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Abstract

It has been shown by Trudinger and Moser that for normalized func-
tions u of the Sobolev space W1,N (Ω), where Ω is a domain in RN , the
integral

∫
Ω

exp(uαN N/(N−1))dx remains uniformly bounded. Carleson
and Chang proved that there exists a corresponding extremal function
in the case that Ω is the unit ball in RN . In this paper we give a new
proof, a generalization, and a new interpretation of this result. In par-
ticular, we give an explicit sequence which is maximizing for the above
integral among all normalized ”concentrating sequences ”.

1 Introduction

1.1 Critical growth in W 1,q: the case q = N versus 1 < q < N

We recall the following facts: let W 1,q
0 (Ω) denote the Sobolev space over

a bounded domain Ω ⊂ RN , with norm ||u||qq =
∫
Ω |∇u|q dx. Then, for

1 < q < N critical growth can be expressed by the following relations: Let

sup
||u||q=1

∫

Ω
|u|pdx = sN,q(p) ; (1)

then

sN,q(p) < ∞ for 1 < p ≤ q∗ =
qN

N − q

sN,q(p) = +∞ for p > q∗

The value of the best Sobolev constant sN,q(q∗) is explicit and independent of
the domain Ω, and it is known that it is never attained in a smooth domain
different from RN : sN,q(q∗, Ω) = sN,q(q∗,RN ), and only sN,q(q∗,RN ) is
attained.
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If q = N, then critical growth is given by the Trudinger-Moser inequality,
which can be expressed as

sup
||u||N=1

∫

Ω
(eαuN/(N−1) − 1)dx = cN (α) · |Ω| (2)

(note the dependence on |Ω|); then, denoting by ωN−1 the (N−1)-dimensional
surface of the unit sphere in RN , one has

cN (α) < +∞ for 0 < α ≤ αN = Nω
1/(N−1)
N−1

cN (α) = +∞ for α > αN

In this note we consider general nonlinearities with subcritical and crit-
ical growth in the case q = N . We will suppose throughout this paper
that

F1) F ∈ C1(R)
F2) F is increasing on R+, and F (t) = F (|t|)
F3) 0 ≤ F (t) ≤ eαN |t|N/(N−1) − 1, for all t ∈ R

Then we say, for dimension N

F has subcritical growth if lim
t→∞

F (t)

eαN |t|N/(N−1)
= 0 ;

otherwise we say that F has critical growth; in this case we normalize to
limt→∞ F (t)e−αN |t|N/(N−1)

= 1, i.e. we say

F has critical growth if lim
t→∞

F (t)

eαN |t|N/(N−1)
= 1 .

As is known from the cases 1 < q < N, the notion of criticality is closely
related to the behaviour of the functional on concentrating sequences, i.e.
(in the case q = N) sequences {un} converging weakly to 0 in W 1,N

0 (Ω) and
such that |∇un|N converges to a Dirac delta-function in measure. We make
the

Definition 1 A sequence {un} ⊂ W 1,N
0 (Ω) is a normalized concentrating

sequence, if
a) ||un||N = 1
b) un ⇀ 0 , weakly in W 1,N

0 (Ω)
c) ∃ x0 ∈ Ω such that ∀ ρ > 0 :

∫
Ω\Bρ(x0) |∇un|N dx → 0
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We first consider the behaviour of the functional
∫
Ω F (un)dx, with sub-

critical nonlinearities F, for normalized concentrating sequences {un}. We
will prove:

Theorem 2 If F has subcritical growth, then limn→∞
∫
Ω F (un)dx = 0, for

any normalized concentrating sequence {un}.

By a concentration-compactness alternative of P.L. Lions it will be easy
to conclude by Theorem 2 that

Theorem 3 If F has subcritical growth, then

sup
||u||N=1

∫

Ω
F (u)dx

is attained.

Next, we consider critical growth; here we restrict the considerations to
the case Ω = B1(0), the unit ball in RN . Studying again the behaviour of
the functional on normalized concentrating sequences, we find

Theorem 4 Let Ω = B1(0). If F has critical growth, then

lim
n→∞

∫

Ω
F (un)dx ∈ [0, e1+ 1

2
+...+ 1

N−1 |Ω|]

for any normalized concentrating sequence {un}. In particular, there exists
an explicit normalized concentrating sequence {yn} with

lim
n→∞

∫

Ω
F (yn)dx = e1+ 1

2
+...+ 1

N−1 |Ω| .

