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Abstract

In this work we study the existence of positive solutions of the critical problem

(P ) ∆2u + a(x)u = |u|2∗∗−2 u, IRN and u ∈ D2,2(IRN ),

where 2∗∗ = 2N/(N − 4), N ≥ 5, a ∈ LN/4(IRN ) is a nonnegative continuous
function and ∆2 is the biharmonic operator. We also prove a global compactness
result for the associated energy functional of problem (P ), similar to that due to
Struwe in [22]. The basic tool employed here is the concentration compactness due
to P. L. Lions and a linking theorem on the cone of nonnegative functions.
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1 Introduction

The main purpose of this paper is to investigate the existence of positive solutions of the

fourth-order critical problem

∆2u + a(x)u = |u|2∗∗−2 u, IRN and u ∈ D2,2(IRN), (1.1)
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where 2∗∗ = 2N/(N − 4), N ≥ 5, a : IRN → IR is a nonnegative continuous function with

a ∈ LN/4(IRN), ∆2 is the biharmonic operator and D2,2(IRN) is the closure of C∞
o (IRN)

with respect to the norm

‖u‖ =

(∫

IRN

|∆u|2 dx

) 1
2

.

Problems involving critical growth in second-order semilinear and quasilinear problems

have been object of intensive research in the last years, starting with the work of Brezis-

Nirenberg [8]. See, for example, [4, 24] for semilinear elliptic equations and [5, 14] for

quasilinear equations. For results involving biharmonic equations with critical growth, we

refer to [3, 6, 10, 11, 13, 15, 19] and references therein.

Here we extend to problem (1.1) the results of the paper of Benci-Cerami [4]. Also,

we prove a global compactness result similar to that due to Struwe in [21]. We use the

variational method and our arguments make use of the Lions concentration-compactness

principle the limit case (see [18]) and a linking theorem on the cone of positive functions.

This global compactness result is crucial to investigate the behavior of the Palais-Smale

sequence of the associated energy functional of problem (1.1). We would also like to

mention that this kind of problem as well a global compactness for the p-Laplacian

operator has been studied in [2].

We study the existence of solutions for problem (1.1), regarded as critical points of

the associated energy functional I : D2,2(IRN) → IR given by

I(u) =
1

2

∫

IRN

|∆u|2 dx +
1

2

∫

IRN

a(x)u2dx− 1

2∗∗

∫

IRN

|u|2∗∗ dx.

The main theorem of this paper is stated as follows.

Theorem 1.1 Let a : IRN → IR be a nonnegative continuous function such that

a(xo) > 0, for some xo ∈ IRN , (1.2)

there are numbers 1 < p1 < N/4 < p2 and, for N ≤ 7, p2 < N/(8−N), such that

a ∈ Ls(IRN), for all s ∈ [p1, p2] (1.3)

and

|a|N/4 < S(24/N − 1), (1.4)

where S corresponds to the best constant for the embedding of D2,2(IRN) in L2∗∗(IRN).

Then there exists a critical point uo ∈ D2,2(IRN) of the functional I with

SN/4/N < I(uo) < 2SN/4/N.



Fourth-order semilinear problem 3

Remark 1.2 Assumptions like (1.2)− (1.4) are quite natural and have already appeared

in the papers [2, 4] for the p−Laplacian and Laplacian operator, respectively. It should

be remarked that assumption (1.4) seems to be just technical and it leaves room for

improvement.

This paper is organized as follows: In section 2 we list some elementary properties

and prove the fundamental results for Palais-Smale Sequences. In section 3 we prove the

main result of this paper, via a link theorem on the cone of nonnegative functions.

Notation. In this work we make use of the following notation.

We denote in a Banach space X the strong convergence by “ → ” and the weak convergence

by “ ⇀ ”.

As usual, we say that a C1-functional Φ : X → IR satisfies the Palais-Smale condition at

level c (the (PS)c condition for short) if every Palais-Smale sequence of Φ at level c, that

is, Φ(un) → c and Φ′(un) → 0 in a dual space X∗, is relatively compact.

BR(p) denotes as usual the open ball of IRN , centered at p and of radius R.

Lr(IRN), 1 ≤ r < ∞ denote Lebesgue spaces and by |u|r = (
∫

IRN |u|r dx)1/r their norm.

We denote by S the best constant of the immersion, D2,2(IRN) ↪→ L2∗∗(IRN), that is,

S = inf

{∫

IRN

|∆u|2 dx : u ∈ D2,2(IRN) with

∫

IRN

|u|2∗∗ dx = 1

}
.

This infimum S is achieved by the functions uδ,y given by

uδ,y(x) =
CNδ(N−4)/4

[
δ + |x− y|2](N−4)/2

, CN = [(N − 4)(N − 2)N(N + 2)](N−4)/8 , (1.5)

for any δ > 0 and y ∈ IRN ( see [13, 18, 19, 25]).

2 Preliminary Results

This section supplies a basic tool needed to study the behavior of the Palais-Smale

sequences of I, the associated energy functional of problem (1.1). For that matter we

shall need the concentration-compactness principle due to P.L. Lions [18]. In what follows

we enunciate a version adequate for our purposes (see also [10, 23, 22]).

