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Abstract
Using a variational approach we study the existence and multiplicity of solutions
for the following class of Dirichlet problems:

~die(a{| Cu V)| Vu |V Vu)= f(r.u). in 2. u=0.0n 9.

where §? is a bounded domain in BY with ¥ > 2 and the uonlinearity f{r.s) has
subcritical growth on ). ie.. forall a > 0

lim,— f(+.u)exp(-a | u|¥=T) =0,
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1 Introduction

The purpose of this paper is to study the existence and multiplicity of solutions for the
following class of quasilinear elliptic problems:
—dicla{| Vu |¥) | Ve ¥ Vo) = f(r.u). in Q. (1)
u = 0. on I,
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where Q is a bounded smooth domain in A with N > 2 and the noulinearity [ : Qx K —

R is continuous and has suberitical growth on Q. e for all o >0

lim | flr.u) | = 1.

—— unit formly on r € Q).
lul=x expla | u |¥-T)

Problems involving subcritical growth. in bounded domains in F*. have been studied
recently by de Figueiredo. Mivagaki and Ruf [1]. In this paper we improve and generalize
the existence results in [4] involving suberitical growth. For this purpose it is considered
a wore geueral class of nonlinearities and operators of elliptic type. Indeed. the main goal
of this paper is to study this more general class of elliptic problems using the topological
min-max- approach. as it is done in the earlier work of Ambrosetti-Rabinowitz [1] (see [7].
for a complete reference). In order to prove the compactness coudition of the functional
associated to problem (1). we assume the following condition on the function f. namely:

(H,) there are constants g > N and R > 0 such that for Vo € . [ v [2> R.

0 < pF(r.u) < uf(r.u).

where F is the primitive of f.
Remarks i) Integrating condition (H;) we obtain positive constants ¢. d such that
Flr.u) 2 clul¥ —d {2)

Notice that assumption (H,;) with .V = 2 is the usual Ambrosetti-Rabinowitz superiin-
earity condition (cf.[1]).

ii) ln [4]. in order 1o obtain a compactness condition. conditions different from (H;)
were assumed, which in our context do not seem natural. Here. instead. we make as-
sumption {H;)} and explore more thoroughly the notion of suberiticality defined above.
We remark that such a condition has been motivated by tle following result due to

Trudinger aud Moser (cf. {6].[3]) :
s 1 Ny %
explo|u|=T)e L' Vue Uy (Q). Ya>0
and )
sup /exp(nlurfl_l)S("{_\'}Gﬂ?. ifa<ay.

[lull ;.0 ¥ €1
“D

where ay = .\'..;.QTE_', and wy_; is the (.V — 1)-dimensional surface of the unit spliere. Such
a result allows us to treat problem (1) variationally in the Sobolev space H"l (£2).
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Quasilinear Elliptic equations
We now state the following hypotheses on the function a, which we shall assume
thruughmn the paper.

(ay) a:IR* — R is continuous

(a;) There exist positive constants p € (1. .N]. by . b). ¢;. ¢, such that
e+ hat? <u¥Pa(uN) <o+ ¥ Vue R
(a3) The function k : B —R. k(u) = a(| u |¥) | u |¥=? u is strictly increasing and
ku) -0 as u—0*.

Remarks i) We remark that the class of elliptic operators considered here has been
studied recently in works of Hirano [3] and Ubilla [9]. where the function f is assumed to

have polynomial growth.
i) An important example of problem (1) to keep in mind throughout this paper. is

given when a(u) = o + 35 . with ¥V > p.a > 0 and 3 > 0, which corresponds to the

problem
—Avu—=dAu = f(ru), in Q. u=0o0ndN

where A u = div(| Vu [P~? Vu) is the so-called p—Laplacian (see other examples in the
last section).

Consider the following nonlinear eigenvalue problem for the p—Laplacian
-D,u=A|u }p_z u. uéE€ "}_.}'P(Q).

