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1. Introduction

In this paper we shall be concerned with the existence and the concentration behavior
of positive bound-state solutions (solutions with bounded energy) for the problem

−�28u+ V (z)u= f(u) + u2
∗−1; in RN ;

u ∈ C2(RN ) ∩ H 1(RN ); u(z)¿ 0 for all z ∈ RN ; (P�)

where �¿ 0; 2∗ = 2N=(N − 2); N ≥ 3; is the critical Sobolev exponent; V :RN → R
is a locally H4older continuous function satisfying

V (z) ≥ �¿ 0 for all z ∈ RN ; (V∗)

and

inf
>

V ¡ inf
@>

V (V∗∗)
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for some bounded domain >⊂RN ; and the nonlinearity f :R+ →R is locally Lipschitz
and such that

(f1) f(s) = o1(s) near the origin;
(f2) there are q1; q2 ∈ (1; 2∗ − 1); �¿ 0 such that

f(s) ≥ �sq1 for all s¿ 0 and lim
s→∞

f(s)
sq2

= 0

(when N = 3; we need q1 ¿ 2; otherwise we require a suFciently large �);
(f3) for some � ∈ (2; q2 + 1) we have

0¡�F(s) ≤ f(s)s for all s¿ 0;

where F(s) =
∫ s
0 f(t) dt;

(f4) the function f(s)=s is increasing for s¿ 0.

Since we are interested in positive solutions, we deGne f(s) = 0 for s¡ 0.
Let us state our main result:

Theorem 1. Suppose that the potential V satis9es (V∗)–(V∗∗) and f satis9es (f1)–
(f4). Then there is an �0 ¿ 0 such that problem (P�) possesses a positive bound state
solution u�; for all 0¡�¡�0. Moreover; u� possesses at most one local (hence global)
maximum z� in RN ; which is inside >; such that

lim
�→0+

V (z�) = V0 = inf
>

V:

Besides; there are C and �; positive constants such that

u�(x) ≤ C exp
(
−�
∣∣∣∣x − z�

�

∣∣∣∣
)

for all x ∈ RN :

We would like to remark that this kind of equation in (P�) arises from the problem
of obtaining standing waves solutions of the nonlinear Schr4odinger equation

i�
@ 
@t

=−�28 + (V (z) + E) − | |−1h(| |) in RN (S�)

where h(s) = f(s) + s2
∗−1. A standing wave solution to problem (S�) is one in the

form  (x; t) = exp(−i�−1Et)u(x): In this case u is a solution of (P�).
Some recent works have treated this problem in the subcritical case and we cite a

couple of them.
Floer and Weinstein [7] have studied the problem (S�) in the case N = 1; h(s) = s3

and bounded potentials with nondegenerate critical point. They show that for small �,
this problem has a solution which concentrates around each nondegenerate point (see
also [18] for a related work).
Roughly speaking, in this work, concentration behavior around the origin of a func-

tion means that it has the form  (�x) where  is a C2 function with exponential
decay.
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Under the potential condition

inf
z∈RN

V ¡ lim inf
|z|→∞

V (z); (1)

Rabinowitz [14] has proved the existence of positive ground-state solutions (solutions
with minimal energy) for (P�), in the case where h(s) behaves like sp; 1¡p¡ 2∗−1,
for small �. The remaining concentration behavior result in this subcritical case was
obtained by Wang [17].
Alves and Souto in [2] have established existence and concentration behavior of

ground-state solutions when the nonlinearity has the critical form h(s) = �sq + s2
∗−1;

1¡q¡ 2∗ − 1, under condition (1).
In the very interesting article [5], del Pino and Felmer have obtained the com-

plete treatment (existence and concentration behavior of solutions) with the potential
under conditions (V∗) and (V∗∗). They have obtained bound-state solutions but not
ground-state solutions, and this is reasonable, because some problems under condition
(V∗∗) do not admit any ground-state solution (see, for example, Theorem 4 of [2]).
From this reason we cannot look for minimax critical points of the energy functional
J� : E → R,