Lemma 2.1 Let {un} ⊂ D2,2(IRN) with un ⇀ u weakly in D2,2(IRN). Suppose

µn = |∆un|2 dx ⇀ µ, νn = |u|2∗∗ dx ⇀ ν weakly in the sense of measures where µ

and ν are bounded non-negative measures on IRN . Then, we have:
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1. There exists some at most countable set Λ, a family {yi}i∈Λ of distinct points in IRN

and, a family {νi}i∈Λ of positive numbers such that

ν = |u|2∗∗ dx +
∑
i∈Λ

νiδyi
,

where δx is the Dirac-mass of mass 1 concentrated at x ∈ IRN

2. In addition we have

µ ≥ |∆u|2 dx +
∑
i∈Λ

µiδyi
,

for some family {µi}i∈Λ of positive numbers satisfying

Sν
(N−4)/N
i ≤ µi, for all i ∈ Λ.

In particular,
∑

i∈Λ ν
(N−4)/N
i < ∞.

Using Lemma 2.1, we investigate the behavior of the Palais-Smale sequences of the energy

functional I∞ : D2,2(IRN) → IR given by

I∞(u) =
1

2

∫

IRN

|∆u|2 dx− 1

2∗∗

∫

IRN

|u|2∗∗ dx

associated to the limiting problem

∆2u = |u|2∗∗−2 u, IRN and u ∈ D2,2(IRN). (2.6)

The next result is crucial to do a careful study of the behavior of Palais-Smale sequence

associated to the functional I. A version of this result for bounded domain and Laplacian

operator was proved by Struwe in [22].

Lemma 2.2 Let {un} a Palais-Smale sequence for I∞ such that un ⇀ 0 and un 6→ 0

in D2,2(IRN). Then, there exists a sequence {Rn} ⊂ IR, {xn} ⊂ IRN , vo a nontrivial

solution of the limiting problem (P∞) and a Palais-Smale sequence {wn} for I∞ such that

for some subsequence of {un} we have

wn(x) = un(x)−R(N−4)/2
n vo(Rn(x− xn)) + on(1).

Proof. Let {un} a Palais-Smale sequence for I∞, that is,

I∞(un) → c and I ′∞(un) → 0 as n →∞. (2.7)
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We can assume that

c ≥ 2

N
SN/4 (2.8)

because if c < 2
N

SN/4, a similar arguments to that used by Brezis-Nirenberg in [8] shows

that un → 0 strongly in D2,2(IRN). From (2.7), taking subsequence if necessary, we have

2

N

∫

IRN

|∆un|2 dx → c as n →∞, (2.9)

then by (2.8) and (2.9),

lim
n→∞

∫

IRN

|∆un|2 dx ≥ SN/4.

Choose {xn} ⊂ IRN and {Rn} ⊂ IR such that

sup
y∈IRN

∫

B
R−1

n
(y)

|∆un|2 dx =

∫

B
R−1

n
(xn)

|∆un|2 dx =
1

2L
SN/4,

where L is a natural number such that B2(0) is covered by L balls of radius 1, and scale

un 7→ vn(x) = R(4−N)/2
n un(x/Rn + xn).

Thus I∞(un) = I∞(vn) and

sup
y∈IRN

∫

B1(y)

|∆vn|2 dx =

∫

B1(0)

|∆vn|2 dx =
1

2L
SN/4.

Now, for each Φ ∈ D2,2(IRN) the following sequence

Φ̃n(x) = R(N−4)/2
n Φ(Rn(x− xn))

satisfies
∫

IRN

∆un∆Φ̃ndx =

∫

IRN

∆vn∆Φdx

and
∫

IRN

|un|2
∗∗−2 un Φ̃n dx =

∫

IRN

|vn|2
∗∗−2 vn Φ dx.

Hence,

I∞(vn) → c and I ′∞(vn) → 0, as n →∞.

Thus for each bounded sequence {φn} ⊂ D2,2(IRN), we have

I ′∞(vn)(φn) → 0 as n →∞. (2.10)
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Considering vo ∈ D2,2(IRN), the weak limit of {vn} ⊂ D2,2(IRN), we have vo is a solution

of (P )∞ and according to Lemma 2.1, we may assume νn =| vn |2∗∗ dx ⇀ ν and

µn =| ∆vn |2 dx ⇀ µ weakly in the sense of measures, with

ν = | vo |2∗∗ +
∑
i∈Λ

νiδyi
,

µ ≥ | ∆vo |2 +
∑
i∈Λ

µiδyi
,

where Λ is at most countable set and

Sν
(N−4)/N
i ≤ µi, for all i ∈ Λ. (2.11)

Claim 2.3 Λ is empty or finite.

Proof of claim 2.3 Next we take as a test function vnψ, where ψ ∈ C∞
0 (IRN , [0, 1]), such

that ψ ≡ 1 on B(yk, ε), ψ ≡ 0 on IRN −B(yk, 2ε), | ∇ψ |≤ 2/ε and | ∆ψ |≤ 2/ε2. Hence

∫

IRN

∆vn∆(vnψ)dx =

∫

IRN

| vn |2∗∗ ψdx + on(1). (2.12)

We observe that
∫

IRN

∆vn∆(vnψ)dx =
∫

IRN

| ∆vn |2 ψdx + 2

∫

IRN

∆vn∇vn∇ψdx +

∫

IRN

vn∆vn∆ψdx.