We now turn to the question whether the supremum is attained in the
case of critical growth. In an interesting and intricate paper Carleson and
Chang [3] have shown that

sup
||u||N=1

∫

B1(0)
eαNuN/(N−1)

dx

is attained. For N = 2, this result was extended to general bounded domains
Ω by Flucher [4], using symmetrization and conformal deformations.

Here we will prove more generally
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Theorem 5 Suppose that F satisfies F1-F3 and

F4) Fλ(t) ≥ eαN tN/(N−1) − 1− λ tN/(N−1).

Then, for λ < αN , one has

CN,λ = sup
||u||N=1

∫

B1(0)
Fλ(u)dx > e1+ 1

2
+...+ 1

N−1 |Ω| ,

and CN,λ is attained.

1.2 Application to the existence problem for related PDE

The relations (1) and (2) are important with regard to the solvability of the
related differential equations with critical growth:

{ −∆u = |u|2∗−2u + g(u) in Ω
u = 0 on ∂Ω

(3)

respectively

{ −∆u = h(u)e4πu2
= e4πu2+log(h(u)) in Ω

u = 0 on ∂Ω
(4)

where g and h are functions with subcritical growth:

g(s)
s2∗−1

→ 0 as s →∞

respectively

log(h(s))
s2

→ 0 as s →∞.

Solutions of (3) are given as critical points of the related functional

I(u) =
∫

Ω

1
2
|∇u|2 − 1

2∗
|u|2∗ −G(u) dx

where G(s) =
∫ s
0 g(r)dr. Due to the fact that the supremum in (1) is not

attained, one finds for the functional I(u) certain levels at which the com-
pactness condition of Palais-Smale fails. In the famous paper [2] of Brezis-
Nirenberg it was shown that one can overcome this obstacle and prove ex-
istence if one shows, using properties of the lower order term g, that the
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critical levels of the functional avoid these non-compactness levels. To ob-
tain such statements, one uses special sequences of functions obtained from
the maximizing sequence for (1), which are explicit concentrating functions
converging weakly to zero.

It has been shown in [1] by Adimurthi and in [5] that similar methods
can be employed to prove existence results also for equation (2). Indeed,
considering the associated functional to (4)

J(u) =
∫

Ω

1
2
|∇u|2 − F (u) dx (5)

where F (s) =
∫ s
0 h(r)e4πr2

dr, one finds again levels of non-compactness;
however, due to the fact that the best constant c2(4π) is attained, there
is no natural concentrating sequence to be used to show that these levels
are avoided. Thus, it is difficult to obtain optimal existence results. The
sequence used in [1] and [5] is the so-called Moser sequence

zn(t) =
1√
2π





(log n)1/2 if 0 ≤ |x| ≤ 1
n

log 1
|x|

(log n)1/2 if 1
n ≤ |x| ≤ 1

0 if |x| > 1

(6)

which was proposed by J. Moser in [8] to prove that the inequality (2)
is sharp with respect to the constant 4π in the exponent. This sequence
satisfies

lim
n→∞

∫

B1

(e4πu2
n − 1)dx = 2π . (7)

while the explicit concentrating sequence {yn} with ||yn|| = 1 mentioned in
Theorem 4 satisfies

lim
n→∞

∫

B1

(e4πu2
n − 1)dx = eπ . (8)

Since the proof of existence of solutions for equation (4) as done in [5]
depends on the value of the limit (7) above, we can improve the result
obtained using the limit (8).We will prove

Theorem 6 Assume that h ∈ C(R) and let f(s) = h(s)e4πs2
. Assume that

H1) f(0) = 0
H2) ∃ s0 > 0, ∃ M > 0 such that

5



0 < F (s) =
∫ s
0 f(r)dr ≤ M |f(s)| , ∀ |s| ≥ s0

H3) 0 < F (s) ≤ 1
2f(s)s , ∀ s ∈ R\{0} , ∀ x ∈ Ω

Then equation (4) has a solution provided that

lim
s→∞h(s)s = β >

1
eπ

(9)

We recall that in [5] it was proved that (4) has a solution provided that
lims→∞ h(s)s = β > 1

2π . We refer to [6] for non-existence results concerning
equation (4).