J�(u) =
1
2

∫
RN
(�2|∇u|2 + V (z)u2) dz −

∫
RN

F(u+) dz − 1
2∗

∫
RN

u2
∗

+ dz

(where u+ = max{u; 0}), deGned on the Hilbert space

E =
{
u ∈ H 1(RN ) :

∫
RN

V (z)u2 dz¡∞
}

;

associated to (P�).
A way to solve this problem is to modify the nonlinearity into one more convenient

in order to apply the mountain-pass theorem. Namely, we will consider the following
Carath,eodory function:

g(z; s) =

{
">(f(s) + s2

∗−1) + "Df̃(s) if s ≥ 0;

0 if s¡ 0;

where

f̃(s) =




f(s) + s2
∗−1 if s ≤ a;

�s
k

if s¿a;

k ¿�(� − 2)−1 ¿ 1; a¿ 0 is such that f(a) + a2
∗−1 = k−1a�; D = RN \ O> and "A

denotes the characteristic function of subset A of RN . Similar modiGed nonlinearity
has been used by del Pino and Felmer in [5] to study the subcritical case.
We have organized the paper as follows. In the second section, using the mountain-

pass theorem, we shall prove that the functional associated to the modiGed problem
possesses a critical point. In the following section we shall prove Theorem 1 by a
couple of lemmas which show that for small � this critical point of the modiGed
functional has a concentration behavior and it is also critical point of functional J�.
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2. The modi�ed functional

In this section we will consider the energy functional J :E → RN given by

J (u) =
1
2
‖u‖2 −

∫
RN

G(z; u) dz;

where

‖u‖2 =
∫
RN
(|∇u|2 + V (z)u2) dz:

Here G(z; s) = ">(F(s) + 1
2∗ s

2∗) + "DF̃(s) and F̃(s) =
∫ s
0 f̃(t) dt.

Notice that, using (f1)–(f4), it is easy to check that
(g1) g(z; s) = f(s) + s2

∗−1 = o(s), near the origin, uniformly in z ∈ RN ;
(g2) g(z; s) ≤ f(s) + s2

∗−1 for all s¿ 0; z ∈ RN ;
(g3) 0¡�G(z; s) ≤ g(z; s)s; for all z ∈ >; s¿ 0 or z ∈ D and s ≤ a;
and

0 ≤ 2G(z; s) ≤ g(z; s)s ≤ 1
k
V (z)s2 for all z ∈ D; s¿ 0;

(g4) the function s−1g(z; s) is increasing in s¿ 0 for each z Gxed.

Lemma 2. J has the mountain-pass geometry.

Proof. Let ( be a nonzero function in C∞
0 (>), such that ( ≥ 0. Then for all t ¿ 0

J (t() ≤ t2

2
‖(‖2 − t2

∗

2∗

∫
RN

(2
∗
dz:

Of course, J (t() → −∞ as t → ∞. As the usual way, from (g2) J (u)= 1
2‖u‖2+o(‖u‖),

near origin. This completes the proof.

Now in view of Lemma 2, we can apply a version of the mountain-pass theorem
without (P:S:) condition (see [11]) to obtain a sequence {un} such that

J (un) = c + on(1) and |J ′(un)|= on(1); (2)

where c is the minimax level of functional J given by

0¡c = inf
g∈P

max
0≤t≤1

J (g(t)); (3)

where P = {g ∈ C0([0; 1];E) : such that g(0) = 0 and J (g(1)) ≤ 0}. Throughout this
work on(1) denotes a sequence converging to zero as n → ∞.

Remark 1. As in [5,6], we shall use the equivalent characterization of c more adequate
to our purpose, given by

c = inf
v∈E\{0}

max
t≥0

J (tv):
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Furthermore, it is easy to check that for each non-negative v ∈ E − {0} there is a
unique t0 = t0(v) such that

J (t0v) = max
t≥0

J (tv):

We denote by S the best Sobolev constant for the embedding D1;2(RN ) ,→ L2∗(RN ).