Since

| ∫
IRN ∆vn∇vn∇ψdx | ≤ (∫

IRN | ∆vn |2 dx
)1/2 (∫

IRN | ∇vn |2| ∇ψ |2 dx
)1/2

≤ C
(∫

B(yk,2ε)
| ∇vn |2| ∇ψ |2 dx

)1/2

and

lim
n→+∞

∫

B(yk,2ε)

| ∇vn |2| ∇ψ |2 dx =
∫

B(yk,2ε)
| ∇vo |2| ∇ψ |2 dx

≤ C
(∫

B(yk,2ε)
| ∇vo |2N/(N−2) dx

)(N−2)/N

,

where C > 0 and C1 > 0 are constants independent of n, we see that

lim
ε→0

lim sup
n→∞

∫

IRN

∆vn∇vn∇ψdx = 0.
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Similarly, since ∆ψε ∼ ε−2 and vn → vo in L2
loc(IR

N), we have

lim
n→∞

| ∫
IRN un∆vn∆ψdx | ≤ C lim

n→∞

(∫
B(yi,2ε)

vn
2 | ∆ψ |2 dx

)1/2

≤ C
(∫

B(yi,2ε)
vo

2 | ∆ψ |2 dx
)1/2

≤ C
(∫

B(yi,2ε)
| vo |p

)1/p (∫
B(yi,2ε)

| ∆ψ |N/2
)2/N

≤ C1

(∫
B(yi,2ε)

| vo |p
)1/p

,

for some positive constants C and C1 independent of ε. Consequently,

lim
ε→0

lim sup
n→∞

∫

IRN

vn∆vn∆ψdx = 0.

Letting n → ∞ and then ε → 0 in (2.12) we obtain µk = νk, which together with (2.11)

imply that νk ≥ SN/4. From this it is easy to see that Λ is empty or finite.

Hereafter we denote Br = Br(0) and Γ = {yi : |yi| > 1}. Next our objective is

to show that vo is nontrivial. If we assume by contradiction that vo is trivial, for all

φ ∈ C∞
o (IRN \ Λ), ∫

IRN

|vn|2
∗∗

φdx → 0 (2.13)

and by (2.10) and (2.13), ∫

IRN

|∆vn|2 φdx → 0. (2.14)

Let ρ be a fixed real number such that

0 < ρ < min{dist(Γ, B1(0)), 1},

and

Φn(x) = Φ(x)vn(x),

where Φ ∈ C∞
o (B1+ρ, [0, 1]) is a cut-off function such that Φ ≡ 1 in B1+ρ/3 and Φ ≡ 0 in

IRN\B1+2ρ/3. We remark that

∫

B1+ρ\B1+ρ/3

|∆Φn|2 dx → 0, (2.15)

because by (2.14), ∫

B1+ρ\B1+ρ/3

|∆vn|2 dx → 0. (2.16)

Using the fact that {Φn} is a bounded sequence, we have

I ′∞(vn)(Φn) → 0 as n →∞
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hence ∫

B1+ρ

∆vn∆Φndx−
∫

B1+ρ

|vn|2
∗∗−2 vnΦndx = on(1)

and we find
∫

B1+ρ/3

|∆Φn|2 +

∫

B1+ρ\B1+ρ/3

∆vn∆Φn −
∫

B1+ρ/3

|Φn|2
∗∗ −

∫

B1+ρ\B1+ρ/3

|vn|2
∗∗

Φ = on(1).

From (2.13), (2.15) and this last fact we conclude that

∫

B1+ρ/3

|∆Φn|2 dx−
∫

B1+ρ/3

|Φn|2
∗∗

dx = on(1)

or equivalently ∫

IRN

|∆Φn|2 dx−
∫

IRN

|Φn|2
∗∗

dx = on(1). (2.17)

Now, using (2.17) and the definition of S, we have

‖Φn‖2
[
1− S−

2∗∗
2 ‖Φn‖2∗∗−2

]
≤ on(1). (2.18)

Using the estimate

‖Φn‖2 ≤
∫

B1+ρ/3

|∆vn|2 dx + on(1) ≤
∫

B2

|∆vn|2 dx + on(1)

we obtain

‖Φn‖2 ≤ L

∫

B1

|∆vn|2 dx + on(1) =
1

2
SN/4 + on(1). (2.19)

Combining (2.18) and (2.19) it follows

lim sup
n→∞

‖Φn‖2

[
1−

(
1

2

)4/(N−4)
]
≤ 0

and we can conclude that

Φn → 0 in D2,2(IRN).

Using again the definition of sequence {Φn} we have

lim
n→∞

∫

B1

|∆vn|2 dx = 0,

contradicting the equality
∫

B1

|∆vn|2 dx =
1

2L
SN/4, ∀n ∈ IN,

thus vo is nontrivial.
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To conclude the lemma, let Ψ ∈ C∞
o (IRN , [0, 1]) such that Ψ(x) = 1 in B1(0),

Ψ(x) = 0 in IRN\B2, and let

wn(x) = un(x)−R(N−4)/2
n vo(Rn(x− xn))Ψ(R̄n(x− xn))

where the sequence {R̄n} ⊂ IR is chosen satisfy Rn

(
R̄n

)−1 → ∞. Using the same

arguments explored by Struwe in [22] we finish the proof of Lemma 2.2.

Remark 2.4 If in Lemma 2.2 the sequence {un} is nonnegative, then the function vo is

nonnegative. Moreover, if {un} is a Palais-Smale sequence at level c = S
N
4 /N , we have

that vo assume the best constant S, thus (see [18, 25]) there exist δ > 0 and y ∈ IRN such

that vo(x) = uδ,y(x), for all x ∈ IRN . Therefore, for all x ∈ IRN

un(x) = wn(x) + S(N−4)/8Φδn,yn(x) + on(1)

where Φδn,yn = S(4−N)/8uδn,yn for some yn ∈ IRN and δn > 0.