It is well known (cf. [2]) thar there exist a smallest A;(p) > 0 and an associated func-
tion ¢y > 0 in @ that solve this problem. Moreover we have the following variational

characterization
Ar(p) = inf {f | VulPdr:u€ H};"[ﬂ). / |u|Pde = l}.
We shall denote by A; the i—th eigenvalue of problem (—A. H}(Q)).

Now we state the main results which will be proved here.

Theorem 1 Assume that [ is continvous. it has subcritical growth and satisfies (H,).
and that a satisfies (a,). (a;) and (@3). with Nby < pby. Furthermorc, assume that

(H;) t“&o sup pf{u'rl"") < (a1 +bi8,(N))A(p). uniformly on r € Q.
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where §,(N) =1 tf N =pand §,{N) = 0 f N # p. Then, problem (1) has a noatrivial
weak solution. Moreover, «f f(r.u) s an odd function in u, then problem (1) has an
unbounded sequence of weak solutions,

For our next theorem we assume that N = p = 2. Thus. in this case condition (a;,)
can be rewritten as follows: there exist constants b b, > 0 such that

by € a{u) b Yue RY. (3)

Theorem 2 Assume tha! [ is continuous. o has suberitical growth and satisfies (H;).
and thal a satisfirs (dy). (az) and {u3). with 2b; < pb;. Furthermor . supposr thal

b
(H3) 36> 0, 3\ €9 < Ay such that F(r.u) < %7112, ac. reN V|u|Lé

b; 12a,
(H,) Firu)2 =M\’ aer€Q. VueR

Then, problem (1) has a nontrivial weak solution. Morrover., if instead of (Hy) we assume
that f(r.u) is an odd function in u. then problem (1) has an unbounded sequence of weak

solutions.

2 The variational formulation

Note that if the function f is continuous and has subcritical growth. theu there exist
positive constants ¢ and J such that :

| fr,u) |< Cexp(3 | u|TT), V(r,u)€Nx R. (4)
Consequently the functional ¥ : Wa* () — IR given by

Y(u) = /F{.r.u}d: (3)

is well defined and belongs to ("(H'(}"\'{Q). IR) with
V(u)e = /f{:.u}vd_r. Ve € W (). (6)
To prove these statements we notice that from (1) we also have
| Flz.u) |< Crexp(3 | u |¥T).  V(r.u)eNx R. (7)

Thus. since exp{3 | u |?‘E—‘) € L! for all u € WY(Q), we see that the expressions i {3)
and (6) are well defined. Finally. using standard arguments (cf. [7]) and the fact thar
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given any strong convergent sequence («, ) in H'[,"‘\'(Q) there exist a subsequence (u,, ) and

h e W',}""(QJ such that | u, (r) |[€ h(x) a.e. £ € Q (to see this we nse the same argument

used in the proof of Fischer-Riesz theorem). we have that ¥ belongs to ("(Ii}}"v(ﬂj. R).
[t follows from the assumptions on the function @ that for all v € R

l O by N, O 4 1
_\.-4(|Ui JZNPUI +pfuf (8)
La(ul™ s - L Y +=5 | ], (9)
X - N P

t
where A(t) = [a(r)dr, and furthermore the function ¢ : IR — IR defined by g(v) = A(|
0

u |V) is strictly convex. Consequently. the functional @ : “',,"'\.(Q) — IR given by

®(u) = [ A(] Vu [V)de (10)

is well defined, weakly lower semicontinuous. Fréchet differentiable. and the derivative of
¢ is continuous. Moreover ¢’ belongs to the class (). that is. for anyv sequence (u,) in

Wav(9) such that
Uy, — 4. aud
nli_nl sup{®'(un ) u, —u) <4 (11)

it follows that u, — u in W2 (Q) (here — denotes weak convergence amd — stroug
convergence). This is a special case of a more general class of operators studied by Browder
{3).