2 Proofs

2.1 Proof of Theorem 2:

Step 1. Let {un} denote a normalized concentrating sequence as defined
above. We may suppose that the concentration point is 0 ∈ Ω, and that u ≥
0 (since both ||u||N and F (u) do not change replacing u by |u|). We apply
symmetrization (following J. Moser [8]), defining the radially symmetric
function u∗ as follows: let

m{x |u∗(x) > ρ} = m{x ∈ Ω |u(x) > ρ} for every ρ > 0.

Then u∗ is a decreasing function in |x|, with u∗(|x|) = 0 for |x| > R, where
m(BR(0)) = m(Ω). By construction

∫

BR

F (u∗n)dx =
∫

Ω
F (un)dx ,

and it is known that

1 =
∫

Ω
|∇un|N dx ≥

∫

BR

|∇u∗n|N dx .

Setting zn= u∗n
||u∗n||N ≥ u∗n we thus find, using the monotonicity of F (t)

∫

BR

F (u∗n)dx ≤
∫

BR

F (zn)dx

Hence it suffices to show that
∫
BR

F (zn)dx = ωN−1

∫ R
0 F (zn(ρ))ρN−1dρ → 0.

6



Step 2. To prove that
∫ R
0 F (zn)ρN−1dρ → 0, we perform a change of variable

which transforms the radial integral on [0, R) into an integral on the half-line
[0,+∞). Let

ρ = Re−t/N and wn(t) = N (N−1)/Nω
1/N
N−1zn(ρ) = α

(N−1)/N
N zn(ρ) .

Then wn(t) is an increasing function on [0,∞). One checks easily that
∫ ∞

0

∣∣w′n(t)
∣∣N dt = wN−1

∫ R

0

∣∣∣∣
d

dρ
zn(ρ)

∣∣∣∣
N

ρN−1dρ =
∫

BR

|∇zn(x)|N dx

and
∫ ∞

0
F (

1

α
(N−1)/N
N

wn(t)) e−tdt =
N

RN

∫ R

0
F (zn(ρ))ρN−1dρ (10)

=
1

m(BR)

∫

BR

F (zn(x))dx

Clearly, since the sequence un is concentrating in x0, the sequence zn is
concentrating in 0 and the sequence wn in +∞, i.e. for any fixed A > 0 we
have

∫ A
0 |w′n|N dt → 0.

We now distinguish the cases:
a) there exists an ∈ (0, +∞) with w

N/(N−1)
n (an) = an − 2 log(an). Since for

a given interval [0, A] we have, for η > 0 arbitrarily small, that

wN(N−1)
n (t) ≤ t (

∫ A

0

∣∣w′n
∣∣N dt)1/(N−1) ≤ ηt, for n large ,

it follows that an →∞. Thus we have by assumption F3
∫ A

0
F (

1

α
(N−1)/N
N

wn (t))e−tdt ≤
∫ A

0
(ew

N/(N−1)
n (t) − 1)e−tdt ≤

∫ A

0
(eηt − 1)e−tdt

=
1

1− η
(1− e(η−1)A)− 1 + e−A

Since A is arbitrarily large and η > 0 arbitrarily small, we conclude that∫ A
0 F ( 1

αN
wn)e−tdt → 0 as n →∞.

Next, consider
∫ an

A
F (

1

α
(N−1)/N
N

wn(t))e−tdt ≤
∫ an

A
(et−2 log t − 1)e−tdt

=
1
A
− 1

an
+ e−an − eA → 0 , as n →∞
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Finally, on [an, +∞) we have w
N(N−1)
n (t) ≥ an − 2 log(an), and hence, by

the assumption of subcriticality, we have for any ε > 0 fixed that F (s) ≤
ε(eαNsN/(N−1) − 1), for all s ≥ an with n sufficiently large; thus, for n suffi-
ciently large

∫ ∞

an

F

(
1

α
(N−1)/N
N

wn(t)

)
e−tdt ≤ ε

∫ ∞

an

ew
N(N−1)
n (t)−tdt ≤ ε c

Hence, the theorem is proved in case a).

b) for all t ∈ R holds: w
N/(N−1)
n (t) < t− 2 log+ t. Then, arguing as in a) we

have
∫ ∞

0
F (

1

α
(N−1)/N
N

wn(t))e−tdt

≤
∫ A

0
F (

1

α
(N−1)/N
N

wn(t))e−tdt +
∫ ∞

A
(et−2 log t − 1)e−tdt

which can be made arbitrarily small.