The next result is a technical lemma and its proof we can be found in Brezis-Lieb [7]

(see also Alves [2]).

Lemma 2.5 A : IRK → IRK ; A(y) = |y|p−2 y and ηn : IRN → IRK such that ηn(x) → 0

almost everywhere, ηn ∈ (Lp(IRN))K (p ≥ 2) and |ηn|(Lp(IRN ))K ≤ C. Then we have

∫

IRN

|A(ηn + w)− A(ηn)− A(w)|p/(p−1) dx = on(1),

for each w ∈ (Lp(IRN))K fixed.

Next we study the behavior of the Palais-Smale sequence of the functional I associated

to (1.1).
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Theorem 2.6 (A Global Compactness Result) Let {un} ⊂ D2,2(IRN) be a Palais-

Smale sequence of the functional I. Then, or {un} possesses a strongly convergent

subsequence, or else there exists a finite sequence {z1
o , ..., z

k
o} of nontrivial solutions for

the problem (2.6) such that

‖un‖2 → ‖uo‖2 +
k∑

j=1

∥∥zj
o

∥∥2

and

I(un) → I(uo) +
k∑

j=1

I∞(zj
o)

where uo is the weak limit of sequence {un} in D2,2(IRN).

Proof. First note that un(x) → uo(x) almost everywhere in IRN and hence uo is

a solution of (1.1). Suppose that un does not converge to uo in D2,2(IRN), and let

{z1
n} ⊂ D2,2(IRN) given by z1

n = un − uo. Then

z1
n ⇀ 0 but zn 6→ 0 in D2,2(IRN)

and

I∞(z1
n) = I(un)− I(uo) + on(1) (2.20)

because we have ∥∥z1
n

∥∥2
= ‖un − uo‖2 = ‖un‖2 − ‖uo‖2 + on(1)

and by Brezis and Lieb [7]

∣∣z1
n

∣∣2∗∗
2∗∗ = |un − uo|2

∗∗
2∗∗ = |un|2

∗∗
2∗∗ − |uo|2

∗∗
2∗∗ + on(1)

and ∫

IRN

a(x)un
2dx =

∫

IRN

a(x)uo
2dx + on(1),

because un converges weakly to uo in LN/4, since u2
n is bounded in LN/(N−4) and

un(x) → uo(x) almost everywhere in IRN .

Moreover, by Lemma 2.5 we have

i1,n =

∫

IRN

∣∣∣|un|2
∗∗−2 un − |(un − uo)|2

∗∗−2 (un − uo)− |uo|2
∗∗−2 uo

∣∣∣
2∗∗/(2∗∗−1)

dx → 0

and

i2,n =

∫

IRN

a(x) |un − uo|2 dx → 0.

Thus we obtain

I ′∞(z1
n) = I ′(un)− I ′(uo) + on(1). (2.21)
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Since I ′(uo) = 0, using (2.20) and (2.21), we conclude that {z1
n} is a Palais-Smale sequence

of the functional I∞. From Lemma 2.2, we have {Rn,1} ⊂ IR, {xn,1} ⊂ IRN , z1
o a nontrivial

solution of (2.6) and a Palais-Smale sequence {z2
n} for I∞ given by

z2
n(x) = z1

n(x)−R
(N−4)/2
n,1 z1

o(Rn,1(x− xn,1)) + on(1).

If we define

v1
n(x) = R

(4−N)/2
n,1 z1

n(x/Rn,1 + xn)

and

z̃2
n(x) = v1

n(x)− z1
o(x) + on(1),

we have

v1
n ⇀ z1

o

I∞(v1
n) = I∞(z1

n) + on(1)

I ′∞(v1
n) = on(1).

Thus ∥∥z̃2
n

∥∥2
=

∥∥v1
n

∥∥2 −
∥∥z1

o

∥∥2
+ on(1),

that is, ∥∥z̃2
n

∥∥2
=

∥∥z1
n

∥∥2 −
∥∥z1

o

∥∥2
+ on(1),

which implies ∥∥z̃2
n

∥∥2
= ‖un‖2 − ‖uo‖2 −

∥∥z1
o

∥∥2
+ on(1),

consequently

I∞(z̃2
n) = I∞(v1

n)− I∞(z1
o) + on(1) = I(un)− I(uo)− I∞(z1

o) + on(1)

and

I ′∞(z̃2
n) = I ′∞(v1

n)− I ′∞(z1
o) + on(1) = on(1).

If z̃2
n → 0 in D2,2(IRN), the proof is complete. Otherwise, we can iterating the above

produce with the help of Lemma 2.2 to get a finite sequence {z̃1
o , ..., z̃

k
o} of nontrivial

solutions for the problem (2.6) satisfying

∥∥z̃j
n

∥∥2 ≥ SN/4, j = 1, ..., k (2.22)

and
∥∥z̃k

n

∥∥2
= ‖un‖2 − ‖uo‖2 −

k−1∑
j=1

∥∥zj
o

∥∥2
+ on(1). (2.23)
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Then

I∞(z̃k
n) = I(un)− I(uo)−

k−1∑
j=1

I∞(zj
o) + on(1). (2.24)

We notice that this iteration must terminate at some finite index k, because from (2.22)

and (2.23) we have

0 ≤
∥∥z̃k

n

∥∥2 ≤ ‖un‖2 − ‖uo‖2 −
k−1∑
j=1

SN/4 = ‖un‖2 − ‖uo‖2 − (k − 1)SN/4 + on(1). (2.25)

which implies, for k sufficiently large, that

lim sup
n→∞

∥∥z̃k
n

∥∥2 ≤ 0,

and hence z̃k
n → 0 in D2,2(IRN).