Lemma 3. There is a v ∈ E\{0} such that
max
t¿0

J (tv)¡
1
N

SN=2;

therefore we have this estimate for the minimax level (3) of J:

c¡
1
N

SN=2:

Proof. For each h¿ 0, consider the function

 h(z) =
[N (N − 2)h](N−2)=4

(h+ |z|2)(N−2)=2 :

We recall that  h satisGes the problem

−8u= u2
∗−1; RN ;

u(z)¿ 0;
∫
RN

|∇u|2 dz¡∞

and ∫
RN

|∇ h|2 dz =
∫
RN

 2∗
h dz = SN=2

(see [16]). Now, consider vh(z)=(’ h(z)=‖’ h‖L2∗ ) where ’ ∈ C∞
0 (RN ); 0 ≤ ’(z) ≤

1 and

’(z) =

{
1; z ∈ B1;

0; z �∈ B2;

where B1 ⊂B2 ⊂⊂> are concentric balls of radius 0 and 20, respectively. From con-
dition (f2) we have

J (tvh) ≤ t2

2

∫
B2

(|∇vh|2 + ‖V‖L∞(>)v2h) dz −
�tq1+1

q1 + 1

∫
B2

vq1+1
h dz − t2

∗

2∗
: (4)

Using the same arguments explored in [12], there exists h¿ 0 such that

max
t≥0

{∫
B2

[
t2

2
(|∇vh|2 + ‖V‖L∞(>)v2h)−

�tq1+1

q1 + 1
vq1+1
h

]
dz − t2

∗

2∗

}
¡

1
N

SN=2: (5)

Therefore, from (4) and (5) we have that

max
t≥0

J (tvh)¡
1
N

SN=2

and the proof of the lemma is complete.
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Lemma 4. Every sequence {un} satisfying (2) is bounded in E.

Proof. To check this, observe that using (g3) we have

J (un)− 1
�
J ′(un) =

(
1
2
− 1

�

)
‖un‖2 + 1

�

∫
RN

[ung(z; un)− �G(z; un)] dz

≥
(
1
2
− 1

�

)
‖un‖2 + 1

�

∫
D
[ung(z; un)− �G(z; un)] dz

≥
(
1
2
− 1

�

)
‖un‖2 +

(
2− �
�

)∫
D
G(z; un) dz

≥
(
1
2
− 1

�

)
‖un‖2 +

(
2− �
2k�

)∫
D
V (z)u2n dz

=
(
�− 2
2�

)∫
RN

[
|∇un|2 +

(
1− 1

k

)
V (z)u2n

]
dz: (6)

Applying (2) in inequality (6) we have the upper bound of ‖un‖.

Lemma 5. There is a sequence {zn}⊂RN and R¿ 0; 1¿ 0 such that∫
BR(zn)

u2n dz ≥ 1:

Proof. Suppose by contradiction that the lemma does not hold. Then by Lion’s result
(see [10] or [4]) it follows that∫

RN
|un|q dz = on(1); as n → ∞ for all 2¡q¡ 2∗

and then∫
RN

F(un) dz =
∫
RN

unf(un) dz = on(1):

This implies that∫
RN

G(z; un) dz ≤ 1
2∗

∫
>∪{un≤a}

(u+n )
2∗ dz +

�
2k

∫
D∩{un¿a}

u2n dz + on(1) (7)

and ∫
RN

ung(z; un) dz =
∫
>∪{un≤a}

(u+n )
2∗ dz +

�
k

∫
D∩{un¿a}

u2n dz + on(1): (8)

From equality (8) and J ′(un) · un = on(1), we conclude that

‖un‖2 − �
k

∫
D∩{un¿a}

u2n dz + on(1) =
∫
>∪{un≤a}

(u+n )
2∗ dz: (9)
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Let ‘ ≥ 0 be such that

‖un‖2 − �
k

∫
D∩{un¿a}

u2n dz → ‘:

It is easy to check that ‘¿ 0, otherwise we have un → 0 which contradicts c¿ 0. From
(9) ∫

>∪{un≤a}
(u+n )

2∗ dz → ‘:

From inequality (7) and J (un) = c + on(1) we have

‘ ≤ Nc (10)

and hence ‘¿ 0. Now, using the deGnition of the constant S, we have

‖un‖2 − �
k

∫
D∩{un¿a}

u2n dz ≥ S

(∫
>∪{un≤a}

u2
∗

n dz

)2=2∗
:

Taking the limit in the above inequality, as n → ∞, we achieve that

‘ ≥ S‘2=2
∗
;

which, together with (10), implies

c ≥ 1
N

SN=2;

which contradicts Lemma 3.