2.2 Concentration-compactness

For the subsequent proofs we rely on the following concentration-compactness
result of P.L. Lions [7]:

Proposition 7 (P.L. Lions). Let Ω be a bounded domain in RN , and let
{un} be a sequence in W 1,N

0 (Ω) such that ||un||N ≤ 1 for all n. We may
suppose that un ⇀ u weakly in W 1,N

0 (Ω), |∇un|N → µ weakly in measure.
Then either
(i) µ = δx0, the Dirac measure of mass 1 concentrated at some x0 ∈ Ω, and
u ≡ 0, or
(ii) there exists β > αN such that the family un = eu

N/(N−1)
n is uniformly

bounded in Lβ(Ω) and thus∫
Ω eαN |un|N/(N−1) → ∫

eαN |u|N/(N−1)
as n → ∞. In particular, this is the

case if u is different from 0.
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2.3 Proof of Theorem 3:

Since sup||u||N=1

∫
Ω F (u) dx > 0, we conclude by Theorem 2 that there can-

not exist a normalized concentrating sequence which is maximizing. By
the concentration-compactness alternative of P.L. Lions we infer that the
supremum is attained.

2.4 Proof of Theorem 4:

We proceed by the following steps:
1) if {un} is any normalized concentrating sequence in W 1,N

0 (B1), then

lim
n→∞

∫

Ω
F (un)dx ≤ e1+ 1

2
+...+ 1

N−1 |Ω| ;

2) give an explicit normalized concentrating sequence {yn} with

lim
n→∞

∫

Ω
F (yn)dx = e1+ 1

2
+...+ 1

N−1 |Ω| ;

1. Upper bound: In this proof we follow Carleson-Chang [3]. First note
that by F3) and the transformation in section 2.1 it suffices to show that for
any normalized concentrating sequence {un} ∈ C1[0,∞) , i.e

∫∞
0 |u′n|N = 1,∫ A

0 |u′n|N → 0, with un(0) = 0, u′n(t) ≥ 0 holds

limn→∞
∫ ∞

0
(eu

N/(N−1)
n −t − 1)dt ≤ e1+ 1

2
+...+ 1

N−1 , (11)

More precisely, we show:
If limn→∞

∫∞
0 eu

N/(N−1)
n −t > 2, then {un} has the following properties (cf.

[3], p.117)
(a) if an ∈ [1,∞) denotes the first point with u

N/(N−1)
n (an) = an − 2 log an,

then an →∞
(b) limn→∞

∫∞
an

eu
N/(N−1)
n −tdt ≤ e1+ 1

2
+...+ 1

N−1

(c) limn→∞
∫ an

0 eu
N/(N−1)
n −tdt = 1

Proof:
Estimate (11) follows clearly from (b) and (c).

Property a): following [3], we note that the point an exists, for n large
enough; if not, u

N/(N−1)
n (t) < t− 2 log+(t) for all t and thus
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limn→∞
∫∞
0 eu

N/(N−1)
n −t ≤ 2, contradicting the assumption.

Next, for each A > 0, we can choose numbers n0 and η > 0 such that for all
t ∈ [0, A] and all n ≥ n0

uN(N−1)
n (t) ≤ t (

∫ A

0

∣∣u′n
∣∣N dt)1/(N−1) ≤ ηt < t− 2 log+ t . (12)

This implies that an ≥ A for all n ≥ n0, and since A is arbitrary, we have
an →∞ as n →∞.

Property c): Note that (12) implies also that un → 0 uniformly on compact
sets. Using that an is the first point where u

N/(N−1)
n (t) = t − 2 log+(t) we

have the following estimate from above
∫ an

0
eu

N/(N−1)
n (t)−tdt ≤ eε

∫ A

0
e−tdt +

∫ an

A
e−2 log tdt

= eε(1− e−A) +
(

1
A
− 1

an

)
→ 1 as ε → 0, A →∞

On the other hand, we can estimate from below
∫ an

0
eu

N/(N−1)
n (t)−tdt ≥

∫ an

0
e−tdt = 1− e−an → 1 as an →∞

Property b): We recall that in [3], Lemma 2, the following result was
proved (note the misprint there: the factor e(cn/n)((n−1)/n)nβn should read
e(cn/n)((n−1)/n)n−1βn):

Proposition 8 (Carleson-Chang). For a > 0 and δ > 0 given, suppose that∫∞
a |w′|N ≤ δ ; then
∫ ∞

a
ewN/(N−1)(t)−tdt

≤ 1

1− δ
1

N−1

exp

(
w

N
N−1 (a)

[
1 +

1
N − 1

δ

(1− δ
1

N−1 )(N−1)

]
− a

)
· e1+ 1

2
+...+ 1

N−1

Proof. Apply this to w(t) = un(t), a = an, and δ = δn =
∫∞
an
|u′n|Ndt.