Corollary 2.7 Let {un} be a Palais-Smale sequence for I at level c ∈ (0, 2SN/4/N).

Then {un} has a subsequence strongly convergent in D2,2(IRN).

Next we have a regularity result which it will be used to prove a compactness criterion.

Lemma 2.8 Let u ∈ D2,2(IRN) be a distributional solution of

∆2u = V (x)u in D′(IRN), (2.26)

where V (x) ∈ LN/4(IRN). Then u ∈ Lp(IRN) for all p ≥ 2N/(N − 4), (N ≥ 5).

Proof. The proof follows adapting arguments as those of Lemma B1 of [23] and applying

the Calderon-Zigmund inequality (see Theorem 9.9 in [16]).

Proposition 2.9 Let {un} it be a nonnegative Palais-Smale sequence for I at level

c ∈ (2SN/4/N, 4SN/4/N). Then {un} has a subsequence strongly convergent in D2,2(IRN).

Proof. If not, by Theorem 2.6,

I(un) → I(uo) +
k∑

j=1

I∞(zj
o)
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where uo is the weak limit of sequence {un} in D2,2(IRN). Thus uo is nontrivial, because

if uo = 0 we get

I(un) →
k∑

j=1

I∞(zj
o)

hence k = 1, since I∞(zj
o) ≥ 2SN/4/N , for j = 1 . . . k. On the other hand, as a

consequence of Lemma 2.8 and Remark 2.4, we get that z1
0 is a classical solution of

(2.6) with I∞(z1
o) = 2SN/4/N . Thus

I(un) → 2SN/4/N,

which is a contradiction with I(un) → c ∈ (2SN/4/N, 4SN/4/N).

Let f : D2,2(IRN) → IR ;

f(u) =

∫

IRN

(|∆u|2 + a(x)u2)dx

and

M = {u ∈ D2,2(IRN);

∫

IRN

|u|2∗∗ dx = 1}.

We notice that {un} ⊂ M satisfies

f(un) → c and f ′ |M (un) → 0

if and only if vn
.
= c(N−4)/8un satisfies

I(vn) → 2cN/4/N and I ′(vn) → 0.

Corollary 2.10 If there exists a nonnegative sequence {un} ⊂ M such that

f(un) → c and f ′ |M (un) → 0,

for c ∈ (S, 24/NS) , then the functional f has a critical point u ∈ D2,2(IRN) at level c.

Remark 2.11 The Corollary 2.10 implies that (1.1) has at least a positive solution.

Moreover, it shows that (PS)c condition holds in the cone of the positive functions to

functional f |M for all c ∈ (S, 24/NS).
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3 Proof of the Main Theorem

In this section we will show the existence of positive solution for problem (1.1). To this

end we do arguments which are similar in spirit to those addressed in [4].

Here we consider the family of functions (see 1.5)

Φδ,y = S(4−N)/8uδ,y ∈ D2,2(IRN),

which satisfies: ‖Φδ,y(x)‖2 = S, |Φδ,y(x)|2∗∗ = 1 and Φδ,y ∈ Lq(IRN), for all

q ∈ (N/(N − 4), 2∗∗].

Lemma 3.1 For each y ∈ IRN and q ∈ (N/(N − 4), 2∗∗), we have

|∆Φδ,y|∞ → +∞ as δ → 0, (3.27)

|∆Φδ,y|∞ → 0 as δ → +∞, (3.28)

|Φδ,y|q → 0 as δ → 0, (3.29)

|Φδ,y|q → +∞ as δ → +∞. (3.30)

Proof. Using the definition of the function Φδ,y,

|∆Φδ,y| (x) =
CN

S(N−4)/8

(N − 4)δ(N−4)/4
[
2 |x− y|2 + Nδ

]
[
δ + |x− y|2]N/2

then

|∆Φδ,y|∞ =
CN

S(N−4)/8
N(N − 4)δ−N/4

and consequently (3.27) and (3.28) hold. Since

|Φδ,y|qq =

(
CN

S(N−4)/8

)q

δ(N−4)(2∗∗−q)/4

∫

IRN

[
1 + |x|2](4−N)q/2

dx,

and 2∗∗ > q, we have that (3.29) and (3.30) hold.

Lemma 3.2 The infimum inf{f(u) : u ∈M} is never achieved.

Proof. It is easy to see that inf{f(u) : u ∈ M} ≥ S. In fact the equality holds, because

by Hölder’s inequality, with 2q ∈ (N/(N − 4), 2∗∗) and 1/q + 1/t = 1,

f(Φδ,0) ≤ S + |a|t |Φδ,0|22q ,

and by Lemma 3.1 - (3.29), |Φδ,0|2q → 0 as δ → 0.
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Therefore, if we assume that there is v ∈ M such that f(v) = S, we obtain a

contradiction, because

S ≤ ‖v‖2 < f(v) = S.