Lemma 6. The sequence {zn} is bounded in RN .

Proof. For each 0¿ 0 consider a diRerentiable function  0 such that

 0(z) =

{
0 if |z| ≤ 0;

1 if |z| ≥ 20

and |∇ 0(z)| ≤ C0−1, for all z ∈ RN . Use J ′(un)( 0un) = on(1) to obtain

�
(
1− 1

k

)∫
RN

u2n 0 ≤
∫
RN

[
|∇un|2 +

(
V (z)− �

k

)
u2n
]
 0 dz

=−
∫
RN

un∇ 0∇un dz

+
∫
RN

[
g(z; un)un − �

k
u2n
]
 0 dz + on(1):

If 0 is large enough, we have >⊂B0(0). Furthermore, from (g3) we get

�
(
1− 1

k

)∫
RN

u2n 0 dz ≤ C
0
‖un‖2H 1 + on(1): (11)

The inequality (11) completes the proof.
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Using standard arguments, up to subsequence, we may assume that there is u ∈ H
such that

un * u in H; un → u in Lq
loc(R

N ) and un(x) → u(x) a:e: in RN :

From Lemmas 5 and 6, u is nontrivial and using the weak convergence of un we can
see that u is a critical point of J . Finally, from Remark 1, (g3) and Fatou’s lemma

c≤ J (u) = J (u)− 1
2
J ′(u)u

=
1
2

∫
RN

[ug(z; u)− 2G(z; u)] dz

≤ lim inf
n

{
1
2

∫
RN

[ung(z; un)− 2G(z; un)] dz
}

= lim inf
n

{
J (un)− 1

2
J ′(un)un

}
= c

and then u is a solution with minimal energy J (u) = c.
We have proved up this moment the following result:

Proposition 7. For all �¿ 0; there is a positive critical point u� ∈ E associated to
the functional

J�(u) =
1
2

∫
RN
(�2|∇u|2 + V (z)u2 dz)−

∫
RN

G(z; u) dz

at the level

c� = inf
v∈E\{0}

max
t≥0

J�(tv):

3. Proof of Theorem 1

In order to proof Theorem 1, let us Gx some notations. First we suppose, without
loss of generality that @> is smooth and 0 ∈ >. Furthermore,

V (0) = V0 = inf
>

V:

We will denote by I0 :H 1(RN ) → R the functional given by

I0(u) =
1
2

∫
RN
(|∇u|2 + V0u2) dx −

∫
RN

[
F(u) +

1
2∗

(u+)2
∗
]
dx;

associated to the autonomous problem

−8u+ V0u= f(u) + |u|2∗−2u; in RN : (12)

It is known that under assumptions (f1)–(f4), (12) possesses a ground-state solution
! at the level

c0 = I0(!) = inf
v∈H 1\{0}

max
t≥0

I0(tv) (13)
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(see [1] for instance). Furthermore,

c0 ¡
1
N

SN=2:

Remark 2. The dependence of the mountain-pass level c0 on the potential V0 is con-
tinuous and increasing (see [14]).

From a result due to Gidas et al. [8], any solution of problem (12) must be spheri-
cally symmetric about some point in RN and @u=@r¡ 0 for all r ¿ 0, where r is the
radial coordinate.
Let I� denote the energy functional

I�(u) =
1
2

∫
RN
(|∇u|2 + V (�x)u2) dx −

∫
RN

G(�x; u) dx;

deGned in

E� =
{
u ∈ H 1(RN ):

∫
RN

V (�x)u2 dx¡∞
}

;

associated to the problem

−8u+ V (�x)u= g(�x; u) in RN : (MP�)

From Proposition 7, the family of nonnegative functions

v�(x) = u�(z) = u�(�x); z = �x

is such that each v� is a critical point of I� at the level

b� = I�(v�) = inf
v∈E�\{0}

max
t≥0

I�(tv):

It is easy to check that b� = �−N c�. Furthermore, from Lemma 3, for each �¿ 0 we
have

b� ¡
1
N

SN=2: (14)

Moreover,

Lemma 8. lim sup�→0 b� ≤ c0, the mountain-pass minimax level of I0.