Thus we have
∫ ∞

an

eu
N/(N−1)
n (t)−tdt ≤ 1

1− δ
1/(N−1)
n

eKn · e1+ 1
2
+...+ 1

N−1 (13)
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where Kn = u
N/(N−1)
n (an)[1 + 1

N−1
δ

(1−δ
1/(N−1)
n )N−1

]− an. By

uN/(N−1)
n (an) ≤ an

(∫ an

0

∣∣u′n
∣∣N dt

)1/(N−1)

we have, using
∫∞
0 |u′n|N/(N−1) = 1, that

uN/(N−1)
n (an) ≤ an(1− δn)1/(N−1).

Thus

δn ≤ 1− uN
n (an)
aN−1

n

= 1− (1− 2 log+(an)
an

)N−1

≤ (N − 1)
2 log+(an)

an
→ 0 as n →∞

and

Kn = uN/(N−1)
n (an)[1 +

1
N − 1

δn

(1− δ
1/(N−1)
n )N−1

]− an

= (an − 2 log+(an))(1 +
1

N − 1
δn + O(δN/(N−1)

n ))− an

= −2 log+(an) + an
1

N − 1
δn + O

((
logN (an)

an

)1/(N−1)
)

≤ O

((
logN (an)

an

)1/(N−1)
)

Since an →∞ we see that limn→∞Kn ≤ 0. Thus, we get by (13)

lim
n→∞

∫ ∞

an

eu
N/(N−1)
n (t)−tdt ≤ e1+ 1

2
+...+ 1

N−1

2. The maximizing concentrating sequence: We first consider the
function F (t) = eαN tN/(N−1)

with Ω = B1(0). We want to produce an explicit
normalized concentrating sequence of functions {yn} ∈ C[0,∞), piecewise
differentiable, with yn(0) = 0 and y′n(t) ≥ 0 and such that

lim
n→∞

∫ ∞

0
ey

N/(N−1)
n (t)−tdt → 1 + e1+ 1

2
+...+ 1

N−1
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For n ∈ N set δn = 2 log n
n , and let

yn(t) =

{
t

n1/N (1− δn)
N−1

N , 0 ≤ t ≤ n
N−1

(n(1−δn))1/N log An+1
An+e−(t−n)/(N−1) + (n(1− δn))

N−1
N , n ≤ t

(14)

First note that yn (t) is continuous and piecewise differentiable; furthermore
we have ∫ n

0
|y′n(t)|Ndt = (1− δn)N−1

We now choose An in (14) such that
∫∞
0 |y′n|N dt = 1 , i.e.

∫ ∞

n
|y′n(t)|Ndt = 1− (1− δn)N−1 = (N − 1)δn + σN (δ2

n) , (15)

where

σN (s) =
{

0 , N = 2
O(s) , N ≥ 3

We show that such a choice for An is possible, with

An =
1
n2

1

e1+ 1
2
+...+ 1

N−1

+
{

O(1/n4) , N = 2
O(log2(n)/n3) , N ≥ 3

(16)

Indeed, using the change of variables s = t− n, we have∫ ∞

n
|y′n(t)|Ndt

=
∫ ∞

n

(N − 1)N

n(1− δn)

∣∣∣∣
d

dt
[log(An + 1)− log(An + e−(t−n)/(N−1))]

∣∣∣∣
N

dt

=
∫ ∞

n

(N − 1)N

n(1− δn)

∣∣∣∣∣
1

N−1 e−(t−n)/(N−1)

An + e−(t−n)/(N−1)

∣∣∣∣∣
N

dt

Next, setting r = es/(N−1) yields

(N − 1)N

n(1− δn)

∫ ∞

0

∣∣∣∣∣
1

N−1e−s/(N−1)

An + e−s/(N−1)

∣∣∣∣∣
N

ds

=
(N − 1)N

n(1− δn)