Lemma 3.3 For each ε > 0,

∫

IRN\Bε

|∆Φδ,o|2 dx → 0 as δ → 0

Proof. Using the definition of Φδ,o, we obtain

∫

IRN\Bε

|∆Φδ,o|2 dx ≤ C2
N(N − 4)2δ(N−4)/2

S(N−4)/4

∫ ∞

ε

(r2 + Nδ)2

rN+1
dr → 0 as δ → 0.

Lemma 3.4 For each ε > 0, there exists δ = δ(ε) > 0 and δ = δ(ε) > 0 such that, for all

δ ∈ (0, δ] ∪ [δ, +∞) we have

sup
y∈IRN

f(Φδ,y) < S + ε.

Proof. For each y ∈ IRN fixed, we distinguish two cases:

(i) s ∈ (N/4, p2). By Hölder’s Inequality,

∫

IRN

a(x) |Φδ,y|2 dx ≤ |a|s |Φδ,o|22t , for y ∈ IRN ,

where t = s/(s− 1). Then, by Lemma 3.1, there exists δ > 0, such that for all δ ∈ (0, δ]

sup
y∈IRN

∫

IRN

a(x) |Φδ,y|2 dx < ε.

Thus, for all δ ∈ (0, δ],

sup
y∈IRN

f(Φδ,y) ≤ S + sup
y∈IRN

∫

IRN

a(x) |Φδ,y|2 dx ≤ S + ε.

(ii) s ∈ (p1, N/4). In this case we have 2t = 2s/(s− 1) > 2∗∗ and

∫
IRN a(x) |Φδ,y|2 dx ≤ |a|s |Φδ,o|(2t−2∗∗)/t

∞ |Φδ,o|2
∗∗/t

2∗∗

≤ ( CN

S(N−4)/8 )
(2t−2∗∗)/t |a|s δ(4−N)(2t−2∗)/4t.
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Thus there exists δ > 0, such that for all δ ∈ [δ, +∞),

sup
y∈IRN

∫

IRN

a(x) |Φδ,y|2 dx < ε

and hence for all δ ∈ [δ, +∞),

sup
y∈IRN

f(Φδ,y) ≤ S + sup
y∈IRN

∫

IRN

a(x) |Φδ,y|2 dx ≤ S + ε.

Lemma 3.5 Assume that |a|N/4 < S(24/N − 1). Then

sup
y∈IRN δ∈(0,∞)

f(Φδ,y) < 24/NS.

Proof. Using the definition of Φδ,y and Hölder’s inequality,

f(Φδ,y) = S +

∫

IRN

a(x) |Φδ,y|2 dx ≤ S + |a|N/4 ,

thus

sup
y∈IRN δ∈(0,∞)

f(Φδ,y) ≤ S + |a|N/4 .

Finally, using that |a|N/4 < S(24/N − 1), we obtain

sup
y∈IRN δ∈(0,∞)

f(Φδ,y) < 24/NS.

Now we consider the function α : D2,2(IRN) → IRN+1 given by

α(u) =
1

S

∫

IRn

(
x

|x| , σ(x)) |∆u|2 dx = (β(u), γ(u)),

where

σ(x) =

{
0 if |x| < 1
1 if |x| ≥ 1;

β(u) =
1

S

∫

IRN

x

|x| |∆u|2 dx;

γ(u) =
1

S

∫

IRN

σ(x) |∆u|2 dx.
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Lemma 3.6 For |y| ≥ 1/2, we have

β(Φδ,y) = y/ |y|+ oδ(1) as δ → 0.

Proof. Fixed ε > 0, by Lemma 3.3 there exists δ̂ > 0 such that for all δ ∈ (0, δ̂),

1

S

∫

IRN\Bε(y)

|∆Φδ,y|2 dx < ε,

then ∣∣∣∣β(Φδ,y)− 1

S

∫

Bε

x

|x| |∆Φδ,y|2 dx

∣∣∣∣ < ε. (3.31)

If ε > 0 is small and |y| ≥ 1/2, for all x ∈ Bε(y) we get
∣∣∣∣

x

|x| −
y

|y|

∣∣∣∣ < 2ε.

Thus we have ∣∣∣∣
y

|y| −
1

S

∫

Bε(y)

x

|x| |∆Φδ,y|2 dx

∣∣∣∣ ≤
∣∣∣∣
1

S

∫

Bε(y)

(
x

|x| −
y

|y|) |∆Φδ,y|2 dx

∣∣∣∣ +

∣∣∣∣
1

S

∫

IRN\Bε(y)

y

|y| |∆Φδ,y|2 dx

∣∣∣∣

and hence

∣∣∣∣
y

|y| −
1

S

∫

Bε(y)

x

|x| |∆Φδ,y|2 dx

∣∣∣∣ < 2ε + ε = 3ε.

This fact together with (3.31) imply that
∣∣∣∣β(Φδ,y)− y

|y|

∣∣∣∣ < 4ε,

for all |y| ≥ 1/2 and δ ∈ (0, δ̂).

Now we consider the following set

Υ = {u ∈M∩ Σ : α(u) = (0, 1/2)},
where

Σ = {u ∈ D2,2(IRN); u ≥ 0}.
Notice that Υ is a nonempty set, because Φδ,o belongs to the cone Σ and for all δ > 0 we

have ∫

Bε

x

|x| |∆Φδ,o|2 dx = 0

1

S

∫

IRN

σ(x) |∆Φδ,o|2 dx = γ(Φδ,o),
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and

γ(Φδ,o) → 0 as δ → 0 and γ(Φδ,o) → 1 as δ →∞,

thus there exists δ1 > 0 such that

(β(Φδ1,o), γ(Φδ1,o)) = (0, 1/2).