Proof. Fix ! deGned in (13) and consider !�(x)=’(�x)!(x), where ’ is the function
deGned in Lemma 3. Here we assume that B1 = B0(0); B2 = B20(0)⊂>. It is easy to
see that !� → ! in H 1(RN ); I0(!�) → I0(!), as � → 0+, and the support of !� is in
>� = {x ∈ RN ; �x ∈ >}. By deGnition of b� we have

b� ≤max
t¿0

I�(t!�) = I�(t�!�)

=
t2�
2

∫
RN

[|∇!�|2 + V (�x)!2
� ] dx −

∫
RN

[
F(t�!�) +

t2
∗

�

2∗
!2∗

�

]
dx; (15)
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for some t� ¿ 0. It is easy to verify that t� → 1 as � → 0+. On the other hand,

I�(t�!�) = I0(t�!�) +
t2�
2

∫
RN
(V (�x)− V0)!2

� dx: (16)

Since V (�x) is bounded on the support of !�, by the Lebesgue Dominated Convergence
Theorem and (15) and (16), we conclude the proof.

Notice that I�(v�) ≤ c0 + o�(1), where o�(1) goes to zero as � → 0. From (V∗) and
(g2), we have

I�(u) ≥ OI(u) :=
1
2

∫
RN
(|∇u|2 + �u2) dx −

∫
RN

[
F(u) +

1
2∗

(u+)2
∗
]
dx:

Hence, b� is bounded from below by Oc¿ 0; the minimax level of functional OI .
Now, using similar arguments as of Lemma 5, we have the following result.

Lemma 9. There are �0 ¿ 0; a family {y�}{0¡�≤�0} ⊂ RN and positive constants R; 1
such that∫

BR(y�)
v2� dx ≥ 1; for all 0¡� ≤ �0:

Lemma 10. �y� is bounded in RN . Moreover; dist(�y�;>) ≤ �R

Proof. For <¿ 0, we deGne K< = {x ∈ RN : dist(x;>) ≤ <}. We set >�(x) = >(�x),
where > ∈ C∞(RN ; [0; 1]) is such that

>(x) =

{
1; x �∈ K<;

0; x ∈ >

and |∇>| ≤ C<−1. Taking v�>� as test function, using property (g3) and the fact that
the support of >� does not intercept >�, we obtain

�
(
1− 1

k

)∫
RN

v2�>� dx≤
∫
RN

[
|∇v�|2 +

(
V (�x)− �

k

)
v2�
]
>� dx

=−
∫
RN

v�∇>�∇v� dx +
∫
RN

[
v�f̃(v�)− �

k
v2�
]
>� dx

≤−
∫
RN

v�∇>�∇v� dx:

So we have

�
(
1− 1

k

)∫
RN

v2�>� dx ≤ C<−1�‖v�‖2H 1 : (17)

If for some sequence �n ↘ 0 we have

BR(y�n) ∩ {x ∈ RN ; �nx ∈ K<}= ∅ (18)
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then

�
(
1− 1

k

)∫
BR(y�n )

v2�n dx ≤ C<−1�n‖v�n‖2H 1 ;

which contradicts Lemma 9. Thus (18) does not hold, that is, for all � there is an x such
that �x ∈ K< and |x−y�| ≤ R. It is easy to verify that this implies dist(�y�;>) ≤ �R+<.
From this fact we conclude the proof.