∫ ∞

1

∣∣∣∣∣
1

N−1

Anr + 1

∣∣∣∣∣
N

N − 1
r

dr

=
N − 1

n(1− δn)

∫ ∞

1

1
(Anr + 1)N r

dr .
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Finally, set ρ = 1
r to obtain

N − 1
n(1− δn)

∫ ∞

1

1
(Anr + 1)N r

dr

=
N − 1

n(1− δn)

∫ 1

0

ρN−1

(An + ρ)N
dρ

=
N − 1

n(1− δn)

(
log

An + 1
An

−
N−1∑

k=1

1
(N − k)(An + 1)N−k

)

By (15) this gives the condition

N − 1
n(1− δn)

(
log

An + 1
An

−
N−1∑

k=1

1
(N − k)(An + 1)N−k

)

= (N − 1)δn + σN (δ2
n) = (N − 1)

2 log n

n
+ σN (

log2 n

n2
) ,

that is

log
An + 1

An
−

N−1∑

k=1

1
(N − k)(An + 1)N−k

=
(

2 log n + σN (
log2 n

n
)
)

(1− δn)

and hence

An + 1
An

exp

(
−

N−1∑

k=1

1
(N − k)(An + 1)N−k

)
= n2(1 + σN (

log2 n

n
)) , (17)

and finally that

An + 1
Ann2

= e1+ 1
2
+...+ 1

N−1 +
{

O(1/n2) , N = 2
O(log2(n)/n) , N ≥ 3

, for n large (18)

This yields (16).

3. The limit: We now calculate the limit of
∫∞
0 ey

N/(N−1)
n −tdt .

Proposition 9 Let {yn} denote the sequence (14). Then
∫ ∞

0
ey

N/(N−1)
n (t)−t → 1 + e1+ 1

2
+...+ 1

N−1 , as n →∞
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Proof. a) By the upper bound proved above we have (since yn is a
normalized concentrating sequence) that

lim
n→∞

∫ ∞

0
ey

N/(N−1)
n (t)−t ≤ 1 + e1+ 1

2
+...+ 1

N−1

We now prove the other inequality:
b) We first prove that there exists some c > 0 such that

∫ n

0
ey

N/(N−1)
n (t)−t ≥ 1 +

Γ(1 + N
N−1)

n1/(N−1)
− c

log n

nN/(N−1)
, as n →∞ , (19)

where Γ denotes the standard gamma-function. Indeed
∫ n

0
ey

N/(N−1)
n (t)−tdt =

∫ n

0
e(1−δn) (tN/n)1/(N−1)−tdt

≥
∫ n

0

(
1 +

1− δn

n1/(N−1)
tN/(N−1)

)
e−tdt

≥ 1− e−n +
1− δn

n1/(N−1)

(∫ ∞

0
tN/(N−1) e−tdt−

∫ ∞

n
e−t/2

)

≥ 1 +
Γ(1 + N

N−1)

n1/(N−1)
− c

log n

nN/(N−1)
, as n →∞ ,

by the definition of the gamma-function.

c) Next we prove

∫ ∞

n
ey

N/(N−1)
n (t)−tdt ≥ e1+ 1

2
+...+ 1

N−1 +

{
O( 1

n2 ) , N = 2
O( log2 n

n ) , N ≥ 3
(20)

We perform the change of variables s = t− n, and set

zn(s) =
N − 1

n1/N (1− δn)1/N
log

An + 1
An + e−s/(N−1)

,

and

dn = n(1− δn) .

Then
∫∞
n ey

N/(N−1)
n −tdt becomes

14



∫ ∞

0
exp

(
[d

N−1
N

n + zn(s)]
N

N−1 − s− n

)
ds (21)

≥
∫ ∞

0
exp

(
dn+

N

N − 1
zn(s) dn

1
N−1 − s− n

)
ds

=
∫ ∞

0
exp

(
N

N − 1
zn(s) n

1
N (1− δn)

1
N − nδn − s

)
ds

=
∫ ∞

0
exp

(
N log

An + 1
An + e−s/(N−1)

− nδn − s

)
ds

=
1
n2

∫ ∞

0
(

1 + An

An + e−s/(N−1)
)N e−sds

=
(1 + An)N

n2

∫ ∞

0

1
(1 + Anes/(N−1))N e−sN/(N−1)

e−sds

=
(1 + An)N

n2

∫ ∞

0

es/(N−1)

(1 + Anes/(N−1))N
ds

=
(1 + An)N

n2
(N − 1)

∫ ∞

1

1
(1 + Anr)N

dr

=
(1 + An)N

n2

1
An(1 + An)N−1

=
1 + An

n2An
= e1+ 1

2
+...+ 1

N−1 +

{
O( 1

n2 ) , N = 2
O( log2 n

n ) , N ≥ 3

by relation (18). Hence the claim.