Lemma 3.7 We have

co = inf
u∈Υ

f(u) > S.

Proof. It is obvious that co ≥ S. To prove this lemma we suppose by contradiction that

co = S. Thus there exists a sequence of nonnegative functions {un} ⊂ D2,2(IRN) such

that

|un|2∗∗ = 1 and α(un) = (0, 1/2)

and

f(un) → S.

Using Remark 1 we obtain a sequence of points yn ⊂ IRN , a sequence of positive numbers

δn and a sequence of functions ωn ⊂ D2,2(IRN) converging strongly to 0 in D2,2(IRN) such

that

un(x) = ωn(x) + Φδn,yn(x), ∀x ∈ IRN

Since ωn → 0 in D2,2(IRN), from the definition of α,

α(ωn + Φδn,yn) = α(Φδn,yn) + on(1).

Therefore

β(Φδn,yn) → 0, n → +∞ (3.32)

γ(Φδn,yn) → 1/2, n → +∞ (3.33)

Going if necessary to a subsequence, one of the following cases occurs for (Φδn,yn) as

n → +∞,

δn → +∞, (3.34)

δn → δ0 > 0, (3.35)

δn → 0 and yn → y0 with | y0 |< 1/2, (3.36)

δn → 0 and | yn |≥ 1/2. (3.37)
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Now we shall prove that none of these possibilities can be true. Assume that (3.34) holds,

then by Lemma 3.1,

γ(Φδn,yn) =
1

S

∫

IRN\B1(0)

|∆Φδn,yn|2 dx = 1− 1

S

∫

B1(0)

|∆Φδn,yn |2 dx = 1− on(1)

which implies a contradiction with (3.33). If (3.35) holds, then |yn| → +∞, because

otherwise {Φδn,yn} would converge strongly in D2,2(IRN), thus the same would be true for

{un}, and therefore f(u) = S for some u ∈ M, which it is a contradiction with Lemma

3.2. Thus,
γ(Φδn,yn) = γ(Φδ0,yn) + on(1)

= 1
S

∫
IRN σ(x) |∆Φδ0,yn |2 dx− on(1)

= 1
S

∫
IRN σ(x− yn) |∆Φδ0,0|2 dx

= 1 + 1
S

∫
B1(yn)

σ(x) |∆Φδ0,yn |2 dx

= 1− on(1)

which implies a contradiction with (3.33). If (3.36) holds, thus

γ(Φδn,yn) =
1

S

∫

IRN\B1(0)

|∆Φδn,yn |2 dx =
1

S

∫

IRN\B1(yn)

|∆Φδn,0|2 dx = on(1)

which implies a contradiction with (3.33). If (3.37) holds, by Lemma 3.6,

β(Φδ,yn) = yn/ | yn | +oδ(1) as δ → 0,

which it is a contradiction with (3.32).

The next three lemmas follow using the Change Variable Theorem and lemmas that

we showed until this moment.

Lemma 3.8 There exists δ1 ∈ (0, 1/2) such that

f(Φδ1,y) < (S + co)/2, for y ∈ IRN , (3.38)

γ(Φδ1,y) < 1/2, for |y| < 1/2, (3.39)∣∣∣∣β(Φδ1,y)− y

|y|

∣∣∣∣ < 1/4, for |y| ≥ 1/2. (3.40)

Proof. First we remark that (3.38) follows from Lemmas 3.3 and 3.6, and (3.40) holds,

because Lemma 3.6. To show (3.39) we record the following equality

γ(Φδ,y) =
1

S

∫

|x|≥1

|∆Φδ,y|2 dx =
1

S

∫

|x−y|≥1

|∆Φδ,o|2 dx,
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thus

γ(Φδ,y) = 1− 1

S

∫

B1(y)

|∆Φδ,o|2 dx → 0 as δ → 0.

This yields (3.39).

Lemma 3.9 There exists δ2 > 1/2 such that for all y ∈ IRN ,

f(Φδ2,y) < (S + co)/2, (3.41)

γ(Φδ2,y) > 1/2. (3.42)

Proof. From Lemmas 3.4 and 3.7 we show (3.41). And, by similar argument as used in

the proof of Lemma 3.8, we show (3.42).

Lemma 3.10 There exists R > 0 such that for y ∈ IRN \B(0, R) and δ ∈ [δ1, δ2],

f(Φδ,y) < (S + co)/2, (3.43)

(β(Φδ,y) |y)IRN > 0. (3.44)

Proof. To show this lemma we use the definition of Φδ,y and the same arguments

explored in [4].

Now we consider the map Q : IRN × (0,∞) → D2,2(IRN) given by

Q(y, δ) = Φδ,y

and the following sets

V = BR(0)× (δ1, δ2),

Θ = Q(V ),

H = {h ∈ C(Σ ∩M, Σ ∩M) : h(u) = u if f(u) < (S + co)/2},
Γ = {A ⊂ Σ ∩M : A = h(Θ), for some h ∈ H} .

Lemma 3.11 Let F : V → IRN+1 given by

F (y, δ) = (α ◦Q)(y, δ) =
1

S

∫

IRN

(
x

|x| , σ(x)) |∆Φδ,y|2 dx.