From Lemma 10 we can suppose that the family {y�}, deGned in Lemma 9, can be
taken such that �y� ∈ > for all � ∈ (0; �0]. Indeed, if not, we replace y� by �−1x�, where
x� comes from Lemma 10, so that |�y� − x�| ≤ �R. Observing that |y� − (x�=�)| ≤ R,
we can replace R by 2R in Lemma 9.
Let us consider the following subset of RN :

E� = {x ∈ RN : v�(x) ≥ a and �x �∈ >}:
Observe that, in fact, we want to show that E� is empty if � is small. Let F� be the
following translation of E�:

F� = {x ∈ RN : v�(x + y�) ≥ a and �x + �y� �∈ >}:
It is easy to see that |E�|= |F�| (|A| indicates the Lebesgue measure of the subset A).

Lemma 11. The following limits hold:
(i) lim�→0 V (�y�) = V0;
(ii) lim�→0 b� = c0;
(iii) lim�→0 |E�|= 0.

Proof. If �n ↘ 0 and yn=y�n , are such that �nyn → x0, we must prove that V (x0)=V0.
We already know that x0 ∈ O>, that is, V (x0) ≥ V0. Let us set vn(x) = v�n(x); !n(x) =
v�n(x + yn); En = E�n and Fn = F�n . From Lemma 9 we have∫

BR(0)
!2

n dx ≥ 1¿ 0; for all n;

−8!n + V (�nx + �nyn)!n = g(�nx + �nyn; !n) in RN

and ‖!n‖H 1 = ‖vn‖H 1 is bounded. Let ! ∈ H 1(RN ) such that !n * ! in H 1(RN ). We
have ! ≥ 0; ! �= 0 and

−8!+ V (x0)!= "(x)[f(!) + !2∗−1] + (1− "(x))f̃(!) = g̃(x; !) in RN ;

(19)

where "(x) = limn ">(�nx+ �nyn) almost everywhere in RN . It is easy to verify that if
x0 ∈ > we have "(x) = 1 for all x ∈ RN and therefore ! is a solution of the problem

−8!+ V (x0)!= f(!) + !2∗−1 in RN : (20)

On the other hand, if x0 ∈ @>; without loss of generality, we may suppose that the
outer normal vector ? in x0 is (1; 0; : : : ; 0): Let P= {x ∈ RN : x1 ¡ 0}: Observe that on
P; " ≡ 1: In fact, for each x ∈ P;

�nx + �nyn ∈ >; for all large n:



506 C.O. Alves et al. / Nonlinear Analysis 46 (2001) 495–510

Then in both cases, g̃(x; s)=f(s)+s2
∗−1 for all x ∈ P: This implies that the functional

energy Ĩ associated to problem (19) has the same minimax level c̃ of the functional
Ĩ x0 associated to problem (20). In eRect, for all u ∈ H 1(RN ) we have Ĩ x0 (u) ≤ Ĩ(u) and
then Cx0 ≤ c̃ (where Cx0 is the minimax level of Ĩ x0 ): On the other hand Ĩ x0 (u)= Ĩ(u);
for all u with support inside P:
From the autonomous case (see Remark 2) theory, c0 ≤ Ĩ(!): It is easy to check,

from Fatou’s Lemma and Lemma 8, that

c0 ≤ Ĩ(!) =
1
2

∫
RN

[!g̃(x; !)− 2G̃(x; !)] dx

≤ lim inf
n→∞

{
1
2

∫
RN\Fn

[!ng(�nx + �nyn; !n)− 2G(�nx + �nyn; !n)] dx

}

≤ lim inf
n→∞

{
1
2

∫
RN\En

[vng(�nx; vn)− 2G(�nx; vn)] dx

}

= lim inf
n→∞

{
I�n(v�n)−

1
2
I ′�n(v�n)v�n

}
≤ c0; (21)

where G̃ denotes the primitive of g̃. Thus, (ii) follows from (21).
Suppose that limit (i) does not hold, that is V (x0)¿V0: It comes from Remark 2,

c0 ¡c̃ ≤ Ĩ(!) = c0

which is a contradiction, then V (x0) = V0: To show the part (iii) we have from (21)
that

lim
n→∞

1
2

∫
RN\En

[vng(�nx; vn)− 2G(�nx; vn)] dx = c0: (22)

The same approach used in the whole RN instead of RN \En in inequality (21) also
shows that

lim
n→∞

1
2

∫
RN

[vng(�nx; vn)− 2G(�nx; vn)] dx = c0: (23)

Since (22) and (23) hold, we have

lim
n→∞

1
2

∫
En

[vng(�nx; vn)− 2G(�nx; vn)] dx = 0:

But, from deGnition of F̃ we have∫
En

[vng(�nx; vn)− 2G(�nx; vn)] dx =
[
�
k
a2 − 2F(a)− 2

a2
∗

2∗

]
|En| ≥ 0

and this implies the limit (iii).