4. General nonlinearities F : Suppose now that F (t) is a general non-
linearity with critical growth, satisfying hypotheses F1-F3. Then we may
write

F (t) = eαN tN/(N−1) − 1 + G(t)

with

G(t)
eαN tN/(N−1)

→ 0 , as t →∞
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Then, by Theorems 2 and 4 we have for any normalized concentrating se-
quence {un}

lim
n→∞

∫

Ω
F (un)dx = lim

n→∞

∫

Ω
(eαNu

N/(N−1)
n − 1)dx + lim

n→∞

∫

Ω
G(un)dx

≤ e1+ 1
2
+....+ 1

N−1 |Ω|
while for the sequence {yn} given in (14) holds

lim
n→∞

∫

Ω
F (yn) = lim

n→∞

∫

Ω
(eαNy

N/(N−1)
n − 1 + G(yn))dx = e1+ 1

2
+....+ 1

N−1 |Ω|

2.5 Proof of Theorem 5:

We show that under condition F4

CN,λ = supR∞
0 |u′|N=1

∫ ∞

0
Fλ(

1

α
(N−1)/N
N

u)e−tdt > e1+ 1
2
+...+ 1

N−1

Indeed, by the estimates (19) and (21) we have for n sufficiently large

∫ ∞

0
ey

N/(N−1)
n (t)−t

=
∫ n

0
ey

N/(N−1)
n (t)−t +

∫ ∞

n
ey

N/(N−1)
n (t)−t ≥

≥ 1 +
Γ(1 + N

N−1)

n1/(N−1)
− c

log n

nN/(N−1)
+ e1+ 1

2
+...+ 1

N−1 +

{
O( 1

n2 ) , N = 2
O( log2 n

n ) , N ≥ 3
.

Furthermore, we can estimate the term

λ

∫ ∞

0
|yn|

N
N−1 e−tdt ≤ λ

n1/(N−1)

∫ n

0
|t|N/(N−1) e−tdt + c

∫ ∞

n
ne−tdt

≤ λ
Γ(1 + N

N−1)

n1/(N−1)
+ c

log n

nN/(N−1)
.

Hence we obtain for λ < 1 and a suitably large n

CN,λ = supR |u′|N=1

∫ ∞

0
Fλ(

1

α
(N−1)/N
N

u)e−tdt ≥
∫ ∞

0
Fλ(

1

α
(N−1)/N
N

yn)e−tdt

≥ e1+ 1
2
+...+ 1

N−1 + (1− λ)
Γ(1 + N

N−1)

n1/(N−1)
− c

log n

nN/(N−1)
+

{
O( 1

n2 ) , N = 2
O( log2 n

n ) , N ≥ 3

> e1+ 1
2
+...+ 1

N−1 .
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Then, since by Theorem 4 there cannot exist a normalized concentrating
sequence which is maximizing for CN,λ, we conclude by the concentration-
compactness theorem of P.L. Lions that CN,λ is attained.

Open problem: Show that sup||u||=1

∫
B1

F (u)dx is not attained for F (t)
of the form

F (t) = eαN tN/(N−1) − g(t)

with g subcritical, and

g(t) ≥ tN/(N−1) .

2.6 Proof of Theorem 6:

We restrict attention to the radial case, i.e Ω = B1(0) ⊂ R2. Consider the
functional I(u) =

∫
B1

[12 |∇u|2 − F (u)] dx, where F (s) is as in Theorem 6.
Then we know by [5] that this functional satisfies the Palais-Smale condition
(PS)c for c < 1

2 . By the remarks in section 2.1, we may assume that un is
radially symmetric, and we can rewrite the functional in radial coordinates:

∫ 1

0
[
1
2
|ur|2 − F (u)] 2πrdr

Cancelling the factor 2π we see that
∫ 1
0 [12 |ur|2−

∫ 1
0 F (u)] rdr satisfies (PS)c

for c < 1
4π . Next, we perform a change of variables to transform the interval

(0, 1) to the interval (0, +∞): Let

r = e−t/2 , dr = −1
2
e−t/2dt , ut = ur

dr

dt
= −1

2
ure

−t/2

and hence we obtain ∫ +∞

0
[
1
2
|2ute

t/2|2 − F (u)]
1
2
e−tdt

Multiplying by 2 we see that the functional
∫ ∞

0
[2|ut|2 − F (u)e−t]dt

satsifies (PS)c for c < 1
2π . Finally, substitute y = 2

√
πu and multiply by π

to obtain

J(y) =
∫ ∞

0
[
1
2
|yt|2 − πF (

1
2
√

π
y)e−t]dt (22)

which satisfies again (PS)c for c < 1
2 .
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2.6.1 Estimates for (P-S)

We now show that the functional J(u) given by (22) (which satisfies (PS)c

for c < 1
2) has a critical level c with c < 1

2 provided h satisfies condition (9).

Theorem 10 Suppose that f(s) = h(s)e4πs2
satisfies H1-H3, and assume

that lims→∞ h(s)s > 1
eπ . Then J(u) has a critical level below 1

2 .

Proof: As in [5], the critical level is given by the mountain pass theorem.
To prove that the mountain pass level is below 1

2 it suffices to show that
there is a w ∈ H1

0 , ||w|| = 1, such that maxt≥0 J(tw) < 1
2 . In [5] we used the

Moser sequence to show this. Here we use the sequence {yn} given in (14).
So we assume, by way of contradiction, that for all n ∈ N

max
s≥0

J(syn) =
∫ ∞

0
[
1
2
s2
n|y′n|2 − πF (

1
2
√

π
snyn)e−t]dt ≥ 1

2
.

This implies s2
n ≥ 1. Furthermore, since d

dsJ(syn)|s=sn = 0 we have for n
sufficiently large, using condition (9)

s2
n = π

∫ ∞

0
f(

sn

2
√

π
yn)

sn

2
√

π
yne−t

= π

∫ ∞

0
h(

sn

2
√

π
yn)

sn

2
√

π
yn · es2

ny2
n−t

≥ (β − ε)π
∫ ∞

n
es2

n(n−2 log n)−t .

We show that s2
n → 1; assume that this is not so, i.e. suppose that there

exists a subsequence of sn with s2
n ≥ 1 + δ, for some δ > 0. Then we have

s2
n ≥ (β − ε)π

∫ ∞

n
e(1+δ)(n−2 log n)−t = (β − ε)πeδn−(1+δ)2 log n

This would imply that s2
n → +∞, which then yields a contradiction. Hence

we must have

s2
n → 1

We now estimate more precisely; fix A > 0 and set [0, bn) = {t ∈ [0,∞) :
snyn(t) < A}. Since yn(t) = t√

n

√
1− δn → 0, for every fixed t ≥ 0, we

conclude that bn →∞. Then we have

s2
n ≥ (β − ε)π

∫ ∞

0
es2

ny2
n−t + π

∫ bn

0
f(

sn

2
√

π
yn)

sn

2
√

π
yn (23)

− (β − ε)π
∫ bn

0
es2

ny2
n−t
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The last integral in (23) goes to 1: indeed, we have

∫ bn

0
e−t ≤

∫ bn

0
es2

nu2
n−t =

∫ bε

0
es2

nu2
n−t +

∫ bn

bε

es2
nu2

n−t ,

where we choose for given ε > 0 the number bε > 0 such that
∫ bn

bε

es2
ny2

n−t ≤ es2
nA2

∫ bn

bε

e−t ≤ ε/2 , ∀n

Next, using that yn(t) ≤ τn → 0 uniformly on [0, bε], choose Nε sufficently
large such that

∫ bε

0
es2

ny2
n−t ≤ es2

nτ2
n

∫ bε

0
e−t ≤ 1 + ε/2 , for n ≥ Nε

The second integral in (23) is positive, and in fact goes to zero (as can be
seen using a similar argument). Hence we have in the limit, using theorem
4 for N = 2

1 = limn→∞ s2
n = (β − ε)π

[
limn→∞

∫∞
0 es2

ny2
n−tdt− 1

]

≥ (β − ε)π
[
limn→∞

∫∞
0 ey2

n−tdt− 1
]

= (β − ε) πe

Thus, for β > 1
eπ given, we obtain a contradiction, choosing ε > 0 sufficiently

small.
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