Therefore. if function a satisfies conditions (a1) — (3} and the nonlinearity f is con-
tinuous and satisfies {1). we conclude that the functional / : Wg~(Q) — R given by

Iu) = l\/-{” YVu i'\_)dvr - /F(.r.ujch‘.
is well defined and belougs to CH{HY(Q). R) with

I'u)e = [uﬂ Tul¥)| Cu V2 VuNodr - ff{.r.u)t'tf.r. Ye € ”'Ul"\‘{f!).
2 !
Consequently. equation (1) is precisely the Euler equation of the functional / and the
weak solutions of (1) are critical points of [ and conversely. This allows us to use Crirical
Point Theory to obtain weak solutions of problem (1).

To find the critical points of functional / we shall consider the Palais-Smale (P)
compactness condition. Let (X.|| - ||) be a real Banach space and [ € ("'(.X. R). We
recall that / satisfies condition (PS) if any sequence (u,) C .\ for which

2

(¢) I(ua) = c. (22) I'(u,) = 0. asn— x. (12)

has a convergent subsequence.
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Lemma 1 Assume that f is continuous and has subcritical growth. Let (u,) be a sequence
in WJ'N(Q) such that u, — u. Then 1!21 Jflriug)lun —u}=

Proof. Let (u,) be a sequence converging weakly to some u in H'I'N(Q] Thus, we can
take a subsequence, denoted again by (u,). such that u, —ain L?, Vp > 1. Smce (u,)is

a bounded sequence, we may choose .3 > 0 sufficiently small such that Bl ua f|“I v<ax,
Vn. Since f has subcritical growth, we obtain

[ (2 un(2)) [ dr < C [exp(gd | ua |F7)dx
N Ne1
<C‘fexp[qi||u,. II“,N ("u—_‘,'r‘m) ]d.rSC,

for large n, if we choose ¢ > 1 sufficiently close to 1. Using Holder's inequality. the last
estimate implies

/f(r.u..)(un~u)s [/|f{.r.u,,(:)) pr U'““' u|p]* SCU' un—ul*’]}

where 1/p + 1/¢ = 1. Thus the proof is completed. since u, —u in L”. (=

Lemma 2 Let ®: Wy:N(R) — R be a C* functional such that &' belongs to the class (S),
and, in addition, suppose that the fun-tion f is continuous and has subcritical grouth.
Then the functional I(u) = ®(u) — [ F(x.u)dr satisfies condition (PS). provided that
erery sequence (u,) in Wa™ () satisfying (12). is bounded.

Proof. Let (u,) C W, V() bea sequence satisfying (12). Then
| I'(un)v |=] ' (un)e —/f(.r un)t € € [ v || .V v € W (Q).

where ¢, — 0 as n — oc. Since {u,) is a bounded sequence in Hy™(R). we can 1ake a

subsequence, denoted again by (u,). such that u, — u and u, —u in L', Yg > 1. Then
considering ¢ = u,—u in the inequality ahove and using the fact that uhrlnx Jfle.u ug—

i) =0 (see Lemma 1 above) . we obtaiu
@' (un)(un — u) — 0.
Since u, — u and @’ € (S),. the result is proved. O

Lemma 3 Assume that the function a satisfies (ay) — (a3). with N'b, < pb,. and that the
nonlincarity f is continuous. has subcritical growth and satisfies (H,). Then the functional
I satisfies condition (PS).
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Proof. Using (a;) — (¢q) with Nb; < ub, we obtain positive constants c. d such that

%.4(u}—ka{u)u Scu-d Yue R, (13)
Now. let (u,) be a sequence in H'Ql"\.(ﬂl satisfying (12). Thus.
1 : N v ‘
—\—,/.4(|w,.| ) /F(.r.u,,] ; (14)
[/a(| Vu, |V) | Vun ¥ —/f{.r.u,.)‘u,. 1€ €, || u, ||".0.A.~.-. (15)

where ¢, — 0, as n — oc. Multiplying (14) by g. subtracting (15) from the expression
obtained and using (13) we come to the conclusion that