Then

deg(F, V, (0, 1/2)) = 1.
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Proof. Consider the homotopy

Z(t, .) = tF + (1− t)IdV

which satisfies (0, 1/2) /∈ Z(t, ∂V ), that is, for every (y, δ) ∈ ∂V , we have

(tβ(Φδ,y) + (1− t)y, tγ(Φδ,y) + (1− t)δ) 6= (0, 1/2).

To prove this fact we distinguish the cases.

(i) If | y |< 1/2, from (3.39) we have γ(Φδ1,y) < 1/2, thus for all t ∈ [0, 1],

tγ(Φδ1,y) + (1− t)δ < 1/2.

(ii) If 1/2 ≤| y ≤ R, from (3.40),

∣∣∣∣β(Φδ1,y)− y

| y |

∣∣∣∣ <
1

4
,

hence, for all t ∈ [0, 1],

| tβ(Φδ1,y) + (1− t)y | ≥ | t y

| y | + (1− t)y | − | tβ(Φδ1,y)− t
y

| y | |
≥ t + (1− t) | y | −t/4

≥ 1/2.

(iii) If | y |≤ R, from (3.42), γ(Φδ1,y) > 1/2, thus for all t ∈ [0, 1],

tγ(Φδ1,y) + (1− t)δ > 1/2.

(iv) If | y |= R, from 3.44, for all δ ∈ [δ1, δ2] and t ∈ [0, 1],

(tβ(Φδ,y) + (1− t)y |y)IRN > (1− t) | y |2= (1− t)R2.

Therefore, by the homotopy invariance of the topological degree,

deg(F, V, (0, 1/2)) = deg(IdV , V, (0, 1/2)) = 1.

Lemma 3.12 A ∩Υ 6= ∅, for all A ∈ Γ.
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Proof. Consider the map

Fh = α ◦ h ◦Q : IRN × (0,∞) → IRN × (0,∞).

We claim that Fh(y, δ) = F (y, δ), for all (y, δ) ∈ ∂V . In fact, if (y, δ) ∈ ∂V , by (3.41),

(3.38) and (3.43), we have

f(Φy,δ) < (c0 + δ)/2,

thus

h(Φy,δ) = Φy,δ.

So, for all (y, δ) ∈ ∂V ,

Fh(y, δ) = α(h(Φy,δ)) = α(Φy,δ) = F (y, δ).

Therefore, by the properties of the degree theory and Lemma 3.8 we have

deg(Fh, V, (0, 1/2))) = deg(F, V, (0, 1/2))) = 1,

which implies that for all h ∈ H, there is (y, δ) ∈ V such that

α(h(Φδ,y)) = (0, 1/2).

Proof of Theorem 1.1 Consider the minimax level

c = inf
A∈Γ

sup
u∈A

f(u),

and

Kc = {u ∈ Σ ∩M : f(u) = c and f ′ |M (u) = 0}.
It is easy to see that the proof of Theorem 1.1 is a consequence of the following.

Claim 3.13 S < c < 24/NS and Kc is nonempty.

Proof of claim 3.13 Using the definition of minimax level c and Lemma 3.5, we have

c ≤ sup
u∈Θ

f(u) ≤ sup
y∈IRN δ∈(0,∞)

f(Φδ,y) < 24/NS. (3.45)

On the other hand, by Lemma 3.11, A ∩Υ 6= ∅ for all A ∈ Γ, thus

c ≥ inf
u∈Υ

f(u) = co > S. (3.46)
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From (3.45) and (3.46)

S < c < 2
4
N S.

Suppose now Kc = ∅. For each s ∈ IR, denote

f s = {u ∈ Σ ∩M : f(u) ≤ s}.

By Corollary 2.10, the Palais-Smale condition holds in

{u ∈ Σ ∩M : S < f(u) < 22/NS}.

Thus, using the deformation lemma there is εo > 0 and η ∈ C([0, 1] × Σ ∩M, Σ ∩M)

such that

η(t, u) = u for t = 0 or (t, u) ∈ (0, 1)× f c−εo ∪ (Σ ∩M \ f c+εo)

and

η(1, f c+εo/2) ⊂ η(1, f c−εo/2).

Let A0 ∈ Γ such that

c < sup
u∈A0

f(u) < c + εo/2,

thus η(1, A0) ∈ Γ and supu∈η(1,A0) f(u) < c − ε0/2 which is a contradiction and we

concluded the proof of Theorem 1.1.
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[4] V. Benci and G. Cerami, Existence of positive solutions of the Equation −∆u +

a(x)u = u
N+2
N−2 in IRN , J. Funct. Anal. 88 (1990), 91-117.

[5] A. Ben-Naoum,C. Troestler and M. Willem, Extrema problems with critical

exponents on unbounded domain, Nonlinear Analysis, 26 (1996), 823-833.

[6] F. Bernis, J. Garcia-Azorero, I. Peral, Existence and multiplicity of nontrivial

solutions in semilinear critical problems of fourth-order, Adv. Diff. Equ., 1 (1996),

219-220.

[7] H. Brezis and E. Lieb, A Relation between pointwise convergence of functions and

convergence of functional, Proc. Amer. Math. Soc. 88 (1983), 486-490.

[8] H. Brezis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving

critical Sobolev exponents, Comm. Pure Appl. Math., 36 (1983), 486-490.

[9] G. Cerami, D. Fortunato and M. Struwe, Bifurcation and multiplicity results for

nonlinear elliptic problems involving critical Sobolev exponents, Ann. Inst. Henri
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