From the proof of Lemma 11, !n converges in the weak sense to a ! that is a
solution of problem (12) satisfying I0(!) = c0; that is, ! is a ground state solution of
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(12). From that proof we also have that b�n → c0 and that g(�nx + �nyn; s) converges
uniformly over compacts to f(s) + s2

∗−1. Moreover, from (g3)∫
F�

!�g(�x + �y�; !�) dx ≤ �
k

∫
F�

!2
� dx ≤ �

k
‖!�‖2L2∗ |F�|(2∗−2)=2∗ = o�(1): (24)

In the same way we have∫
F�

G(�x + �y�; !�) dx = o�(1): (25)

Also from (22) and the deGnition of g we have

2c0 + on(1) =
∫
RN\Fn

[!ng(�nx + �nyn; !n)− 2G(�nx + �nyn; !n)] dx

=
∫
RN\Fn

[!nf(!n)− 2F(!n)] dx +
(
1− 2

2∗

)∫
RN\Fn

!2∗
n dx;

which implies that∫
RN\Fn

!2∗
n dx →

∫
RN

!2∗ dx; (26)

and ∫
RN\Fn

[!nf(!n)− 2F(!n)] dx →
∫
RN

[!f(!)− 2F(!)] dx:

From limit (26) we have proved the following result.

Lemma 12. !�"RN\F� converges to ! in L2∗(RN ).

In order to prove the concentration of the solution, we state the following two
fundamental propositions. The Grst one is an adequate version of a result due to Brezis
and Kato [3] (see also [15] for the details).

Proposition 13. Let v ∈ H 1
0 (V); V⊂RN open; satisfying

−8v+ (b (x)− q(x))v= f̃(x; v) in V;

where f̃: V× R→ R+ is a Carath�eodory function such that

0 ≤ f̃(x; s) ≤ Cf̃(s
r + s); for all s¿ 0; x ∈ V;

b ∈ C(V; [0;+∞)); q ∈ LN=2(V); 1¡r¡ (N + 2)=(N − 2): Then v ∈ Lp(V) for all
2 ≤ p¡∞; and there is a positive constant Cp depending on p; q and Cf̃ such that

‖v‖Lp(V) ≤ Cp‖v‖H 1(V):

Moreover; the dependence on q of Cp can be given uniformly on Cauchy sequences
qk in LN=2.

The next proposition is a very particular version of Theorem 8:17 in [9].
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Proposition 14. Suppose that t ¿N; g̃ ∈ Lt=2(V) and u ∈ H 1(V) satis9es in the weak
sense

−8u ≤ g̃(x) in >

where V is an open subset of RN : Then for any ball B2R(y)⊂V;

sup
BR(y)

u ≤ C(‖u+‖L2(B2R(y)) + ‖g̃‖Lt=2(B2R(y)))

where C depends on N; t and R:

From Lemma 12, the sequence !2∗−2
n is a Cauchy sequence in LN=2. Using

Proposition 13, with q(x) = !2∗−2
n ">(�nx + �nyn) ∈ LN=2; b(x) = V (�nx + �nyn) and

f̃(x; s) = g(�nx + �nyn; s)− !2∗−1
n ">(�nx + �nyn), we have !n ∈ Lt for all t ≥ 2 and

‖!n‖Lt ≤ Ct‖!n‖H 1 (27)

where Ct does not depend on n:
Still from Lemma 12,

lim
R→∞

∫
|x|≥R

!2
n dx +

∫
|x|≥R

!2∗
n dx = 0 uniformly on n: (28)

We will apply Proposition 14 to the following inequality:

