∂w

∂ν
φ dSx

=
∫

∂B(0,1)

∂w

∂ν
φ dSx

≤ 0 .

We now choose γ ∈ (0, 1) so that γv ≤ U on IRN . It is easy to check that γv is also
a subsolution. As in [BD] we show that problem

(
1λ,µ

)
, for λ ∈ (0, λ0], has a solution

u(x) satisfying

γv(x) ≤ u(x) ≤ U(x) on IRN . ✷

In the final part of this section we consider the case λ1(a) < 0. We assume that the
coefficient a(x) is bounded and locally Hölder continuous on IRN and
(e) a(x) ≥ 0 on IRN − B(0, R) for some R > 0.



Chabrowski and Bezzera do Ó, On Semilinear Elliptic Equations 71

If λ1(a) < 0, then without loss of generality we may assume that λRj < 0 for all j,
where

{
Rj

}
is a sequence from the first part of this section. Using the method of sub-

and supersolutions we can establish the existence of a solution to the problem

(
1λ,µ

) {
−∆u+ a(x)u = γu+ λuq + µup in IRN ,

u(x) > 0 on IRN ,

where γ < λ1(a).
A supersolution can be obtained by considering the sequence of solutions

{
uj

}
of

problems {−∆u+ a(x)u− γu = 1 in B
(
0, Rj

)
,

u(x) = 0 on ∂B
(
0, Rj

)
.

To obtain a uniform bound for
{
uj

}
we choose constants C > 0 and K > 0 such that

1− aK − λRjCφj + γCφj + γK ≤ 1− aK + γK ≤ 1 + γK ≤ 0

on B
(
0, Rj

)− B(0, R) and

1− aK − λRjCφj + γCφj + γK ≤ 1− aK +
(
γ − λRj

)
Cφj ≤ 0

on B(0, R). This is possible as we may assume that φj(x) ≥ k on B(0, R) for some
constant k > 0 and for each j. It follows from the last two estimates that

−∆(uj −Cφj −K
)
+ a
(
uj − Cφj −K

) − γ
(
uj −Cφj −K

) ≤ 0

in B
(
0, Rj

)
. From this we deduce by the maximum principle that

uj(x) ≤ Cφj(x) +K on B
(
0, Rj

)
.

As in the proof of Theorem 6.1 we show that a subsequence of
{
uj

}
converges to a

function u and a multiplication of u by a suitable positive constants gives a superso-
lution for

(
1λ,µ,γ

)
.

To construct a subsolution let, u be a solution to the Dirichlet problem{
−∆u+ a(x)u− γu = λuq in B(0, 1) ,

u(x) = 0 on ∂B(0, 1) .

As in the proof of Theorem 6.1 we extend u by 0 outside B(0, 1) and multiply the
extension by a suitable constant α ∈ (0, 1). The resulting function is a subsolution on
IRN .
We are now in position to formulate the following existence result.

Theorem 6.2. Suppose that (e) holds and that λ1(a) < 0 and γ < λ1(a). Then the
assertion of Theorem 6.1 holds for problem

(
1λ,µ,γ

)
.
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7. Concave nonlinearity at resonance

This section is devoted to the problem

(
1b−
) {

−∆u+ a(x)u = −b(x)uq in IRN ,

u(x) > 0 on IRN ,

where 0 < q < 1, N ≥ 3 and b(x) is continuous function on IRN satisfying 0 < b0 ≤
b(x) ≤ B on IRN for some constants b0 and B. Throughout this section it is as-
sumed that the coefficient a(x) is continuous and bounded on IRN and moreover
a− ∈ LN

2
(
IRN

)
.

One can also consider the problem

(
1b+

) {
−∆u+ a(x)u = b(x)uq in IRN ,

u(x) > 0 on IRN .