J19ua Y = [ (. ua) = frua)ua) SC o sl

From this mequahty and using condition (H). we easily find that (u,) is a bounded
sequence in Wy (92). Finally. to conclude the proof it suffices 10 use Lemma 2. o

3 Proofs of the existence results

3.1 Proof of Theorem 1

Lemma 4 Assume that the hypotheses of Theorem [ hold. Then there erist 8. p > 0
such that I{u) > & if | u H“.{;..\-: p- Moreover, I(tu) — —x as t — +2¢. for all

u € Wy ()\{0}.

Proof. Using (H;) and (4) we can choose 7 < ¢; + b18,(.V') such that for ¢ > \

F(r,u) < rM;(p)u *(‘e*cp(.i]u]‘-l) |ul?. ¥Y(r.u)eNx R.

On the other hand. from Hoélder’s inequality and Trudinger-Moser inequality we obtain

_..\_'_‘ 1/r
Jexp(3 | u|¥57) |u 1< {fexp [J: o s (mf*) ]} (il
< C(N) {Slu |7}

o
if | u ||< o. where 3re ¥ < ay and 1/r+1/s = L. Using the variational characterization
of the first eigenvalue and the Sobolev embedding. these two estimates and inequality (3
imply
1) 2 0w s +5 Ll =2 b g =Colw By
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Sinee 5 < ¢ + bié, (V) and p £ NV < g we can choose p > 0 such that [(u) > & if
H u ”H’.u! x=p. )
Now we shall prove the second assertion. Choosing any u € WY (Q)\{0}. the second

inequality in (9) and (2) lead to
bz"\' v ("gtﬁ 5 <
I(tu) < -\—_][\_"u | +7/|vu|v —dt /m# +C

Therefore. [{tu) — —>c as f — +x.sinced>0and u > N 2 p. O

It follows from Lemima 3 that the functional [ satisfies (PS). Now to obtain a non-
trivial solution to problem (1) we use Lemma 4 and apply the Mountain-Pass Theorem
{Theorem 2.2 of [7]). Assuming that the function f(r.u} is odd in u, we can apply a Z;
version of the Mouutain-Pass Theorem {Theorem 9.12 of [7]),in order to conclude that
functional / has an unbounded sequence of critical values ¢, = f{u,).

Finally {as Theorem 9.38 in [7] or Theorem | in [9]) we prove that {u,) is an unbounded
sequence. Using condition (¢;) we obtain

a(u)u > %.4{!1)‘ Yu€ R*. (16)
On the other hand, since ¢, = I{u,) and I’(u,)u, = 0. we obtain respectively

/a[] Su, |'\_} | Vu, (N-_-" ff(r,u,,)u,, (17)

_lvf’*” Cuu I¥) = [ Fle.u) = (18)

Multiplying (17) by 1/N. subtracting (138) from the expression obtained and using (16)
we conclude that

(1= ) [all Sy 1¥) | Fua 1 + [ [§ 1w = Flrua)] 2 e

From the above estimate it follows that (u,) is unbounded, since ¢, — +x.

3.2 Proof of Theorem 2

Lemma 5 Suppose that the hypotheses of Theorem 3 hold. Denote by Hy the finite dimen-
sional subspace of H} () generated by the eigenfunctions of (—A. Hy(Q)) corresponding
to the cigenvalues Ay. ... . A and Wi = HE where HE denotes the orthogonal subspace
of Hy in H}(Q). Then. there are constants a, p > 0 such that

Hu)Zza if | ull=p and u € W
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Moreover, if we. consider piyy as an cigenfunction of (—O. Hy(Q)) corresponding to the
eigenvalue iy, the set
Q:{lr-i-.s‘p;“,l:l'e H.. “ v “HgS R. 0<s <R}

and 0Q as its relative boundary in Hy = span{pis1}, then there erists R > p such that
I(u) <0, for all u € 9Q.