−8!n ≤ g̃n(x) = g(�nx + �nyn; !n) in RN : (29)

Combining (27) with the fact that ‖!n‖H 1 bounded, we have a t ¿N such that
‖g̃n‖Lt ≤ C; for all n: Using Proposition 14 in inequality (29), for all y ∈ RN

sup
B1(y)

!n ≤ C(‖!n‖L2(B2(y)) + ‖g̃n‖Lt(B2(y))); (30)

which implies an uniform bound for ‖!n‖L∞ and consequently, we have an uniform
bound for ‖!�‖L∞ for 0¡�¡�0: Moreover, combining the limit (28) with inequality
(30) we reach

lim
|x|→∞

!n(x) = 0 uniformly on n (31)

and we have for !�(x) = v�(x + y�)

lim
|x|→∞

!�(x) = 0 uniformly on � ∈ (0; �0]: (32)

From limit (32) there is a 0¿ 0 such that !�(x) ≤ a for all |x| ≥ 0 for all n, that
is

−8!� + V (�x + �y�)!� = f(!�) + !2∗−1
� in |x| ≥ 0:

On the other hand, if |x| ≤ 0; g(�x + �y�; s) = f(s) + s2
∗−1 when >� ⊃B0(0), then

−8!� + V (�x + �y�)!� = f(!�) + !2∗−1
� in RN

for all � ∈ (0; �0]:
Notice that, up this moment, we have obtained the existence of solutions u� for

problem (P�): In order to prove the concentration behavior of these solutions, we shall
prove:
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Lemma 15. If �0 is suBciently small !� possesses at most one local (hence global)
maximum x� ∈ RN .

Proof. If y1 is a local maximum of !n we must have

�!n(y1)q1−1 + !n(y1)2
∗−2 ≥ �: (33)

From limit (32), it is suFcient to consider the problem in a Gxed ball BR(0) of RN :
Since ‖!n‖L∞ is uniformly bounded, elliptic regularity theory implies that !n con-

verges in C2
loc(RN ) to !: Let xn ∈ BR(0) a global maximum of !n. The translation of

!n; O!n(x) =!n(x+ xn), attains its global maximum at the origin. Proceeding with O!n

as we have proceeded with !n, it is easy to see that O!n converges to ! in C2
loc(RN ).

Now, by Lemma 4:2 in [13], if n is suFcient large, O!n possesses no critical points
other than the origin.

At this moment we can consider the sequence {y�} in Lemma 11, as the sequence
of global maximum points of v�: For � suFciently small, u� attains its global maximum
at an unique z� ∈ RN which must satisfy

u�(z�) = v�(y�); �y� = z�: (34)

Then from Lemma 11

lim
�→0

V (z�) = V0:

Finally !� has an exponential decay:

Lemma 16. There are C ¿ 0 and �¿ 0 such that

!�(x) ≤ Ce−�|x| for all x ∈ RN :

Proof. From limit (31) and (f1) there is a R0 ¿ 0 such that

f(!�(x)) + !�(x)2
∗−1 ≤ V0

2
!�(x) for all |x| ≥ R0: (35)

Fix ’(x) =Me−�|x| with �2 ¡V0=2 and Me−�R0 ≥ !�(x) for all |x|= R0: It is easy to
verify that

8’ ≤ �2’ for all x �= 0: (36)

DeGne ’� = ’− !�: Using (35) and (36) we have

−8’� +
V0

2
’� ≥ 0 in |x| ≥ R0;

’� ≥ 0 on |x|= R0;

lim
|x|→∞

’�(x) = 0:

The classical maximum principle implies that ’� ≥ 0 in |x| ≥ R0 and we conclude

!�(x) ≤ Me−�|x|; for all |x| ≥ R0 and � ∈ (0; �0]:

The proof is complete.
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Using (34) and Lemma 16, we have

u�(x) = v�(�) = !�(�x − y�) = !�(�x − �z�)

≤C exp
(
−�
∣∣∣∣x − z�

�

∣∣∣∣
)

for all x ∈ RN :

We have completed the proof of Theorem 1.
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