It was observed in [BD] that for the solvability of problem
(
1b−
) (

respectively
(
1b+

))
the assumption λ1(a) < 0 (respectively λ1(a) > 0) is needed. The authors of the
paper [BD] established the existence of solutions of problems

(
1b−
)
and

(
1b+

)
in the

case where b ≡ 1 on IRN . As in [BD] the existence of a solution of problem
(
1b+

)
can

be obtained by the method of sub and supersolutions and will be given at the end
of this section. First, in this section we construct a solution of problem

(
1b−
)
using

a variational method based on a constrained minimization. To establish the relative
compactness of a minimizing sequence the authors of [BD] used the concentration–
compactness principle [LI]. In order to apply this method in our case some assumptions
on a behaviour of b(x) for large |x| are needed. In this paper we avoid this by using
the concentration–compactness principle at infinity [CH2] which can also be extended
to the case considered in [BD].
To use a variational technique we introduce a Sobolev space E defined as the closure

of C∞
0

(
IRN

)
with respect to the norm

‖φ‖ = ‖φ‖q+1 + ‖∇φ‖2 .

Here ‖ · ‖p denotes the norm of the Lebesgue space Lp
(
IRN

)
, that is, ‖u‖p

p =
∫
IRN |u|p dx,

1 ≤ p <∞. As in [BD] we observe that

‖u‖22 ≤ C ‖∇u‖2∗2 + ‖u‖q+1
q+1(7.1)

for all u ∈ E, where 2∗ = 2N
N−2 . This inequality shows that E is continuously embedded

in H1
(
IRN

)
.

Let

M =
{
u ∈ E ;

∫
IRN

(|∇u|2 + au2
)
dx = −1

}
and set

m = inf
{∫

IRN

b(x) |u(x)|q+1 dx ; u ∈M
}
.
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If λ1(a) < 0, then M �= ∅.
Theorem 7.1. Suppose that λ1(a) < 0. Then problem

(
1b−
)

admits a solution.

Proof . A solution of problem
(
1b−
)
will be obtained as a minimizer for m. Let

{un} ⊂ E be a minimizing sequence for m. We commence by showing that {‖∇un‖2}
is bounded. In the contrary case we assume that ‖∇un‖2 → ∞ and set vn = un

‖∇un‖2
.

Then
∫
IRN b(x) |vn|q+1 dx → 0 as n → ∞ and we also may assume that vn ⇀ 0 in

H1
(
IRN

)
. We also have

1 +
∫
IRN

a+ |vn|2 dx =
∫
IRN

a− |vn|2 dx+ o(1) .

Using the fact that a− ∈ L
N
2
(
IRN

)
, we see that

∫
IRN a− |vn|2 dx → 0 and we get

a contradiction. Since {‖∇un‖2} is bounded, the inequality (6.4) yields that {un} is
bounded in H1

(
IRN

)
. Therefore we may assume that un ⇀ u in H1

(
IRN

)
and un → u

in Lp
loc

(
IRN

)
for 2 ≤ p < 2∗. As before we have

∫
IRN a−u2n dx → ∫

IRN a−u2 dx. We
now show that u �≡ 0 on IRN . In the contrary case un ⇀ 0 in H1

(
IRN

)
and obviously∫

IRN a−u2n dx→ 0. Hence∫
IRN

|∇un|2 dx+
∫
IRN

a+u2n dx = −1 +
∫
IRN

a−u2n dx −→ −1 ,

which is impossible. We claim that

m =
∫
IRN

b(x) |u|q+1 dx .(7.2)

To establish this claim we introduce, as in [CH1], a quantity α∞ defined by

α∞ = lim
R→∞

lim sup
n→∞

∫
|x|≥R

b(x) |un(x)|q+1 dx .

This quantity measures the loss of mass at infinity of a weakly convergent sequence in
H1
(
IRN

)
. As in [CH2] by the Sobolev embedding theorem we have

m =
∫
IRN

b(x) |u(x)|q+1 dx+ α∞ .