Proof. From condition (H3) and inequality (4) we have
F(r.u) < {_)—:‘;uz + Cexp(3u?) | u |’

for ¢ > 2. Now, as in the proof of Lemma 4. using Trudinger-Moser inequality, the
variational charactenization of the eigenvalue A, and the first inequality in (}). we
obtain

[(u) > 2(1 - —) | u |}H| =C | u ||Lé. Vu € Wi.

Since v < Agyy and 2 < ¢, the ﬁrst assertion follows.
Condition {H,) and the second inequality in (3) yield

u)<—]IV ——?M/IUI'ISU- Vu € Hi.

On the other hand. using the first assertion of Lemma 5. we can choose R > 0 sufficiently

large such that
Hu) < 0. VuedQ with |u|g2 R

Consequently we obtain that /{«) < 0. for all ¥ € 3Q. o
[n view of Lemma 3 and Lemma 6. to obtain a uontrivial solution to problem (1) we

apply the Generalized Mountain Pass Theorem (Theorem 5.3 of [7]). Finally. to obtain
an unbounded sequence of weak solutions we proceed as in the proof of Theorem 1.

4 Some examples

Example 1 Let F € CY(R.R) such that F(u) ~ (1 + ap(.\'mﬁpt as | u |—= 0 and
F(u) ~| u |"\—_l exp(.3 | u It‘\'_' /Inful) as|ul|= oc. where 1 < p < N and 3 > 0.
Thus. as a consequence of Theorem 1. the problem

~Ayu—D,u=F(u)in Q. u=0ond0

has a nontrivial weak solution prorided that A < A((p). Moreorer. this problem has an
unbounded sequence of weak solutions if we assume that F is even. Notice that in this

case a(u) =1 + u'~ .
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Example 2 Consider problem (1) with a(u) = 1 + ¢(1 + «)™* and F(u) = },,-’ o £ =
yiu))exp(n | ul? /In(| u| +2)) wheren€ CHIR.[0.1]). \(u} = 1. Vu € (=é.8). \(u) = 0.
VYu ¢ (-26,26),6 >0 and = > 0. That is

—dil'{(l + € (1+ | Vu I‘z)-z) Vu} =F(u) in Q. u=0 on .

Thus, using Theorem 2. this problem has a nontrumal weak solution provided that (1 +
g)Ae € ¥ < Ay

References

(1] A. Ambrosetti and P. H. Rabinowitz. Dual rariational methods in critical point theory
and applications, J. Funct. Anal. 14 (1973). pp. 349-381.

(2] A. Anane, Simpiicite et isolation de la premére valeur propre du p-Laplacien avec
poids. C. R. Acad. Sci. Paris 305 (1987), pp. 725-723.

[3] F Browder. Fired point theory and nonlinear problems, Bull. Amer. Math. Soc. 9
(1933). pp. 1-39.

[4] D. G. de Figueiredo. O. H. Mivagaki and B. Ruf. Elliptic equations i IR? with non-
linearities in the critical grouth rangc. to appear in Calculus of Variations

[3] N. Hirano, Multiple solutions for quasilinear elliplic equations. Nonl. Anal. Th. Meth.
Appl.15 (1990). pp. 625-638.

[6] J. Moser, A sharp form of an incquality by N. Trudinger. Ind. Univ. Math. J. 20
(1971). pp. 1077-1092.

[7) P. H. Rabinowitz. Minimar methods in critical point theory with applications to dif-
ferential equations. CBMS Regional Conference Series Math. 65. Amer. Math. Soc..

Providence. R.I. (1936).

[8] N. S. Trudinger, On imbeddings into Orlic= spaces and some applications. J. Math.
Mech. 17 (1967), pp. 473-434.

(9] P. Ubilla. Alguns resultados de Multiplicidade de solugoes para equagoes ¢ liticas quasi-
lineares, Doctoral dissertation (Unicamp). 1992.

March 30, 1995

72