It is sufficient to show that α∞ = 0. Arguing indirectly we must have

0 <

∫
IRN

b(x) |u(x)|q+1 dx < m .(7.3)

Since ∫
IRN

|∇un|2 dx+
∫
IRN

a+u2n dx = −1 +
∫
IRN

a−u2n dx ,

by virtue of a lower semicontinuity of norm with respect to a weak convergence we see
that ∫

IRN

|∇u|2 dx+
∫
IRN

a+u2 dx ≤ −1 +
∫
IRN

a−u2 dx ,

that is,
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∫
IRN

|∇u|2 dx+
∫
IRN

au2 dx ≤ −1 .

Due to (7.3), we cannot have∫
IRN

|∇u|2 dx+
∫
IRN

au2 dx = −1 .

Therefore ∫
IRN

|∇u|2 dx+
∫
IRN

au2 dx < −1 .

Thus there exists s ∈ (0, 1) such that∫
IRN

|∇(su)|2 dx+
∫
IRN

a(su)2 dx = −1 .

Consequently, according to (7.3)

m ≤
∫
IRN

sq+1b(x) |u|q+1 dx <

∫
IRN

b(x) |u|q+1 dx < m

which is impossible. This means that α∞ = 0, that is, m =
∫
IRN b(x) |u|q+1 dx and by

the previous part of the proof u ∈ M . Since |u| is also a minimizer, we may assume
that u is nonnegative on IRN and the strict positivity of u is a consequence of the
Harnack inequality. ✷

We close this paper with an existence result for the problem
(
1b+

)
under the as-

sumption that (a) holds and λ1(a) > 0. In Section 4 we already pointed out that this
problem has a solution which is bounded from below and above by positive constants.

Theorem 7.2. Suppose that (a) holds and that λ1(a) > 0. Then problem
(
1b+

)
has

a solution.

Proof . We use the method of sub– and supersolutions and follow some ideas from
the paper [BD]. Let 0 < λ < λ1(a) and v ∈ H1

(
IRN

)∩C1
(
IRN

)
be a positive function.

By u(x) we denote a positive solution of the equation

−∆u+ a(x)u− λu = v in IRN

(see [BD]). We look for a supersolution of the form w = µu + ν , where µ > 0 and
ν > 0 are sufficiently large constants. The function w is a supersolution if and only if

λµu+ µv + aν ≥ b(µu+ ν)q on IRN .

We choose ν̄ > 0 such that

Bνq ≥ B(ν + t)q − λt

for each t ≥ 0 and ν ≥ ν̄, where B = supx∈IRN b(x). Taking ν̄ larger, if necessary, we
may assume that a(x)ν ≥ Bνq for each ν ≥ ν̄ and x ∈ IRN −B(0, R). It then follows
that

a(x)ν ≥ Bνq ≥ B(ν + u(x)µ)q − λµu(x) ≥ b(x)(ν + µu(x))q − λµu(x)(7.4)



Chabrowski and Bezzera do Ó, On Semilinear Elliptic Equations 75

for all ν ≥ ν̄ and x ∈ IRN − B(0, R). Since u > 0 on IRN , there exists δ1 > 0 such
that u(x) ≥ δ1 for x ∈ B(0, R). Therefore there exists µ̄ > 0 such that

b(x)
(
µ ‖u‖∞,B(0,R) + ν̄

)q + ν̄ ‖a−‖∞,B(0,R) ≤ µδ1λ

for all µ ≥ µ̄. Hence for all x ∈ B(0, R) and µ ≥ µ̄ we get

b(x)(µu+ ν̄)q − ν̄a(x) ≤ b(x)
(
µ ‖u‖∞,B(0,R) + ν̄

)q + ν̄ ‖a−‖∞,B(0.R)

≤ µδ1λ

≤ λµu(x) ,

which means that

λµu(x) + ν̄a(x) ≥ b(x)(µu(x) + ν̄)q(7.5)

for each x ∈ B(0, R) and all µ ≥ µ̄. Thus by virtue of (7.4) and (7.5) ū = µ̄u+ ν̄ is a
supersolution. A construction of a subsolution w such that w ≤ ū on IRN is the same
as in the proof of Theorem 6.1 and is omitted. ✷
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